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Universidade Federal de Goiás, Campus de Catalão, Brazil

and

MAURICIO AYALA-RINCÓN

Instituto de Ciências Exatas, Universidade de Braśılia, Brazil

This paper shows how a formalization for the theory of Abstract Reduction Systems (ARSs) in

which noetherianity was specified by the notion of well-foundness over binary relations is used in
order to prove results such as the well-known Newman’s and Yokouchi’s Lemmas. The former is

known as the diamond lemma and the latter states a property of commutation between ARSs. The
theory ars was specified in the Prototype Verification System (PVS) for which to the best of our

knowledge there was no available theory for dealing with rewriting techniques in general before this

development. In addition to proof techniques available in the higher-order specification language
of PVS, the verification of these lemmas implies an elaborated use of natural and noetherian

induction.
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1. INTRODUCTION

The Prototype Verification System (PVS), developed at the SRI and widely used
by industrial and academic parties, consists of a specification language built on
higher-order logic, which supports modularity by means of parameterized theories,
with a rich type-system and a prover which uses the sequent-style. A PVS theory,
ars, built over the PVS prelude libraries for sets and binary relations that is useful
for the treatment of Abstract Reduction Systems (ARS) was reported in [8]. In
the theory ars basic ARS notions such as reduction, derivation, normal form, con-
fluence, local confluence, joinability, noetherianity, etc., were adequately specified
in such a way that non elementary proof techniques such as noetherian induction
are possible. In this paper we describe the usefulness of ars by describing proofs
of Newman’s and Yokouchi’s lemmas. The former proof is a well-known classical
application of noetherian induction and the latter is of interest because it is based
on several applications of natural and noetherian induction. The inductive proof
of the Newman’s Lemma given by Huet in [10] is a classical example of proofs in
higher-order logic.

The novelty of this work in not to present mechanical proofs of ARS theorems
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in PVS that were done previously in other proof assistants. In fact, well-known
formalizations of Newman’s Lemma have been specified in several proof assistants,
e.g., ACL2 [21], Coq [11] (an earlier reference reporting a formalization in this
proof assistant is [7]), Isabelle [20], Boyer-Moore [23], Otter [3], among others. ars
is presented as the basis for the formalization of an elaborated and robust PVS the-
ory for full Term Rewriting Systems (TRSs), called trs, in which more elaborated
theorems such as the well-known Knuth-Bendix critical pair criterion were formal-
ized [9]. In [17], Nipkow treated concepts such as confluence and commutation,
and formalized in Isabelle/HOL some results such as the theorems of the commu-
tative union and the Church-Rosser theorems for β-, η- and β ∪ η-reduction in the
λ-calculus free of types. The libraries CoLoR [5] and Coccinelle [6] developed in
Coq, by Blanqui et al and Contejean et al, respectively, focused on formalizations
of termination criteria by reduction orders, that was not considered neither in ars
nor in trs. In [22], Säıbi presented specifications in Coq of concepts of the theory
of rewriting, such as closure of relations and local confluence, and formalizations of
some rewriting properties such as Newman’s and Yokouchi’s Lemmas. In addition,
without proving the Knuth-Bendix theorem, critical pairs were analyzed for the
calculus of explicit substitutions λσ⇑. The Critical Pair Theorem is axiomatically
assumed and applied in order to verify that this calculus is locally confluent. Dif-
ferently from the previously mentioned works, the theories ars and trs pretend to
be more general trying to include all the elements that are necessary to formalize
any property and result of the theory of rewriting, without focusing any rewriting
system or rewriting calculus in particular.

The main motivation for doing this work of formalization of the theory of (ARSs
and) TRSs is the fact that rewriting has been applied to the specification and syn-
thesis of reconfigurable hardware [13] and that the correction of these specifications
can be carried out by translating these rewriting specifications into the language
of the PVS proof assistant as logic theories (in fact, [1] introduces a proved correct
translation from ELAN rewriting specifications into PVS theories). And robust
proof rewriting based methods are necessary to deal efficiently with the correctness
of these theories that come from rewriting based specifications.

Two characteristics of the ars theory can be remarked: firstly, the use of an
higher-order language for the treatment of higher-order properties of reduction and
rewriting, makes it natural the specification of higher-order properties of reduction
relations such as Newman’s lemma; secondly, proofs follow the “almost geometrical
style” based in diagrams used in the standard rewriting literature.

Section 2 presents proofs of both lemmas. Sections 3 and 4 describe respectively
the specification and verification of both lemmas in PVS. The theory ars together
with proofs of Newman’s, Yokouchi’s, among other interesting lemmas is available
at www.mat.unb.br/∼ayala/publications.html.

2. BACKGROUND: MATHEMATICAL PROOFS

We suppose the reader is familiar with rewriting concepts and standard notations
as presented in [2] or [4].

An abstract reduction relation is a binary relation R over a set T , denoted also
as 〈R, T 〉. The relation is identified as R, →R or simply →. R+ and R∗ respec-
tively denote the transitive and the reflexive transitive closure of R, denoted in
Journal of Formal Reasoning Vol. 1, No. 1, 2008.
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arrow notation as →+ and →∗, respectively. In the elegant arrow notation, the
inverse relation R−1, its transitive and its reflexive transitive closures are respec-
tively denoted as←, +← and ∗←. The operator of composition is denoted as usual
as ◦. An abstract reduction relation → over T is said to be: confluent whenever
(∗← ◦ →∗) ⊆ (→∗ ◦ ∗←) and locally confluent whenever (← ◦ →) ⊆ (→∗ ◦ ∗←).
→ satisfies the diamond property whenever (← ◦ →) ⊆ (→ ◦ ←). Two elements
of T , say x, y, are said to be joinable whenever ∃u.x →∗ u ∗← y. → is said to be
noetherian whenever there is no infinite sequence of the form x1 → x2 → · · · .

Lemma 2.1. (Newman’s Lemma [16]) Let R be a noetherian relation defined on
the set T . Then R is confluent if, and only if it is locally confluent.

Proof. (Sketch). The necessity follows immediately by definition. The suffi-
ciency is proved by noetherian induction using the predicate

P (x) = ∀y, z. y ∗← x→∗ z =⇒ y and z joinable

Obviously R is confluent if P (x) holds for all x. Noetherian induction require us
to show P (x) under the assumption P (t) for all t such that x→+ t. To prove P (x),
we analyze the divergence y ∗← x →∗ z. If x = y or x = z, y and z are joinable
immediately. Otherwise we have x → y1 →∗ y and x → z1 →∗ z as shown in the
Figure 1(a), where as usual dashed arrows stand for existence. The existence of u
follows by local confluence (LC) of R, the existence of v and w follows by induction
hypothesis (Ind).
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Fig. 1. Proof of Newman’s Lemma, Diagram D and Generalization of D as D′

Lemma 2.2. (Yokouchi’s Lemma [24]) Let R and S be two relations defined
on the same set T , R being confluent and noetherian, and S having the diamond
property. Suppose moreover that the diagram D as shown in the Figure 1(b) holds.
Then the relation R∗ ◦ S ◦R∗ has the diamond property.

Proof. (Sketch). The proof starts by generalizing the diagram D of the lemma
as the diagram D′ in the Figure 1(c). This generalization is proved by noetherian
induction using the predicate

P (x) := ∀y, z. xR∗z ∧ xSy ⇒ ∃u.(yR∗u ∧ zR∗ ◦ S ◦R∗u)

Then, to prove that R∗ ◦ S ◦ R∗ has the diamond property, one also proceeds by
noetherian induction but this time using the predicate

P ′(x) := ∀y, z. xR∗◦S◦R∗y ∧ xR∗◦S◦R∗z ⇒ ∃u.(yR∗◦S◦R∗u ∧ zR∗◦S◦R∗u)
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42 · André Luiz Galdino and Mauricio Ayala-Rincón

One concludes, by induction in the length of the derivation of the first R∗ in
xR∗ ◦ S ◦R∗y. In other words, we distinguish between the cases xR ◦R∗ ◦ S ◦R∗y
and xS ◦ R∗y as is shown in the Figure 2, where C and DP stand for use of
confluence of R and diamond property of S hypotheses, respectively.
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Fig. 2. Cases xR ◦ R∗ ◦ S ◦ R∗y and xS ◦ R∗y

3. SPECIFICATION

Figure 3 illustrates the hierarchy of subtheories of the PVS theory ars. The theory
ars uses standard PVS libraries as Field and Manip [15] and is composed essen-
tially of IMPORTINGs of four subtheories as can be seen in Table I. These subtheories
include formalizations of theorems related with the properties of commutation, re-
duction modulo equivalence, normalization and Newman’s and Yokohuchi’s lemmas,
respectively.

Table I. ars PVS theory

ars[T : TYPE] : THEORY

BEGIN

IMPORTING results_commutation[T],

modulo_equivalence[T],

results_normal_form[T],

newman_yokouchi[T]

END ars

Within the ars theory, T is treated as a fixed uninterpreted type. So, when ars
is used by another theory it must be instantiated. The theory ars imports the PVS
library for sets (see sets lemmas in Figure 3) and over this it builds the closure of
binary relations and its properties (in the subtheory relations closure) that are
necessary for formalizing ARS terminology (in the subtheory ars terminology)
and theorems. Let consider a binary relation R over T, specified in PVS as R:
VAR pred[[T, T]]. In order to make easy the use of natural induction, closures
of relations are built as unions of iterations of their compositions. For instance,
the reflexive transitive closure operator, denoted as RTC, of a relation R (i.e., R∗)
is specified as the union of the iterations iterate(R,i), for all i ≥ 0, where
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iterate(R,i) specifies the relation
R ◦ R · · · ◦ R︸ ︷︷ ︸
i times

available in the PVS orders li-

brary. The operators iterate and IUnion, available in the PVS prelude theory are
specified as

iterate(R,i): RECURSIVE PRED[[T,T]] =
IF i = 0 THEN =[T] ELSE iterate(R,i - 1) o R ENDIF
MEASURE i

IUnion(A): set[T] = {x | EXISTS i: A(i)(x)}

where the composition of relations is denoted as o. Then RTC can be specified as

RTC(R): reflexive_transitive = IUnion(LAMBDA n: iterate(R,n))

Notice that the type of RTC is reflexive transitive. From the intrinsic charac-
teristics of the RTC construction, the system of types of PVS will create the necessary
proofs obligations to be proved (PVS Type Correctness Conditions - TCCs). The
predicate reflexive transitive? is used to specify the associated type as follows.

reflexive_transitive?(R): bool = reflexive?(R) & transitive?(R)
reflexive_transitive: TYPE = (reflexive_transitive?)

where & is an abbreviation for AND. Notice that the suffix “?” is used for discrimi-
nating between predicates and types.

Formalizations of properties of the reflexive transitive closure are given as

R_subset_RTC: LEMMA subset?(R, RTC(R))

iterate_RTC: LEMMA FORALL n : subset?(iterate(R, n), RTC(R))

RTC_idempotent : LEMMA RTC(RTC(R)) = RTC(R)

RTC_characterization : LEMMA reflexive_transitive?(R) <=>
(R = RTC(R))

In the previous lemmas R is universally quantified. This applies for all unquan-
tified variables in the lemmas and theorems to be presented in the remaining of
the paper. R denotes a reduction relation over T and n a natural. =>, <=> are
abbreviations for IMPLIES and IFF, respectively.

Other closure operators and their properties are formalized similarly: equivalence
closure EC, symmetric closure SC, transitive closure TC, etc.

The PVS theory newman yokouchi presented in Table II specifies Newman’s and
Yokouchi’s lemmas. This theory is parameterized as newman yokouchi[T], where
(within the newman yokouchi theory) T is treated as a fixed uninterpreted type. R
and S denote reduction relations over T and x, y, z, w and u elements of T.

Newman’s Lemma specification is straightforward and based on predicates over
reduction relations. The second lemma, Yokouchi lemma ax1, corresponds to the
generalization D′ of the diagram D presented in Figure 1.

The subtheories results confluence[T] and noetherian[T], also components
of the whole ars theory (see Figure 3), are imported by the newman yokouchi
theory. The former contains results about confluence and the latter the definition
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Table II. newman yokouchi PVS theory

newman_yokouchi[T : TYPE] : THEORY BEGIN

IMPORTING results_confluence[T], noetherian[T]

R, S: VAR PRED[[T,T]]

Newman_lemma: THEOREM

noetherian?(R) => (confluent?(R) <=> local_confluent?(R))

Yokouchi_lemma_ax1: LEMMA

(noetherian?(R) & confluent?(R) &

(FORALL x,y,z: (S(x,y) & R(x,z)) =>

(EXISTS (u:T): RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))))

=> (FORALL x,y,z: (S(x,y) & RTC(R)(x,z)) =>

(EXISTS (w:T): RTC(R)(y,w) & (RTC(R) o S o RTC(R))(z,w)))

Yokouchi_lemma: THEOREM

(noetherian?(R) & confluent?(R) & diamond_property?(S) &

(FORALL x,y,z: (S(x,y) & R(x,z)) =>

(EXISTS (u:T): RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))))

=> diamond_property?(RTC(R) o S o RTC(R))

END newman_yokouchi

of noetherianity formulated in terms of the notion of well-foundness as it will be
explained.
Journal of Formal Reasoning Vol. 1, No. 1, 2008.
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Specifications of rewriting properties are exemplified by the following ones.

joinable?(R)(x,y): bool = EXISTS z:RTC(R)(x,z) & RTC(R)(y,z)

local_confluent?(R): bool = FORALL x,y,z: R(x,y) & R(x,z) =>

joinable?(R)(y,z)

confluent?(R): bool = FORALL x,y,z: RTC(R)(x,y) & RTC(R)(x,z) =>

joinable?(R)(y,z)

diamond_property?(R): bool = FORALL x,y,z: R(x,y) & R(x,z) =>

EXISTS r: R(y,r) & R(z,r)

Noetherianity is formalized in terms of well foundness, and noetherian induction is
then verified using the lemma wf induction, which expresses the principle of well-founded
induction. The notion of well-founded relations and this principle are available in the
prelude theory [18].

noetherian?(R): bool = well_founded?(converse(R))

noetherian: TYPE = (noetherian?)

wf_induction: LEMMA

(FORALL (p: pred[T]): (FORALL x: (FORALL y:

y < x => p(y)) => p(x)) => (FORALL (x:T): p(x)))

The lemma noetherian induction presented below corresponds to the principle of
noetherian induction.

noetherian_induction: LEMMA (FORALL (R: noetherian, P: PRED[T]):

(FORALL x, y: (TC(R)(x,y) => P(y)) => P(x)) => (FORALL x: P(x)))

This lemma uses the transitive closure operator TC, that is specified similarly to RTC.
Its application depends on an adequate instantiation of the predicate P.

4. VERIFICATION

The verification of Newman’s and Yokouchi’s lemmas consists of 1857 lines (168247 bytes)
of proofs. The formalizations of Newman’s and Yokouchi’s lemmas use 114 and 225 proof
steps, respectively. Here the relevant fragment of the proof trees, focusing on the applica-
tion of noetherian induction, are presented.

4.1 Verification of Newman’s Lemma

When the PVS prover is invoked the proof tree starts off with a root node (sequent) having
no antecedent and as succedent the theorem to be proved.

Newman_lemma :

|-------

{1} FORALL (R: PRED[[T,T]]):

noetherian?(R) => (confluent?(R) <=> local_confluent?(R))

The reduction relation R is correctly universally quantified, since it was declared as a
variable in the theory newman yokouchi (see Table II). After skolemization by applying
the proof command (skeep), the conjunctive splitting command (split) is applied to
the goal obtaining two subgoals. The first subgoal, Newman lemma.1, is to demonstrate
that confluence implies local confluence, which is easily formalized. The second subgoal,
Newman lemma.2, that is to demonstrate that local confluence implies confluence (under
noetherianity hypothesis), is the truly interesting one.
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For proving this subgoal, after disjuntive simplification with (flatten), one introduces
the noetherian induction scheme noetherian induction and instantiates its predicate P

as:

(LAMBDA (a:T): (FORALL (b,c:T): RTC(R)(a,b) & RTC(R)(a,c)

=> joinable?(R)(b,c)))

Then, the subgoals Newman lemma.2.1 and 2.2 presented below are obtained by applying
the command (split), that splits the implication of the instantiated noetherian induction
scheme. The first subgoal is easily verified by expanding the definition of the predicate
confluent?, skolemization and adequate instantiation of the variables of the antecedent
{-1}.

Newman_lemma.2.1 :

{-1} FORALL (x:T): FORALL (b,c:T):

RTC(R)(x,b) & RTC(R)(x,c) => joinable?(R)(b,c)

[-2] local_confluent?(R) [-3] noetherian?(R)

|-------

[1] confluent?(R)

Newman_lemma.2.2 :

[-1] local_confluent?(R) [-2] noetherian?(R)

|-------

{1} FORALL (x:T): (FORALL (y:T): TC(R)(x,y) => (FORALL (b,c: T):

RTC(R)(y,b) & RTC(R)(y,c) => joinable?(R)(b,c)))

=> (FORALL (b,c:T): RTC(R)(x,b) & RTC(R)(x,c)=> joinable?(R)(b,c))

To prove the latter subgoal, one needs to show P(x) under the assumption P(y) for all
y such that x →+ y. After skolemization, expansion of the definition of RTC and hidding
unnecessary formulas one obtains the following sequent.

Newman_lemma.2.2 :

[-1] FORALL (y:T): TC(R)(x,y) => (FORALL (b,c:T):

RTC(R)(y,b) & RTC(R)(y,c) => joinable?(R)(b,c))

{-2} iterate(R,i)(x,b) {-3} iterate(R,j)(x,c)

[-4] local_confluent?(R) [-5] noetherian?(R)

|-------

[1] joinable?(R)(b, c)

To prove this goal, one analyzes the cases x = b or x = c or b 6= x 6= c. To contemplate
these cases one uses the command (case-replace "i = 0") which replaces i by 0 in the
current subgoal and generates a second subgoal for the case x = b. Similarly, the case x

= c is proved. The case x 6= b and x 6= c, i.e., x→ x1→∗ b and x→ x2→∗ c corresponds
to the following sequent obtained after some simplifications. Compare with the diagram
of Figure 1(a) (replacing some variable symbols: u, v and w).

Newman_lemma.2.2.2.2.1.1 :

[-1] RTC(R)(x1,b) [-2] RTC(R)(x2,c)

[-3] FORALL (y:T): TC(R)(x,y) => (FORALL (b1,c1:T):

RTC(R)(y,b1) & RTC(R)(y,c1) => joinable?(R)(b1,c1))

[-4] R(x,x1) [-5] R(x,x2) [-6] RTC(R)(x1,u) [-7] RTC(R)(x2,u)

[-8] noetherian?(R)
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|-------

[1] j = 0 [2] i = 0 [3] joinable?(R)(b,c)

Firstly, make a copy of the formula -3 by using (copy -3).
The existence of u follows by expanding local confluent? (instantiated with variables

x, x1 and x2), joinable?, by introducing skolem constants (u) and by applying disjunctive
simplification flatten. Then one applies the lemma R subset TC, which states that a
relation is contained in its transitive closure and one proves that x →+ x1 and x →+ x2.
Thus, the existence of v and w follows by induction hypothesis, that is by instantiating
[-3] conveniently, and the lemma follows.

4.2 Verification of Yokouchi’s Lemma

The verification starts with the sequent.

Yokouchi_lemma :

|-------

{1} FORALL (R, S: PRED[[T,T]]):

(noetherian?(R) & confluent?(R) & diamond_property?(S) &

(FORALL x,y,z: (S(x,y) & R(x,z)) =>

(EXISTS (u:T): RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))))

=> diamond_property?(RTC(R) o S o RTC(R))

After skolemization and propositional flattening, one introduces the auxiliary lemma
Yokouchi lemma ax1 corresponding to the generalization D′ in Figure 1. Then one obtains
the new goal:

Yokouchi_lemma :

{-1} FORALL (R, S: PRED[[T,T]]):

(noetherian?(R) & confluent?(R) &

(FORALL x,y,z: (S(x,y) & R(x,z)) =>

(EXISTS (u:T): RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))))

=> (FORALL x,y,z: (S(x,y) & RTC(R)(x,z)) =>

(EXISTS (w:T): RTC(R)(y,w) & (RTC(R) o S o RTC(R))(z,w)))

[-2] noetherian?(R) [-3] confluent?(R) [-4] diamond_property?(S)

[-5] FORALL x,y,z: (S(x,y) & R(x,z))

=> (EXISTS (u:T): RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))

|-------

[1] diamond_property?(RTC(R) o S o RTC(R))

Notice that the antecedents [-2], [-3] and [-5] correspond to the hypotheses of {-1}.
Then, after a suitable instantiation of {-1}, propositional simplification and expansion
of the definition diamond property?, one introduces the noetherian induction scheme in-
stantiating its predicate P as

LAMBDA (a:T):(FORALL (b,c:T):

(RTC(R) o S o RTC(R))(a,c) & (RTC(R) o S o RTC(R))(a,b)

=> (EXISTS (d:T):

(RTC(R) o S o RTC(R))(b,d) AND (RTC(R) o S o RTC(R))(c,d)))

Then, after splitting conjunctions, one obtains the following two subgoals:

Yokouchi_lemma.1 :
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{-1} FORALL (x:T): FORALL (b,c:T):

(RTC(R) o S o RTC(R))(x,c) & (RTC(R) o S o RTC(R))(x,b)

=> (EXISTS (d:T):

(RTC(R) o S o RTC(R))(b,d) & (RTC(R) o S o RTC(R))(c,d))

...

[-7] (RTC(R) o S o RTC(R))(x,y) [-8] (RTC(R) o S o RTC(R))(x,z)

|-------

[1] EXISTS (r:T):

(RTC(R) o S o RTC(R))(y,r) & (RTC(R) o S o RTC(R))(z,r)

and

Yokouchi_lemma.2 :

[-1] FORALL x,y,z: (S(x,y) & RTC(R)(x,z))=>

(EXISTS (w:T): RTC(R)(y,w) & (RTC(R) o S o RTC(R))(z,w))

[-2] noetherian?(R) [-3] confluent?(R)

[-4] FORALL(x:T), (y:T), (z:T):

S(x,y) & S(x,z) => (EXISTS (r:T): S(y,r) & S(z,r))

[-5] FORALL x,y,z: (S(x,y) & R(x,z)) =>

(EXISTS (u:T): RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))

[-6] (RTC(R) o S o RTC(R))(x,y) [-7] (RTC(R) o S o RTC(R))(x,z)

|-------

{1} FORALL (x:T): (FORALL (y:T): TC(R)(x,y) =>

(FORALL (b,c:T): (RTC(R) o S o RTC(R))(y,c) &

(RTC(R) o S o RTC(R))(y,b)

=> (EXISTS (d:T): (RTC(R) o S o RTC(R))(b,d) &

(RTC(R) o S o RTC(R))(c,d))))

=> (FORALL (b,c:T):

(RTC(R) o S o RTC(R))(x,c) & (RTC(R) o S o RTC(R))(x,b)

=> (EXISTS (d:T): (RTC(R) o S o RTC(R))(b,d) &

(RTC(R) o S o RTC(R))(c,d)))

The subgoal Yokouchi lemma.1 is easily verified instantiating adequately the antecedent
[-1] and asserting. The subgoal Yokouchi lemma.2 is proved following the scheme in
Figure 2 as detailed below.

(1) First step: introduce Skolem constants and consider the cases x = z1 and/or x = y1.

(2) Second step: invoke the lemma iterate RTC which states that for all n, iterate(R,n)
⊆ RTC(R); expand the definitions of composition of relations, confluent? and joinable?;
hide irrelevant formulas; and then, apply disjunctive simplification.

(3) Third step: conclude applying the confluence of R, the lemma Yokouchi lemma ax1

and induction hypothesis.

5. CONCLUSIONS AND FUTURE WORK

This work illustrates that the ars theory, previously presented in [8], is in fact adequate
for formalizing (well-known) non elementary higher-order results of the theory of ARSs.
The formalizations follow the diagrammatic style of analytic presentations of proofs in
the standard theory of ARSs. The formalizations of Newman’s and Yokouchi’s lemmas
were described focusing on the key proof steps related with the applications of noetherian
induction. Also it should be stressed here, that although this work does not advance
the state of the art in the formalization of mathematics, since specifications of ARSs
and even of TRSs are available since the development of the Rewriting Rule Laboratory
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(RRL) in the 1980’s [12], it is doubtless of practical interest. In fact, the availability of
rewriting proving technologies are essential in any modern proof assistant and to the best
of our knowledge before the development of the ars theory neither rewriting theories nor
rewriting libraries were available in PVS.

A theory trs, which is an extension of ars, for dealing with TRSs was also developed
and presented in [9]. Sophisticated theorems of the theory of TRS such as the Knuth-
Bendix Critical Pairs theorem were formalized. This theory is of interest to verify the
correction of concrete rewriting based specifications of computational objects such as re-
configurable hardware as mentioned in the introduction. Rewriting based specifications
algebraic operators synthesized by the system FELIX over commercial reconfigurable ar-
chitectures as introduced in [13] (see also [14]) can be translated into the language of PVS
to be verified. Inside the theory trs rewriting strategies and new tactic-based proving
techniques are available in PVS in a natural manner now. For this purpose, the type
term built over a signature of function symbols was specified as an abstract data type [19]
with the type of function symbols and the type of variables as its parameters. In the
trs theory the type term is the actual parameter of the theory ars[T]. From this point,
term positions are given as usual by finite sequences of naturals, and useful operations
on terms such as subterm at a given position and replacement of a subterm at a given
position by using recursive declarations; substitutions are functions from variables into
term. All ars definitions and results hold for the reduction relation induced over term by
an specific TRS which is specified as a binary relation over term. The induced reduction
relation is given by closing the rewriting one under substitutions and structure of terms
(signature operations) as it is formalized in the standard rewriting literature [2, 4].
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