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There are several commutativity theorems in groups and rings which involve power maps f(x) =
xn. The most famous example of this kind is Jacobson’s theorem which asserts that any ring

satisfying the identity xn = x is commutative. Such statements belong to first order logic with

equality and hence provable, in principle, by any first-order theorem-prover. However, because of
the presence of an arbitrary integer parameter n in the exponent, they are outside the scope of

any first-order theorem-prover. In particular, one cannot use such an automated reasoning system

to prove theorems involving power maps. Here we focus just on the needed properties of power
maps f(x) = xn and show how one can avoid having to reason explicitly with integer exponents.

Implementing these new equational properties of power maps, we show how a theorem-prover can

be a handy tool for quickly proving or confirming the truth of such theorems.

1. INTRODUCTION

In response to a friendly challenge by the first author, Professor B. H. Neumann
proved several semigroup implications in group theory (see, [10]). Way back in
1979, Nicholson and Yaqui[11] proved a class of commutativity theorems in groups.
All these implications involve power maps, i.e., x → xn, where n stands for an
arbitrary integer variable. But for the presence of n, all the implications belong to
the first order logic with equality. However, these statements are not provable in
the first-order theorem provers because of the presence of n in the exponent. In
[2], Michael Beeson has modified Otter, a precursor of Prover9, to perform Peano-
like arithmetic and mathematical induction thus demonstrating the feasibility and
usefulness of a first-order prover. In this paper, we give new first order proofs
of these implications by extracting equational properties of power-maps. Conse-
quently these proofs remain valid for all natural numbers n but the length and
complexity of the proofs remain the same independent of the actual values of n.
This is because the integer parameter n never physically appears in the input file
- only its formal first order properties! We demonstrate this by using the software
Prover9, a popular first-order theorem prover developed by the late Dr. William
McCune[6].

2. POWER-LIKE MAPS

Let us start with the semigroup implication of B.H. Neumann (Theorem 17, [10]).
In a group (G, ∗), we have the following commutativity theorem: for a fixed positive
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integer n,

x1+n ∗ y2 ∗ xn = y ∗ x1+2n ∗ y =⇒ x ∗ y = y ∗ x, for all x, y ∈ G.

But for the presence of the integer variable n in the hypothesis, this statement
belongs to the first order equational theory of semigroups. However, statements
involving an arbitrary integer parameter lie outside the scope of first order logic.
In fact, it is impossible to even input the above statement in a first-order theorem-
prover without specifying an actual value for n. In this paper, we define the con-
cept of “power-like maps” by extracting some crucial equational properties valid for
f(x) : x→ xn in groups and semigroups. Then we reformulate the above theorem
of B.H. Neumann in the language of power-like maps and demonstrate that an au-
tomated first-order theorem prover can derive the commutativity as a consequence.

Definition 1. Let (G; ∗,′ , e) be a group, where ′ is the inverse of group operator
∗ and e is a group identity. A unary map f : G→ G is called power-like map if the
map satisfies the following: for any x, y ∈ G,

(i) x ∗ f(y ∗ x) = f(x ∗ y) ∗ x.
(ii) f(x ∗ x) = f(x) ∗ f(x).

(iii) f(e) = e.

(iv) x ∗ y = y ∗ x =⇒ f(x) ∗ y = y ∗ f(x)

(v) x′ ∗ f(y) ∗ x = f(x′ ∗ y ∗ x)

If g is another power-like function, then we demand

(vi) f(x) ∗ g(x) = g(x) ∗ f(x).

(vii) f(g(x)) = g(f(x)).

It is easy to check the validity of these conditions for any power map f in a group
or a semigroup.

Theorem 1. (Nicholson and Yaqub [11]) Let m and n be relatively prime posi-
tive integers. If a group (G, ∗) satisfies the two identities xm ∗ ym = ym ∗ xm and
xn ∗ yn = yn ∗ xn, for all x, y ∈ G then G must be commutative.

Historical Remark. Several proofs of this classical theorem have been churned
out during the past 50+ years starting from a problem of J.R. Isbell [3] raised in
the American Math Monthly. Using a deep embedding theorem of Krempa and
Macedonska [5], it is possible to give an easy proof of this theorem for cancellation
semigroups. However, as early as 1983, Chen-Te Yen[13] gave a direct elementary
proof of this for cancellation semigroups without using any group theory. In spite
of such plethora of proofs, the interest in this theorem has not diminished. Thus G.
Venkataraman in [9] proved this for the special case of finite groups with m = 2 and
n = 3. In a recent publication [1], Araujo and Kinyon proved this for completely
regular semigroups.

Here we give a new first order proof using only power-like functions thereby com-
pletely avoiding the use of integer parameters. This enables one to create an input
file for a first order theorem prover to formally prove such theorems involving power
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maps. To prove this theorem by using power-like functions, we first establish the
following lemma.

Lemma 1. Let (G, ∗) be a cancellation semigroup with g(x) a power-like map of
G. Let f(x) = x ∗ g(x). If the semigroup G satisfies the two conditions

g(x) ∗ g(y) = g(y) ∗ g(x) and f(x) ∗ f(y) = f(y) ∗ f(x)

then the semigroup G is commutative.

Proof. We consider the properties of g(x) first.

g(x ∗ g(y)) ∗ g(y) = g(y) ∗ g(x ∗ g(y)) since g’s commute
= g(g(y) ∗ x) ∗ g(y) since g is power-like

Hence g(x ∗ g(y)) = g(g(y) ∗ x) by right cancellation. Also,

f(x ∗ g(y)) ∗ f(x) = f(x) ∗ f(x ∗ g(y)) since f’s commute
= f(x) ∗ g(x ∗ g(y)) ∗ x ∗ g(y) by definition of f(x)
= f(x) ∗ g(g(y) ∗ x) ∗ x ∗ g(y) by the above step
= g(x) ∗ x ∗ g(g(y) ∗ x) ∗ x ∗ g(y) by definition of f
= g(x) ∗ g(x ∗ g(y)) ∗ x ∗ x ∗ g(y) since g is power-like
= g(x ∗ g(y)) ∗ g(x) ∗ x ∗ x ∗ g(y) since g’s commute
= g(x ∗ g(y)) ∗ x ∗ x ∗ g(x) ∗ g(y) since g is power-like
= g(x ∗ g(y)) ∗ x ∗ x ∗ g(y) ∗ g(x) since g’s commute

Rewriting f(x) in terms of g(x), we have

f(x ∗ g(y)) ∗ x ∗ g(x) = g(x ∗ g(y)) ∗ x ∗ x ∗ g(y) ∗ g(x)

Right canceling g(x), we get f(x ∗ g(y)) ∗ x = g(x ∗ g(y)) ∗ x ∗ x ∗ g(y),
Again, expressing f in terms of g, the above equation becomes

g(x ∗ g(y)) ∗ x ∗ g(y) ∗ x = g(x ∗ g(y)) ∗ x ∗ x ∗ g(y).

Left-canceling the term g(x ∗ g(y)) ∗ x, we obtain g(y) ∗ x = x ∗ g(y).
Also, by assumption, we have f(x) ∗ f(y) = f(y) ∗ f(x). Rewriting this in terms

of g, we get x ∗ g(x) ∗ y ∗ g(y) = y ∗ g(y) ∗ x ∗ g(x). Since g(x) and g(y) are now
central elements, we get the desired conclusion x ∗ y = y ∗ x after canceling the
common element g(x) ∗ g(y). This completes the proof of Lemma 1.

Prover9 input/out proofs of Lemma 1 are given in the Appendix.

Proof of Theorem 1 (for cancellation semigoups).
Let now (G; ∗) be a cancellation semigroup satisfying the two identities

xm ∗ ym = ym ∗ xm, xn ∗ yn = yn ∗ xn

for some positive integers m and n with gcd(m,n) = 1, and all x, y ∈ G.
Since m and n are relatively prime, there exists natural numbers a and b such

that am = 1 + bn. Now define g(x) = xbn and f(x) = xam. It is clear that
f(x) = x ∗ g(x). Also, f(x) and g(x) are power-like, indeed they are the usual
power maps! Moreover,

f(x) ∗ f(y) = xam ∗ yam = (xa)m ∗ (ya)m = (ya)m ∗ (xa)m = f(y) ∗ f(x)
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and similarly g(x) ∗ g(y) = g(y) ∗ g(x). Hence by the Lemma 1, the cancellation
semigroup G is commutative.

Thanks to the familiar inverse law (xy)−1 = y−1x−1, whenever an identity f = g
is valid in a group, then its mirror image f∼ = g∼ is also valid where the word f∼ is
obtained from f by simply writing it in the reverse order. For example, the mirror
image of the identity xy2x2 = yx3y is x2y2x = yx3y. Notice that the term yx3y is
self-dual i.e. it is equal to its own mirror image. Since all terms xn are clearly self-
dual and since a power-like function f(x) is just an abstraction of a power function
xn, we naturally postulate that all power-like functions are self-dual.

Hence it is immediately clear that, in groups, the following chain of semigroup
implications are valid:

xy2x2 = yx3y, by the given hypothesis
=⇒ xy2x2 = x2y2x, since, by the mirror principle, two sides both are equal to

yx3y.
=⇒ y2x = xy2, after two cancellations ofx
=⇒ xy2x2 = yxyx2, since the term x2is now a central element
=⇒ xy2 = yxy, after right cancellations ofx2

=⇒ xy = yx, after a right cancellation ofy.

This was the context in which the friendly challenge was made that was alluded
to by Professor B.H. Neumann in [10]. In the process he gave a sequence of new
semigroup implications which are valid in groups. Being a veteran group theorist,
Professor Neumann uses, naturally, a good amount of commutator calculus and
conjugates in his proofs. However, our proof uses only the methods of equational
logic of semigroups and the mirror principle. No deep group theory like commuta-
tor calculus or conjugates are used here, thus paving the way for eventually proving
their validity in the much larger theory of cancellation semigroups. Needless to say
that we employ the power-like maps instead of the actual power maps and thus
provable in, any first-order theorem-prover like Prover9 because the hypothesis is
now free from integer exponents. Also, unlike the usual power maps, commutators
and conjugates are not that well related in the context of power-like maps (see,
however, [7]). Here, we have appended the full Prover9 proof output done on an
iMac apart from providing a new human proof.

Theorem 2. (B.H. Neumann [10], Theorem 17). In a group (G; ∗), we have the
following implication

x1+t ∗ y2 ∗ xt = y ∗ x2t+1 ∗ y implies x ∗ y = y ∗ x for all x, y ∈ G.

Human Proof. Consistent with the theme of this paper, we reformulate and prove
the above in terms of power-like functions. Accordingly, we claim the implication

x ∗ g(x) ∗ y2 ∗ g(x) = y ∗ x ∗ g(x) ∗ g(x) ∗ y implies x ∗ y = y ∗ x

where g(x) is an arbitrary power-like function in the group G.
Since x and g(x) commute, the term y ∗x∗g(x)∗g(x)∗y is its own mirror image.

Hence we get the equation

g(x) ∗ x ∗ y2 ∗ g(x) = g(x) ∗ y2 ∗ x ∗ g(x)
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from which, we derive, after on two cancellations of g(x), x ∗ y2 = y2 ∗ x. In other
words, squares are central elements in our group. Now rewriting the given equation,
we get

x ∗ y2 ∗ g(x) ∗ g(x) = y ∗ x ∗ y ∗ g(x) ∗ g(x).

Finally, three right cancellations yield the desired commutativity x ∗ y = y ∗ x.

Taking the special case of t(x) = xt, we get the above mentioned theorem of B.H.
Neumann for groups as a corollary. A Prover9 INPUT file is given in the Appendix.

3. APPENDIX

======================== INPUT file for Lemma 1 ===================

%% Proof of Lemma 1, PadZhang JFR_2018

%% Cancellation semigroups defined

(x * y) * z = x * (y * z).

x * y != x * z | y = z.

x * y != z * y | x = z.

%% power-like functions defined

f(x) = x * g(x). %% i.e. f = 1+g

g(x) * x = x * g(x). %% power-like properties

g(x * y) * x = x * g(y * x). %% power-like properties

f(x) * g(x) = g(x) * f(x).

x * f(y * x) = f(x * y) * x.

f(x * x) = f(x) * f(x).

g(x) * g(x) = g(x * x).

f(x) * x = x * f(x).

%% Hypothesis of Lemma 1

f(x) * f(y) = f(y) * f(x).

g(x) * g(y) = g(y) * g(x).

%% goal to derive commutativity

x * y = y * x.

======================= End INPUT file ============================

The output file of Lemma 1.

============================== prooftrans ==========================

Prover9 (32) version Dec-2007, Dec 2007.

Process 898 was started on yangzhangsimac2.ad.umanitoba.ca,

Wed Nov 21 14:47:21 2018

The command was "/Users/yangzhang/Desktop/Prover9-Mace4-v05B.app

/Contents/Resources/bin-mac-intel/prover9".
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============================== end of head =======================

============================== end of input ======================

============================== PROOF =============================

% -------- Comments from original proof --------

% Proof 1 at 105.74 (+ 2.52) seconds.

% Length of proof is 38.

% Level of proof is 8.

% Maximum clause weight is 23.

% Given clauses 1492.

1 x * y = y * x # label(non_clause) # label(goal). [goal].

2 (x * y) * z = x * (y * z). [assumption].

3 x * y != x * z | y = z. [assumption].

4 x * y != z * y | x = z. [assumption].

5 f(x) = x * g(x). [assumption].

6 g(x) * x = x * g(x). [assumption].

7 g(x * y) * x = x * g(y * x). [assumption].

15 f(x) * f(y) = f(y) * f(x). [assumption].

16 x * (g(x) * (y * g(y))) = y * (g(y) * (x * g(x))).

[copy(15),rewrite([5(1),5(3),2(5),5(6),5(8),2(10)])].

17 g(x) * g(y) = g(y) * g(x). [assumption].

18 c2 * c1 != c1 * c2. [deny(1)].

21 x * (y * z) != u * z | x * y = u. [para(2(a,1),4(a,1))].

22 g(x) * (x * y) = x * (g(x) * y). [para(6(a,1),2(a,1,1)),

rewrite([2(3)]),flip(a)].

26 g(x * y) * (x * z) = x * (g(y * x) * z). [para(7(a,1),2(a,1,1)),

rewrite([2(4)]),flip(a)].

35 x * (g(x) * (y * g(y))) != y * z | g(y) * (x * g(x)) = z.

[para(16(a,1),3(a,1))].

38 g(x) * (g(y) * z) = g(y) * (g(x) * z). [para(17(a,1),2(a,1,1)),

rewrite([2(4)])].

40 g(x) * g(y) != g(y) * z | g(x) = z. [para(17(a,1),3(a,1))].

44 x * (c2 * c1) != x * (c1 * c2). [ur(3,b,18,a)].

61 g(c2 * c1) * (c1 * c2) != c2 * (c1 * g(c2 * c1)).

[para(6(a,1),44(a,1)),rewrite([2(8)]),flip(a)].

75 g(x) * y != x * (g(x) * z) | x * z = y.

[para(22(a,1),3(a,1)),flip(a)].

91 x * (y * z) != u * (w * z) | x * y = u * w.

[para(2(a,1),21(a,2))].

105 g(c2 * c1) * (c1 * (c2 * x)) != c2 * (c1 * (g(c2 * c1) * x)).

[ur(21,b,61,a),rewrite([2(8),2(18),2(17)])].

124 g(g(x) * y) = g(y * g(x)). [hyper(40,a,7,a)].

131 x * (g(y * x) * z) != u * (x * z) | g(x * y) = u.

[para(26(a,1),4(a,1))].
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170 g(g(x) * y) * (y * z) = y * (g(g(x) * y) * z).

[para(124(a,2),26(a,1,1))].

184 g(x) * (g(y) * x) = g(y) * (x * g(x)).

[para(6(a,1),38(a,1,2)),flip(a)].

186 g(x * y) * (g(z) * x) = g(z) * (x * g(y * x)).

[para(7(a,1),38(a,1,2)),flip(a)].

369 x * (g(y) * (g(x) * y)) = y * (g(y) * (x * g(x))).

[para(184(a,2),16(a,1,2))].

562 x * (g(x) * (y * g(x * y))) = y * (x * (g(x) * g(y * x))).

[hyper(35,a,2,a),rewrite([2(5),22(6),26(11),17(10)])].

567 g(c2 * c1) * (c1 * (c2 * g(x))) != c2 *(c1*(g(x)*g(c2 * c1))).

[para(17(a,1),105(a,2,2,2))].

1604 g(x) * y != z * (g(x) * (g(z) * x)) | x * (z * g(z)) = y.

[para(369(a,2),75(a,2))].

2631 g(c2 * c1) * (c1 * (c2 * g(c1))) != c1* g(c1)*(c2 *g(c1* 2))).

[para(562(a,2),567(a,2))].

2640 g(c2 * c1) * (c1 * (c2 * g(c1))) != c1*(g(c2*c1)*(g(c1)*c2)).

[para(186(a,2),2631(a,2,2))].

2901 g(x) * (y * (y * g(y))) = y * (g(y) * (g(x) * y)).

[hyper(1604,a,170,a),rewrite([2(5)])].

2921 g(x) * (y * (y * g(y))) = y * (g(x) * (y * g(y))).

[para(38(a,1),2901(a,2,2)),rewrite([6(8)])].

2978 g(x) * y = y * g(x). [hyper(91,a,2921,a)].

2979 g(x * y) = g(y * x). [hyper(131,a,2921,a(flip))].

3030 $F. [back_rewrite(2640),rewrite([2979(4),26(11),2979(5),

2978(10),2(10),2979(16),2978(20),2978(21),2(21)]),xx(a)].

============================== end of proof =======================

Next we present the INPUT and OUTPUT files for Theorem 2.

======================== INPUT file for Theorem 2 =================

%% Group theory defined

(x * y) * z = x * (y * z).

x * e = x.

x * x’ = e.

%% power-like functions defined

f(x) = x * t(x). %% "degree" of f = 1+t

t(x) * x = x * t(x). %% power-like properties

t(x * y) * x = x * t(y * x). %% power-like properties

t(x) * t(x) = t(x * x). %% power-like properties

t(x)’ = t(x’). %% power-like properties

%% BHN 2001 CMS/also Macedonska&Krempa 1992

%% the powermap x^t is replaced by a power-like t(x)
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f(x) * ((y * y) * t(x)) = y * ((f(x) * t(x)) * y).

%% goal to derive commutativity

x * y - y * x.

======================== END of INPUT file ======================

The output of the proof.

============================ PROOF ==============================

============================ prooftrans =========================

Prover9 (32) version Dec-2007, Dec 2007.

Process 776 was started by admin on Admins-iMac.hitronhub.home,

Sat Nov 10 21:29:53 2018

============================ end of head ========================

============================ PROOF ==============================

% -------- Comments from original proof --------

% Proof 1 at 3.32 (+ 0.17) seconds.

% Length of proof is 53.

% Level of proof is 18.

% Maximum clause weight is 24.

% Given clauses 480.

1 x * y = y * x # label(non_clause) # label(goal). [goal].

2 (x * y) * z = x * (y * z). [assumption].

3 x * e = x. [assumption].

4 x * x’ = e. [assumption].

5 f(x) = x * t(x). [assumption].

6 t(x) * x = x * t(x). [assumption].

7 t(x * y) * x = x * t(y * x). [assumption].

8 t(x) * t(x) = t(x * x). [assumption].

9 t(x)’ = t(x’). [assumption].

10 f(x) * ((y * y) * t(x)) = y * ((f(x) * t(x)) * y). [assumption].

11 x * (t(x) * (y * (y * t(x)))) = y * (x * (t(x * x) * y)).

[copy(10),rewrite([5(1),2(5),2(6),5(7),2(10),8(9),2(10)])].

12 c2 * c1 != c1 * c2. [deny(1)].

13 x * (e * y) = x * y. [para(3(a,1),2(a,1,1)),flip(a)].

14 x * (x’ * y) = e * y. [para(4(a,1),2(a,1,1)),flip(a)].

15 x * (y * (x * y)’) = e. [para(4(a,1),2(a,1)),flip(a)].

16 t(x) * (x * y) = x * (t(x) * y). [para(6(a,1),2(a,1,1)),

rewrite([2(3)]),flip(a)].

19 t(e*x) = e*t(x). [para(7(a,1),3(a,1)),rewrite([3(3)]),flip(a)].

22 t(x) * (t(x) * y) = t(x * x)*y. [para(8(a,1),2(a,1,1)),flip(a)].

24 t(x) * t(x’) = e. [para(9(a,1),4(a,1,2))].

45 e * x’’ = x. [para(4(a,1),14(a,1,2)),rewrite([3(2)]),flip(a)].
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50 x * y’’ = x * y. [para(45(a,1),2(a,2,2)),rewrite([3(2)])].

53 e * x = x. [para(45(a,1),13(a,2)),rewrite([50(5),13(4)])].

54 t(x’’) = t(x). [para(45(a,1),19(a,1,1)),rewrite([53(6)]),flip(a)].

61 x * (x’ * y) = y. [back_rewrite(14),rewrite([53(5)])].

70 t(x’) * t(x) = e. [para(54(a,1),24(a,1,2))].

72 x’’ = x. [para(4(a,1),61(a,1,2)),rewrite([3(2)]),flip(a)].

75 x’ * (x * y) = y. [para(72(a,1),61(a,1,2,1))].

85 t(x’) * (t(x) * y) = y.

[para(70(a,1),2(a,1,1)),rewrite([53(2)]),flip(a)].

94 x * (y * x)’ = y’.

[para(15(a,1),75(a,1,2)),rewrite([3(3)]),flip(a)].

97 x * ((y * x)’ * z) = y’ * z. [para(94(a,1),2(a,1,1)),flip(a)].

99 x * (y * (z * x))’ = (y * z)’. [para(2(a,1),94(a,1,2,1))].

107 x’ * y’ = (y * x)’. [para(94(a,1),75(a,1,2))].

108 (x * y)’ * x = y’. [para(94(a,1),94(a,1,2,1)),rewrite([72(4)])].

114 (x * (y * (t(y * y) * x)))’ * y = (t(y) * (x * (x * t(y))))’.

[para(11(a,1),108(a,1,1,1))].

115 (x’ * y)’ = y’ * x. [para(61(a,1),108(a,1,1,1)),flip(a)].

117 (x * (t(x) * y))’ *t(x) = (x*y)’. [para(16(a,1),108(a,1,1,1))].

158 t(x’) * y’ = (y * t(x))’. [para(94(a,1),85(a,1,2))].

159 x’ * t(y’) = (t(y) * x)’. [para(85(a,1),108(a,1,1,1))].

357 (t(x) * (y * (y * (x * t(x)))))’ = (y * (x * (t(x * x) * y)))’.

[para(159(a,1),11(a,1,2,2,2)),rewrite([107(8),2(6),158(8),2(6),

2(5),107(8),2(6),2(5),2(4),6(3),107(12),158(14),107(14),2(12),

7(11),107(14),2(12),2(11)])].

368 x * ((y * (z * x))’ * u) = (y * z)’ * u.

[para(2(a,1),97(a,1,2,1,1))].

381 x * (y * (z * (u * x)))’ = (y * (z * u))’.

[para(2(a,1),99(a,1,2,1,2))].

677 (x * (y * (t(y * y) * x)))’ * t(y) = (y * (x * (x * t(y))))’.

[para(11(a,1),117(a,1,1,1))].

1668 t(x * x) * (y * (t(x) * (y * (y * t(x))))’) = (y * x)’ * x.

[para(114(a,1),368(a,1,2)),rewrite([2(10)])].

2407 (x * (y * (y * t(x))))’ = (y * (y * (x * t(x))))’.

[para(357(a,1),108(a,1,1)),rewrite([677(8)])].

2784 x * (x * (x * y))’ = (y * x)’.

[para(2407(a,1),99(a,1,2)),rewrite([2(8),381(7)])].

2811 (x * y)’ * y = y * (y * x)’. [para(61(a,1),2784(a,1,2,1,2)),

rewrite([2(6),115(7)]),flip(a)].

2819 x * (y * y) = y * (y * x). [para(2784(a,1),108(a,1,1,1)),

rewrite([72(3),2(2),72(6)])].

2829 t(x * x) * (t(x * x) * y)’ = y’. [para(2784(a,1),22(a,1,2)),

rewrite([94(5),22(7)]),flip(a)].

3003 t(x * x) * (y * (t(x) * (y * (y * t(x))))’) = x * (x * y)’.

[back_rewrite(1668),rewrite([2811(13)])].

3066 t(x) * (y * (y * t(x))) = t(x * x) * (y * y).

[para(2819(a,1),22(a,1,2))].
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3487 x * (x * y)’ = y’. [back_rewrite(3003),

rewrite([3066(7),99(8),2829(7)]),flip(a)].

3777 x * y = y * x.

[para(94(a,1),3487(a,1,2,1)),rewrite([72(2),72(4)])].

3778 $F. [resolve(3777,a,12,a)].

============================== end of proof ========================
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