A Decision Procedure for Univariate Polynomial
Systems Based on Root Counting and Interval
Subdivision

ANTHONY NARKAWICZ

CESAR MUNOZ

and

AARON DUTLE

NASA Langley Research Center, Hampton, VA 23681-2199

This paper presents a formally verified decision procedure for determinining the satisfiability of a
system of univariate polynomial relations over the real line. The procedure combines a root count-
ing function, based on Sturm’s theorem, with an interval subdivision algorithm. Given a system
of polynomial relations over the same variable, the decision procedure progressively subdivides the
real interval into smaller intervals. The subdivision continues until the satisfiability of the system
can be determined on each subinterval using Sturm’s theorem on a subset of the system’s poly-
nomials. The decision procedure has been formally verified in the Prototype Verification System
(PVS). In PVS, the decision procedure is specified as a computable Boolean function on a deep
embedding of polynomial relations. This function is used to define a proof producing strategy for
automatically proving existential and universal statements on polynomial systems. The soundness
of the strategy solely depends on the internal logic of PVS.

1. INTRODUCTION

Proving high-level properties of safety-critical systems that interact with the phys-
ical environment often involves reasoning about real-valued functions. At NASA,
for example, the need for automated proving techniques for these kinds of proper-
ties arises in air traffic management systems [19,20,23], floating point analysis [18],
uncertainty and reliability analysis of dynamics and control systems [1], and many
others applications. In the last few years, much work has been done in theorem prov-
ing to automate the proof of properties involving real-valued functions [1,5,7,16,26],
in general, and polynomial functions [6,8—11,13-15,17,21,22, 20}, in particular.

In previous work [24], the authors formally verified two decision procedures by
Basu et al. [2] for the decidability of univariate polynomial relations. These decision
procedures are based on Tarski’s theorem. In its basic form, Tarski’s theorem
is called Sturm’s theorem and can be used to define a computable function that
explicitly computes the cardinality

card({z € [a,b] : p(z) = 0}), (1)

where p is a univariate polynomial and a and b are in the set of real numbers ex-
tended with infinity values. Sturm’s theorem is used to define a decision procedure
for determining whether a single polynomial relation p(x) R0, with R € {=,>,<
, #,>,<}, is satisfiable over the possibly unbounded interval [a,b]. This decision
procedure counts the number of roots in intervals and subdivides the real line until

Journal of Formalized Reasoning Vol.11, No.1, 2018, Pages 19-41.

20 . A. Narkawicz, C. Mufioz, and A. Dutle

each subinterval has at most one root, at which point satisfiability of the relation
can be determined. In [24], the authors also formally proved a much more com-
plex version of Tarski’s theorem that gives a linear matrix relationship between
cardinalities of solution sets of systems involving a finite number of polynomials
and computable Tarski queries. These queries are at the basis of a decision proce-
dure for determining satisfiability of systems of polynomial relations. Both decision
procedures are formally specified and verified in the Prototype Verification System
(PVS) [29].

This paper presents another formally verified decision procedure for determining
the satisfiability of a system of univariate polynomial relations that uses a simpler
and easier to verify subdivision procedure. Given a system of univariate polyno-
mials on an interval, Sturm’s theorem is used to determine a) whether each of the
polynomials has at most one root in the interval and b) whether all the polynomials
with one root in that interval have a root at the same location. This latter check
is handled by counting the number of roots in the interval of either the product or
sum of squares of all polynomials that have exactly one root in the interval. If this
method determines that all of the polynomials with one root have the same root,
the satisfiability of the system can be completely determined over that interval.
The decision method works by continually subdividing the real line until each such
subinterval can be decided in this way. Thus, the algorithm in this paper, based
on Sturm’s theorem, is significantly simpler to verify than other methods based on
Tarski’s theorem that require reasoning about a large linear matrix equation.

The decision procedure in this paper is defined as a computable function in the
PVS specification language and the correctness and completness properties of the
decision procedure are specified as theorems about the inputs and output of this
function. These theorems are at the basis of a proof producing strategy in PVS.
This strategy automatically proves satisfiability or validity of univariate systems
of polynomials. The core step in the strategy is the invocation of the correctness
theorems of the fully specified and verified decision procedure. Hence, no external
tools are needed to use the procedure in actual proofs of polynomial relations in
PVS.

The rest of this paper is organized as follows. Sturm’s theorem is presented in
Section 2. The proposed decision procedure for univariate polynomial systems is
presented in Section 3. The proof producing strategy hutch is defined in Section 4.
Section 5 presents a comparison of this strategy to similar proof producing strategies
on a set of benchmarks, which are listed in Appendix A. Section 6 discusses related
work. Finally, concluding remarks are presented in Section 7.

All theorems presented in this paper are formally verified in PVS. For readability,
standard mathematical notation is used throughout the paper. The PVS formal
development presented in this paper is electronically available in the Tarski@hutch
theory of the NASA PVS Library.! Appendix B includes a table that maps the
theorems presented in this paper to their formalization in the NASA PVS Library.

Ihttp://github.com/nasa/pvslib.

Journal of Formalized Reasoning Vol.11, No.1, 2018

http://github.com/nasa/pvslib

A Decision Procedure for Univariate Polynomial Systems : 21

2. STURM'S THEOREM

This section briefly presents a formalization of Sturm’s theorem in PVS. It neces-
sarily repeats some of the development from the authors’ previous work [24,27].
After stating Sturm’s theorem, this section describes the function roots_in_int,
which is used to explicitly count the number of roots of a polynomial in a closed
interval.

Many functions in PVS have a polynomial or a system of polynomials as an input.
In PVS, a polynomial is formalized with an infinite array p: nat — 7', where nat is
the PVS type of nonnegative integers and 7' is a subtype of the real numbers, along
with a natural number at which the array p is nonzero (the degree). Thus, all PVS
functions acting on a polynomial take both the array and the degree as inputs.

In this paper, to save notation and make functions easier to read, a polynomial
is defined as a nonempty list p of elements of T" whose last element is nonzero.
The i-th element of the list represents the i-th coefficient of the polynomial and if
n is the length of p, then n — 1 is the degree of p. For instance, the polynomial
1 — 322 is represented in PVS by the list (1,0, —3), whose length is 3. The type
T can be instantiated with any subtype of the real numbers. If the elements of
T are all either integers or rationals, then p is called an integer polynomial or a
rational polynomial, respectively. The function eval converts a list of coefficients
to a polynomial function:

eval(p)(z) = Zcixi, (2)
i=0

where x is a real number, n 4+ 1 is the length of the list p, ¢, # 0, if n > 0, and ¢;
is the i-th element of p, for 0 < ¢ < n. If p and ¢ are any two polynomials, then
there exists a polynomial p - ¢ such that eval(p - ¢)(x) = eval(p)(z) - eval(q)(x)
for all x € R. The list p- q is called the product of p and ¢, and its formal definition
is given in the PVS development accompanying this paper. If p = pg,...,px is a
sequence of polynomials, then [], p; denotes the product of all polynomials in p.
Furthemore, given any two univariate polynomials g and h such that h is nonzero,
there are unique polynomials ¢ and 7 such that r has degree strictly less than h and
eval(g)(z) = eval(q)(z) - eval(h)(z) + eval(r)(z) holds for all z. Let rem(g, h)
denote the remainder polynomial r in this expression. Henceforth, the notation
p’ represents the derivative polynomial of p, i.e., if p is represented by the list of
coefficients (co,...,c,), p’ is represented by the list of coefficients (cf,...,cl,_1),
where ¢} = ¢;41 - (i + 1).

Given a univariate polynomial p, a Sturm chain of p is a sequence S of polynomials

Do, P1, D2, -+ s DPm, (3)
where
Po =D,
pL=1p,
Vd>13¢>0 :pg=—c-rem(pg—2,pi—1), (4)
Pm = 0,and
Pm—1 # 0.

Journal of Formalized Reasoning Vol.11, No.1, 2018

22 . A. Narkawicz, C. Mufioz, and A. Dutle

Evaluating each of the polynomials in a Sturm sequence at some x € R* produces
a sequence of extended real numbers S(z). A function o, is defined on R* by
setting o, () to be equal to the number of sign changes in S(z) after all zeros have
been removed from the sequence, where the number of sign changes in a sequence
of nonzero real numbers is defined as follows. Let A = (ag,a1,...,ar) be a finite
sequence of nonzero extended real numbers. The number of sign changes in A is
defined as the number of indices i such that a; and a;; have different signs.

Sturm’s theorem is stated in Theorem 2.1 below. It has been formally proven in
PVS, and that formalization is more thoroughly described in the authors’ previous
papers [24,27].

THEOREM 2.1. Let p be a univariate polynomial. For a,b € R*®, with a < b, if
neither a nor b is a root of both p and p’, then op,(a) — op(b) is equal to

card({z € (a,b] : eval(p)(z) = 0}).

Sturm’s theorem is used to define a function roots_in_int that explicitly com-
putes the number of roots of a polynomial with integer coefficients inside any closed,
bounded interval. This function is a key component of the decision procedure
presented in later sections for satisfiability of polynomial systems. The function
roots_in_int has as inputs real numbers a and b as inputs (with a < b), an integer
polynomial p, and a list £ of polynomials. If ¢ is a Sturm chain of p, then the function
returns the number of roots in the closed interval [a, b], not counting multiplicities.
This means, for instance, that for the polynomial p with eval(p)(x) = 22, it will
count exactly one root on the interval [—1,1]. In practice £ is set to a Sturm chain
of p denoted sturm_chain(p). It should be noted that the function roots_in_int
is not a direct application of Sturm’s theorem, because the theorem itself requires
that neither a nor b is a root of both p and p’. In the case that either a or b is a
root of both polynomials, the function roots_in_int applies Sturm’s theorem on
a slightly larger interval that is guaranteed to have the same number of roots as
[a,b]. The following theorem, which also appears in earlier work [24], states the
correctness of the function roots_in_int.

THEOREM 2.2. Let a,b € R*>®, with a < b, p be an integer polynomial, and
S={reR|a<r<band eval(p)(r) =0}. It holds that

card(S) = roots_in_int(p,a,b, sturm_chain(p)).

One important point about Theorem 2.2 is that the sequence sturm_chain(p)
does not depend on the interval [a,b] and therefore can be used on different inter-
vals. Indeed, the decision procedure for satisfiability of polynomial systems calls
roots_in_int many times with the same input polynomial but on different in-
tervals. When the Sturm sequence sturm_chain(p) is precomputed before any of
these calls and input into each call, computation time of the decision procedure is
significantly reduced.

To avoid costly computations with rational coefficients in the remainder sequence,
the formal definition of the Sturm sequence sturm_chain(p) uses an algorithm called
pseudo division instead of the standard polynomial division algorithm. This division
method does not involve division by coefficients of the polynomials, which means
that if the coefficients of the original polynomials are integers, then the coefficients of

Journal of Formalized Reasoning Vol.11, No.1, 2018

A Decision Procedure for Univariate Polynomial Systems : 23

their remainder after pseudo division will also be integers. The motivation for this is
that the coefficients of the polynomials in the standard remainder sequence become
quite complex as successive remainders are calculated. Computations involving
these rationals with many digits in both their numerators and denominators are less
efficient than computations on large integers, making the pseudo-remainder more
efficient than the standard remainder. The formalization of the pseudo division
algorithm is given in previous work [24].

3. DECISION PROCEDURE BASED ON INTERVAL SUBDIVISION

This section presents a decision procedure for determining the satisfiability of a sys-
tem of polynomials with rational coefficients over the real line. The development
of this decision procedure depends on other decision procedures of incremental
generality. First, the case of systems of polynomials with integer coefficients is dis-
cussed. For these kinds of polynomial systems, the algorithm decide_interval is
presented in Section 3.1 for deciding satisfiability on small bounded intervals. The
definition of small intervals is presented in Section 3.2. In Section 3.3, the algorithm
decide_interval is used to define hutch_int_basic, which decides satisfiability on
any bounded interval using an interval subdivision technique and the root counting
function presented in Section 2. The algorithm hutch_int_basic is then extended
by the algorithm hutch_int in Section 3.4 to decide satisfiability of systems of inte-
ger polynomials over the real line. Finally, the case of systems of polynomials with
rational coefficients is considered. The algorithm hutch presented in Section 3.5
uses hutch_int to decide satisfiability of systems of rational polynomials over the
real line.
A system of polynomials is represented by a tuple (k,p,r,Q), where

—p is a sequence of k£ + 1 polynomials py, . .., pr with rational coefficients,
—r is a sequence of k + 1 relations 7, ..., 7, from the set {=,>, <, #, >, <}, and

—Q is a function that takes a k + 1-tuple of Booleans as input and returns a
Boolean.

Just as the PVS development models a polynomial as an infinite array along with
a natural number (the degree), it models the sequence p of polynomials as an infinite
array nat — [nat — Q] of coefficients along with an infinite array nat — nat of
degrees. Each of these infinite arrays is an input to each PVS function acting on
a system of polynomials, along with the natural number k specifying the number
of polynomials in the system. As in the case of a single polynomial described in
Section 2, this difference between this paper and the PVS development is to save
notation and make the functions easier to read.

The function @ represents the Boolean expression of polynomials in p to be
checked for satisfiability, where the i-th parameter of @ is associated to the i-th
polynomial in p and the i-th relation in 7.

The predicate system_sat? defines satisfiability for the polynomial system rep-
resented by (k,p,r,Q) over a subset A of the real numbers.

system_sat?(k,p,r,Q,A) =

Jx e A : Q(ro(eval(pg)(x),0),...,ry(eval(py)(x),0)). ®)

Journal of Formalized Reasoning Vol.11, No.1, 2018

24 . A. Narkawicz, C. Mufioz, and A. Dutle

ExAMPLE 3.1. The satisfiability of the system

(x—2)? (—x+4)>0 A
2?2 (z—=32>0 A
r>1 A
—(=3%+1>0 A

—(z — (11/12))® - (z — (41/10))® < 1/10

is given by the truth value of system_sat?(k,p,r,Q,R), where

-y

—p = po, ..., Pk such that eval(py)(z) = (z — 2)% - (—x +4), eval(pr)(z) = 22 -
(x — 3)%, eval(ps)(x) = x — 1, eval(ps)(x) = —(x — 3)2 + 1, eval(ps)(z) =
—(z = (11/12))% - (z — (41/10))* — (1/10),

—r=(>2,2,><), and

—Q(bo, by, ba, bg, bs) =bg A by A by A bg A by.

3.1 Deciding Satisfiability on Small Intervals

This section presents a function that, given a sufficiently small interval, can de-
termine if a univariate polynomial system with integer coefficients is satisfiable on
that interval. The following theorem, whose proof depends trivially on the interme-
diate value theorem, shows that it is possible to define such a function for certain
intervals.

THEOREM 3.1. Let a, b, and c be real numbers such that a < ¢ <b, and let ¢ be
the only point in [a,b] at which any polynomial in the list p can have a root, i.e.,
a <z <band eval(p;)(x) = 0 implies x = ¢, for any x. A system (k,p,r,Q) is
satisfiable on [a,b] if and only if system_sat?(k,p,r,Q,{a,b,c}).

Recall from the introduction that the main decision procedure presented in this
paper continually subdivides an interval until each subinterval is small enough to
determine satisfiability. When the algorithm checks a particular interval and then
moves on to smaller subintervals, it is often the case that information already
computed on the large interval does not have to be recomputed on the smaller
subintervals. For instance, if it is determined that a particular polynomial in the
list p is always positive on an interval, then once the algorithm subdivides into
smaller subintervals, no more computations of the sign of that polynomial have to
be done. For this reason, there is a parameter to the decision procedure called o
that is a sequence oy, ...,0 of signs, i.e., elements in the set {—1,0,1}. There is
also a predicate sound_signs? that expresses whether this sequence correctly stores
sign information for the polynomial list p on an interval [a, b].

sound_signs?(k,p,a,b,0) =V0 < < k:
(0;=0 < Fz: a<z<bApi(x)=0)A
(0;=—-1 < Vz: a<z<b= pi(z) <0) A
(0i=1 <= Vz:a<z<b= pia)>0).

(6)

An important property of the predicate sound_signs? is that if the sequence o
satisfies this predicate on the interval [a,b], then for any subinterval of [a,b], the

Journal of Formalized Reasoning Vol.11, No.1, 2018

A Decision Procedure for Univariate Polynomial Systems : 25

entries of & that are equal to 0 can be updated so that the new sequence satis-
fies sound_signs? on the subinterval. This is accomplished through the function
signs_upd, which has as inputs a list p of k polynomials, the interval bounds a and
b, and a sequence o of signs. The output of signs_upd(k,p,a,b, o) is a sequence of
updated signs oy, ..., o0},. The i-th sign o} is defined as follows.

ol =if 0; # 0 theno;
elsif roots_in int(p;,a,b, A;) # 0 then0
elsif p;(a) < 0 then — 1 (7)
elsel

endif,

where A; = sturm_chain(p;), for 0 < i < k. In PVS;, the list of Sturm sequences A;
is precomputed and passed as parameter to signs_upd. For readability, parameters
representing precomputed values are left implicit in this paper.

The correctness statement of the function signs_upd is given by the following
theorem, which has been proved in PVS.

THEOREM 3.2. Let a < d' <V <V, if sound_signs?(k,p,a,b,0), then
sound_signs?(k,p,a’, V', signs_upd(k,p,a’ V', 0)).

In the decision procedure, the parameter ¢ will be initially computed for the
polynomials so that it satisfies sound_signs?, and it will be updated at each sub-
division step so that it it satisfies this predicate on each recursive call as well. It
is important to note that if the interval [a,] is small enough that all polynomials
in p with a root in this interval have exactly one root, all of which are at the same
location, then the polynomial system is satisfiable at this location in the sense
that system_sat?(k,p,r, @, [a,b]) holds, if and only if Q(r¢(0o,0),...,rt(0k,0))
holds. This motivates the definition of the function decide_interval, which given
an interval [a,b] that contains at most one point that is a root of all polyno-
mials in p, determines whether the system is satisfiable on [a,b], i.e., whether
system_sat?(k,p,r,Q, [a,b]) holds. It has a parameter unsatl?, which, if set to
true, implies that the system is not satisfied at the left endpoint of the interval, in
which case the computation of satisfiability at that point is not needed.

decide_interval(k,p,r,Q,a,b,0,unsatl?) =
(—unsatl? A Q(ro(po(a),0),...,mx(pr(a),0))) V
Q(ro(po(0),0), ..., 7k(pk(b),0)) V
Q(ro(00,0), ..., 1k(0%,0)).

The correctness theorem for the function decide_interval is defined below in
Section 3.2. For the output of this function to correctly determine satisfiability on
[a,b], it is required that sound_signs?(k,p,a,b,o) holds.

(8)

3.2 Determining if an Interval is Sufficiently Small

The PVS functions decidable_interval and decidable_interval_sq determine
if an interval is sufficiently small so that the function decide_interval, which is
defined in Section 3.1, can be used to decide satisfiability of a system of polynomials.

Journal of Formalized Reasoning Vol.11, No.1, 2018

26 . A. Narkawicz, C. Mufioz, and A. Dutle

Using different techniques, these two functions check whether every polynomial in
p has at most one root in [a,b] and, if so, whether all the polynomials share the
same root.

The function decidable_interval considers the product [, p; of all of the poly-
nomials in p and checks whether this product, which is a polynomial, has exactly
one root in the interval [a, b]. It is formally defined as follows.

decidable_interval(k,p,a,b,0) =
(V0<i<k: 0, =0 = roots_in_int(p;,a,b,A;) = 1) A 9)
(30<i<k: 0;,=0) = roots_in_int(m,a,b,II)) = 1),

where 7 = [[, pi, Il = sturm_chain(n), and A; = sturm_chain(p;), for 0 <i <k,
are all precomputed values passed as parameters to decidable_interval in the
actual PVS definition. The soundness of the function decidable_interval requires
that the predicate sound_signs?(k,p, a, b, o) holds. Formula (9) could be simplified
by removing the first condition since it is implied by the second condition. However,
in large systems, the first condition, which checks that each individual polynomial
has at most one root in the interval, saves computation time by avoiding the costly
evaluation of very large polynomials involved in the second condition. The second
condition is only computed when the interval gets small enough to contain at most
one root of each individual polynomial.

The function decidable_interval_sq considers the sum of the squares of all of
the polynomials in p that have a root in [a,b] and checks whether this sum, which
is a polynomial, has exactly one root in the interval [a,b]. It is formally definited
as follows.

decidable_interval_sq(k,p,a,b,0) =
(V0<i<k: 0, =0 = roots_in_int(p;,a,b, A;) = 1) A (10)
((30<i<k: 0, =0) = roots_in_int(&,a,b,E) = 1),
where £ = Y7, _p}, E = sturm chain({), and A; = sturm_chain(p;), for 0 <
i < k. In the actual PVS definition, the value of A;, for 0 < ¢ < k, is precomputed
and passed as parameter to decidable_interval_sq. The values of £ and E cannot
be precomputed as they depend on o;.
Theorem 3.3, which has been proved in PVS, states that if either of the Boolean
valued functions decidable_interval or decidable_interval_sq is satisfied on a

given interval for a polynomial system (k,p,r,Q), then satisfiability of the system
can be determined by the function decide_interval.

THEOREM 3.3. If sound_signs?(k,p,a,b,a) holds and either

—decidable_interval(k,p,a,b,0) or
—decidable_interval_sq(k,p,a,b,0) hold,

then
system_sat?(k,p,r,Q,[a,b]) <= decide_interval(k,p,7,Q,a,b,0).

Theorem 3.3 can be viewed as the statement that the decision procedure presented
in this paper is correct over small intervals. The following theorems, which are

Journal of Formalized Reasoning Vol.11, No.1, 2018

A Decision Procedure for Univariate Polynomial Systems : 27

proved in PVS, state that any interval of a sufficiently small size satisfies the pred-
icates decidable_interval and decidable_interval_sq.

THEOREM 3.4. There is a positive € > 0 such that for all reals a and b with
0 < b—a < € and sound_signs?(k,p,a,b,0), decidable_interval(k,p,a,b,o)
holds.

THEOREM 3.5. There is a positive € > 0 such that for all reals a and b with

0<b—a<eand sound_signs?k,p,a,b,0), decidable_interval_sq(k,p,a,b,o)
holds.

Only one of the functions decidable_interval or decidable_interval_sq needs
to be used at every recursive call, because these two functions compute the same
information and are computationally expensive. Therefore, the actual PVS defini-
tion of the decision procedure for satisfiability has an additional Boolean parameter
that enables the selection of either one of these functions.

The functions decidable_interval or decidable_interval_sq are by no means
the only possible functions that could be used to determine if all polynomials with
a single root have their roots at the same location. In fact, many other methods
are possible to solve this problem that could potentially improve the computational
complexity of the decision procedure. Another method would be to create a list
of all polynomials with a single root in the interval and then to count the number
of roots of each product of two successive polynomials in this list. However, this
method would compute far more Sturm sequences than both decidable_interval
and decidable_interval_sq, although in the best case, some of those Sturm se-
quences would be for polynomials of lesser degree than those considered in comput-
ing decidable_interval_sq. In general, the function decidable_interval has a
distinct advantage in that the corresponding Sturm sequence only has to be com-
puted once at the top level of the algorithm and then never again. Nevertheless,
it is a Sturm sequence of a polynomial with high degree. Similarly, the function
decidable_interval_sq has a distinct advantage in that it only has to compute
one Sturm sequence at each subdivision of the decision procedure, and the degree
of the corresponding polynomial is no more than twice the maximum degree of
the polynomials in the system. It is possible that other methods exist that could
combine the advantages of decidable_interval and decidable_interval_sq into
a quick method that computes a minimum number of polynomial remainders.

3.3 Decision Procedure for Integer Polynomials on Bounded Intervals

This section presents the decision procedure for satisfiability of systems of poly-
nomials with integer coefficients over a closed bounded interval [a,b]. The func-
tion hutch_int_basic, defined below, checks whether system_sat?(k,p,r,Q, [a, b])

Journal of Formalized Reasoning Vol.11, No.1, 2018

28 . A. Narkawicz, C. Mufioz, and A. Dutle

holds.
hutch_int basic(k,p,r,Q,a,b,0,unsatl?, sos?) =
if (—sos? A decidable_interval(k,p,a,b,0)) V
(sos? A decidable_interval_sq(k,p,a,b,0))
then decide_interval(k,p,r,Q,a,b,0,unsatl?)
else let ¢ = (a+b)/2 in
hutch_int basic(k,p,7,Q,a,c, signs_upd(k,p,a,c,0),unsatl?, sos?) V

(11)

hutch_int basic(k,p,r,Q, ¢, b, signs_upd(k,p,c,b,0), true, sos?)

endif.

The function hutch_int_basic has an optional boolean flag sos? as an input
that specifies the whether decidable_interval_sq or decidable_interval should
be used to determine if an interval is sufficiently small to determine satisfiability
using decide_interval. The input sos? can be set to either true or false in the
PVS development without affecting the the correctness of any of the functions or
theorems.

The function hutch_int_basic is recursive. In PVS, defining a recursive func-
tion requires proving that the function terminates for every input. This is ac-
complished by supplying a measure function on the inputs of the function that
returns an element of a set with a well-founded relation. Proving termination en-
tails proving that the measure function strictly decreases at every recursive call.
In the case of hutch_int_basic, the measure function returns the least natural
number d such that for all a’, ¥’ with 0 < b’ —a’ < (b — a)/2? and every ¢ such
that sound_signs?(k,p,a’,b’,0) holds, either decidable_interval(k,p,a,b,o) or
decidable_interval_sq(k,p, a,b,o) holds. Theorem 3.4 and Theorem 3.5 are used
to show that the measure function is well-defined, i.e., such a natural number d
always exists. Proving that it strictly decreases at every recursive call is straight-
forward.

The correctness property hutch_int_basic is stated in Theorem 3.6. In the PVS
development, this correctness property is stated in the return type of the function
hutch_int_basic rather than as an explicit theorem.

THEOREM 3.6. Let p = pg,...,pk be a sequence of polynomials with integer co-
efficients such that sound_signs?(k,p,a,b,o) holds. Suppose that unsatl? implies

—Q(ro(eval(po)(a),0),...,m(eval(pg)(a),0)). Then
hutch_int_basic(k,p,r,Q,a,b,0, unsatl? sos?) = true (12)

if and only if the system represented by (k,p,r,Q) is satisfiable over the interval
[a,b], i.e., system_sat?(k,p,7,Q,[a,b]) holds.

It is important to note the following about the above implementation of the
function hutch_int_basic. Other parameters added to the PVS definition of
hutch_int_basic are the precomputed values 7 = [[, p;, II = sturm_chain(m),
and the list of Sturm sequences A; = sturm_chain(p;), for 0 < i < k. Since the
function hutch_int_basic is defined recursively, computing these values at every
recursive call would significantly impact computation time. Instead, these values

Journal of Formalized Reasoning Vol.11, No.1, 2018

A Decision Procedure for Univariate Polynomial Systems : 29

are computed before the function hutch_int _basic is called and passed as param-
eters to the functions that need them, and therefore they are computed only once
each.

3.4 Decision Procedure for Integer Polynomials on the Real Line

The function hutch_int, defined in this section, computes satisfiability of a system
of polynomials with integer coeflicients over R. It uses hutch_int_basic on a
closed bounded interval that is guaranteed to strictly contain all points that are
roots of some polynomial in the list p of integer polynomials. While there are
many possible definitions of a bound on these roots, the formalization presented in
this paper uses Knuth’s bound [0, 24]. The reader is referred to the development
reals in the NASA PVS library, which defines Knuth’s bound in a function called
Knuth_poly_root_strict_bound.

THEOREM 3.7. For any nonzero real polynomial p, any root of p lies in the open
interval (—M, M), where M = Knuth_poly_root_strict_bound(p).

The function hutch_int is formally defined as follows.
hutch_int(k,p,r,Q, sos?) =
let M = max {Knuth_poly_root_strict_bound(p;)},
0<i<k (13)
o = signs_upd(k,p, —r,r,0) in
hutch_int basic(k,p,r,Q, —r,r,0,false, sos?),

where 0 is the sequence 0,...,0 of length k£ whose entries are all 0. In PVS,
hutch_int also computes m = [], p;, II = sturm_chain(n), and the list of Sturm
sequences A; = sturm chain(p;), for 0 < i < k, and passes these precomputed
values to hutch_int_basic.

The correctness statement of the algorithm hutch_int is the following theorem,
which has been proved in PVS.

THEOREM 3.8. Let p = pg,...,pr be a sequence of polynomials with integer
coefficients and positive degree, then

hutch_int(k,p,r,Q, sos?) = true (14)

if and only if the system represented by (k,p,r,Q) is satisfiable over the real line,
i.e., system_sat?(k,p,7,Q,R) holds.

3.5 Decision Procedure for Rational Polynomials on the Real Line

This section presents a decision procedure called hutch that determines the satisfi-
ability of a system of polynomials over the real line. The algorithm hutch computes
whether system_sat?(k,q,r,@,R) holds, where ¢ = qo, - . ., qx is a list of univariate
polynomials with rational coefficients. The algorithm works by first converting the
list g to a list of polynomials with integer coefficients and then calling the function
hutch_int on the resulting list of polynomials. Each polynomial in the list q is
multiplied by the product of the denominators of its coefficients, which results in
a polynomial with integer coefficients that satisfies the same sign conditions as the
original. This process follows the process in Section 4.2 of [24], where a similar

Journal of Formalized Reasoning Vol.11, No.1, 2018

30 . A. Narkawicz, C. Mufioz, and A. Dutle

method was used to extend a decision procedure for integer coefficient polynomi-
als to those with rational coefficients. In PVS, rational numbers are represented
by a primitive type. For example, numerical constants %, %7 and 0.5 are indistin-
guishable. Hence, the definition of a PVS function that computes the numerator
and denominator of a rational number is not straightforward. The solution to this
problem, while interesting in the context of an interactive theorem prover such as
PVS, is not directly necessary for the explanations in this section. In this section, it
is assumed that there is a function, namely compute_pos_rat, that takes a positive
rational number r as input and returns a pair of natural numbers (a,b), relative
primes, such that r = a/b. For more details, the reader is referred to [24].

The function rat2poly, which is defined in PVS, takes a rational polynomial
and coverts it to an integer polynomial that is a positive constant multiple of
the original. This process works by recursively considering each coefficient of the
polynomial. At each step, it multiplies the polynomial by the denominator of the
coefficient in question, and it also stores the current greatest common divisor of
all resulting integer coefficients that it has simplified so far in the recursion. At
the end of the recursion, all of the coefficients are divided by this greatest common
divisor. It is formally verified in PVS that rat2poly(p) is an integer polynomial
that is a positive multiple of p.

The function hutch is defined as follows, where the list ¢ of polynomials with
rational coefficients is given by ¢ = qq, - . - , gx.

hutch(k,q,r,Q,sos?) =
let p = rat2poly(qo),...,rat2poly(gx) in (15)
hutch_int(k,p,r,Q, sos?).

The correctness statement for the function hutch is given below, and it has been
proved in PVS.

THEOREM 3.9. Let ¢ = qo,...,qr be a sequence of polynomials with rational
coefficients and positive degree, then

hutch(k,q,r,Q, sos?) = true (16)
if and only if the system represented by (k,q,r,Q) is satisfiable over the real line,
i.e., systemsat?(k,q,7,Q,R) holds.

4. AUTOMATED PROOF PRODUCING STRATEGY

The function hutch and Theorem 3.9 can be used to automatically prove existen-
tially or universally quantified formulas involving polynomial relations. For instance
to prove the universally quantified formula

VeeR: (z =1 <0A (z+1)°>0 = 2% < 1, (17)

the following general method can be used. First, it is noted that proving For-
mula (17) is equivalent to proving unsatisfiability of the system (z —1)* <0 A (2 +
1P>0A22-1>0.

(1) Find k, g, r, and @ so that the unsatisfiability statement to be proved is
equivalent to —system_sat?(k,q,r,Q,R). In this particular case,

Journal of Formalized Reasoning Vol.11, No.1, 2018

A Decision Procedure for Univariate Polynomial Systems : 31

k=2,
—q = qo0,q1,q2, With go = (=1,3,-3,1), ¢1 = (1,3,3,1), g2 = (-1,0,1),
—r = (<,>,>), and
—Q(bo, b1,b2) =bg A by A bs.

(2) Prove that the propositions eval(g)(z) = (z — 1)3, eval(q)(z) = (z + 1)3,
and eval(ge)(x) = 22 — 1 hold identically.

(3) Evaluate the ground expression

hutch(k,q,r, Q). (18)

(4) If the evaluation in Step 3 results in false, by Theorem 3.9, Formula 17 holds.
Otherwise, by Theorem 3.9, the original formula does not hold for all z.

In most interactive theorem provers, the general method described above can be
mechanized as a proof producing strategy. In PVS, this method is implemented
in a strategy called hutch. This strategy automatically discharges Formula (17)
in PVS. Particular implementation details of this strategy are specific to each sys-
tem. However, some technical issues may be common to theorem provers based
on higher-order logic. For instance, since a polynomial expression such as (x — 1)3
is just a real number in the specification language, the implementation of Step 1
requires reflective capabilities in the strategy language, i.e., the ability to consider
expressions in the specification language as data in the strategy language. Using
these capabilities, a representation such as ¢o = (—1,3, —3,1) can constructed from
a polynomial expression like (z — 1)3. However, it is still necessary to formally
prove that the interpretation of this representation coincides with the polynomial
expression, e.g., eval(qy)(x) = (z — 1)3. This can be done in Step 2 by reducing
both sides of the equation to the normal form —1 + 3z + —3z2 + 23. Since the
expression in Formula (18) is ground, Step 3 can be efficiently computed using a
ground evaluator in a theorem prover that supports this feature. Otherwise, this
step can be accomplished by S-reducing the function call hutch(k,q,r, Q).

The PVS strategy hutch automatically discharges sequents having one of the
following forms.

(1) F Vz: R. B(x)
(2) F Jz: R. B(x)
(3) Bl(x)aaBn(x) |_Bn+1($)7vBm(m)

where

—B(z) and Bi(x),...Bn(x), with 0 < m, denote arbitrary Boolean expressions
involving relations of polynomial expressions on the variable z. It is assumed
that all polynomial expressions have numerical coefficients.

—x is either a quantified variable, as in the case of sequents of the form 1 and 2,
or an uninterpreted real constant, as in the case of sequents of the form 3.

Sequents of the form 3 are reduced to the form 1 by setting B = By(z) A ... A
B,(z) = Bpt1(x) V...V Bp(z). It is noted that hutch does not use external
solvers and since it is a proof producing strategy, its correctness only depends on
the internal logic of the theorem prover.

Journal of Formalized Reasoning Vol.11, No.1, 2018

32 . A. Narkawicz, C. Mufioz, and A. Dutle

EXAMPLE 4.1. In PVS, Formula (17) can be discharged in the following way.

{1} FORALL (x: real):
(x - 1)"3 <0 AND (x + 1)°3 > 0 IMPLIES x"2 < 1

Rule? (hutch)
Q.E.D.

In actual proofs, it is often the case that a formula such as Formula (17) appears
implicit in the sequent, e.g.,

{-1} -1D"3<0
{-2} +1"3>0

Rule? (hutch)
Q.E.D.

The strategy hutch has an optional flag sos? that specifies the input sos? used in
the PVS function hutch, which, as in Section 3, determines whether to use the func-
tion decidable_interval_sq or decidable_interval to determine if an interval
is small enough to determine satisfiability of the system using decide_interval.

5. BENCHMARKS

Table I compares the strategy tarski, from the authors’ previous work [24], to
the strategy hutch presented in this paper. The strategy hutch is used with the
flag sos? enabled (default behavior) and with the flag disabled (sos? set to nil).
For reference, Table I also compares these strategies to the strategy metit [7],
which uses the automatic theorem prover MetiTarski [1] in conjunction with the
SMT solver Z3 [6] as external solvers. The strategy metit is considerably faster
than tarski and hutch. However, in contrast to the later strategies, metit is
implemented as a trusted oracle that is not supported by a PVS proof. These
strategies are compared on the problems listed in Appendix A.

The problems labeled Ex1 through Ex7 come directly from Wi, Passmore, and
Paulson [12]. The lemmas labeled quads_2 through quads_10 are designed to com-
pare the complexity of hutch versus tarski. Times in Table I are given in seconds,
where PVS is run in batch mode in a Mac Pro 6-Core Intel Xeon E5 3.5 GHz with
32GB of RAM. In each case, the number in parentheses is the CPU time of the
ground evaluation of the formally verified decision procedure, i.e., the time that
takes the evaluation of hutch(k,q,r,Q) in Step 3 (Section 4). Unreported times
correspond to cases where the ground evaluation does not terminate in 5 min. In the
case of metit, this strategy does not support existential quantification. Therefore,
the times for Ex3 and Ex6 are reported as N/A. In the cases of strategies tarski
and hutch, the difference between the time in parentheses and the total time is
mainly spent in Step 2 (Section 4), i.e., in formally verifying for every polynomial
in the system that eval(q)(z) = p(z), where ¢ is a list of coeflicients representing
the polynomial expression p(z). As illustrated by the times in the table, this step,

Journal of Formalized Reasoning Vol.11, No.1, 2018

A Decision Procedure for Univariate Polynomial Systems : 33

Problem [tarski [hutch [hutch :sos? nil [metit]
Ex1 1.78 (0.12) 2.68 (0.02) 1.73 (0.02) 0.05
Ex2 4.80 (2.16) 2.91 (0.07) 3.19 (0.38) 0.05
Ex3 5.07 (0.26) 30.19 (27.22) 6.41 (1.74) N/A
Ex4 12.58 (9.69) 4.07 (0.01) 4.09 (0.05) 0.04
Ex5 225.45 (237.96) 5.55 (0.01) 4.44 (0.17) 0.05
Ex6 — 70.02 (3.02) - N/A
Ex7 - 76.76 (51.85) - 0.05

quad?2 1.82 (0.01) 1.85 (0.00) 1.85 (0.00) 0.05
quad3 2.28 (0.05) 1.05 (0.00) 2.27 (0.00) 0.05
quad4 1.83 (0.44) 2.74 (0.00) 2.75 (0.01) 0.05
quadb 5.57 (2.88) 3.20 (0.01) 3.25 (0.03) 0.05
quad6 22.16 (21.61) 3.75 (0.01) 3.82 (0.08) 0.05
quad? 154.43 (175.47) 4.26 (0.01) 4.48 (0.24) 0.05
quad8 - 8.73 (0.01) 4.11 (0.53) 0.05
quad9 - 11.90 (0.01) 4.46 (1.09) 0.05
quad10 - 14.19 (0.02) 7.98 (2.07) 0.05

Table I. Comparison between tarski vs. hutch (with flag sos? enabled and disabled)

which mainly involves simple symbolic checks, takes a significant percentage of the
time.

Table I shows that, on these problems, the flag sos? does not make a significant
impact on problems with small number of polynomials, e.g., 5, and that hutch is
slightly better than tarski. In larger problems, hutch with the flag sos? enabled
outperforms hutch with the flag sos? disabled as the product polynomial 7 and its
corresponding Sturm chain IT get too big. Compared to hutch, tarski gets slow
quicker on larger problems. An exception to the previous comment is Ex3, where
both tarski and hutch with sos? disabled performs better than hutch with sos?
enabled. This is possibly due to the high degrees of the polynomials involved in
this example.

For reference, Table II shows a comparison, reported in [12], of the Isabelle/HOL
tactics univ_rcf and univ_rcf_cert to the PVS strategy tarski.? Unreported
times correspond to instances where the tactics and strategy do not finish in 2 min.
As far as the authors know, these proof producing tactics are the closest in spirit to
hutch. The Isabelle/HOL tactics call an external tool (Mathematica) in a sound
way to do root isolation, while the PVS strategy hutch does the root isolation
inside the theorem prover. However, Table I and Table II suggest that the ground
evaluation of the verified decision procedure hutch with the flag sos? enabled is
approximately the same order of magnitude as the times spent by the Isabelle/HOL
tactics univ_rcf and univ_rcf _cert.

6. RELATED WORK

Work on similar decision procedures has been done by the authors. In their previous
work [24], the authors presented two formally verified, computable functions for de-
termining the satisfiability of a system of univariate polynomial relations (equalities

2Since the authors do not have access to the Mathematica system, they are unable to replicate
these results.

Journal of Formalized Reasoning Vol.11, No.1, 2018

34 . A. Narkawicz, C. Mufioz, and A. Dutle

Problem univ_rcf univ_rcf_cert tarski
(Isabelle/HOL) | (Isabelle/HOL) (PVS)

Ex1 0.9 0.3 2.0
Ex2 1.4 0.6 6.8
Ex3 1.6 0.7 13.0
Ex4 1.3 0.5 20.1
Ex5 1.6 0.6 315.7
Ex6 5.6 3.9 -
Ex7 38.4 34.9 -

Table II. Comparison between univ_rcf vs. tarski as reported in [12]

and inequalities) over the real line. This current paper presents another formally
verified algorithm that enjoys the same properties as the algorithms in their previ-
ous work. However, the algorithm presented here is simpler and shorter and should
be more easily implemented by others wishing to incorporate such functionality into
theorem provers other than PVS. A notable difference between the strategy hutch,
presented here, and the strategy tarski, presented in [24], is that hutch discharges
sequents written in a more general form. In particular, the strategy hutch supports
arbitrary Boolean expressions involving polynomial relations, while tarski requires
either existentially quantified formulas of conjunctive relations or universally quan-
tified formulas of disjunctive relations. While it is technically possibly to extend
the strategy tarski to support arbitrary Boolean expressions, the implementation
of this feature may require several calls to the decision procedure upon which that
strategy is based. In the strategy hutch, the implementation is straightforward
because the decision procedure hutch, presented in Section 3, already supports
arbitrary Boolean expressions.

Aside from the authors’ previous work, the algorithm presented in this paper is
closest in spirit to that of Wi, Paulson, and Passmore [12], which provides an algo-
rithm to determine the satisfiability of polynomial systems such as those discussed
in this paper. The correctness of the algorithm presented in that work depends
only on the kernel of the prover (in that case, Isabelle). However, that procedure
relies on an external tool (Mathematica) for root isolation. If the root isolation is
not precise enough, the external tool is asked for more precise root isolation inter-
vals. The correctness of that method does not depend on the correctness of the
external tool. However, completness of that method may be compromised if the
external tool is not sound. In contrast to that work, the method presented in the
current paper does not depend on an external tool and therefore it is sound and
complete assuming that the PVS internal logic is sound. The algorithm presented
in this paper stops subdividing when there is at most one point that is a root of
any polynomial in each subinterval. This improves the efficiency of the method as
it quickly determines whether the subdivision intervals are small enough to contain
at most one root of the polynomials. Finally, the algorithm presented in this paper
is recursive in nature, and its proof is therefore different than the algorithm of Wi,
Paulson, and Passmore [12]. That proof makes an argument at the global level
once all roots have been isolated, whereas the algorithm in this paper is verified
by induction on the number of intervals, the hardest part being the verification of

Journal of Formalized Reasoning Vol.11, No.1, 2018

A Decision Procedure for Univariate Polynomial Systems : 35

correctness of the subdivision step.

For a more comprehensive description of related work in this area, see the au-
thors’ previous paper [24], which covers work by Harrison [10], Mahboubi [13],
Eberl [8], de Moura [6], and others. Previous work by Cohen and Mahboubi [3] is
also especially notable because they formally proved a full decision procedure for
multivariate polynomial systems. Their method is also based on Tarski queries,
and the formalization is in Coq. One difference is that their procedure is not ex-
ecutable, although it will provide a useful resource as the authors of the current
paper attempt an executable decision procedure in PVS for multivariate systems.

7. CONCLUSION

This paper presents a formally verified decision procedure that determines satisfia-
bility of univariate polynomial systems using root counting and interval subdivision.
This decision procedure, which is proven to be sound and complete, is at basis of
a proof producing automated strategy whose correctness solely depends on the in-
ternal logic of the theorem prover. The procedure uses a root counting technique
based on Sturm’s theorem. It progressively subdivides the real line until it is de-
termined that all polynomials in the system with a root in the given interval have
their roots at the same single location. Satisfiability is easily determined on in-
tervals satisfying this property. Preliminary results show that the algorithm scales
well to systems with a large number of polynomials. An optional parameter allows
for additional tuning of the algorithm, specially when dealing when polynomials
with high degrees.

Other algorithms already exist to determine the satisfiability of these types of
systems, including one by the authors based on Sturm’s and Tarski’s theorems [24],
and another one by Wi, Paulson, and Passmore [12] based on first isolating roots
with an external tool (Mathematica) and then checking the answer. The fact that
the algorithm presented in this paper is formally verified in the same tool that it
will be called is compelling.

It is not straightforward to compare the performance of strategies in different
theorem provers since each system is particular in how problems are posed to the
theorem prover. In the case of PVS, the strategy presented in this paper supports
general polynomial expressions written as real number expressions and that are not
expected to be in a particular normal form. This support is convenient for the
user. However, the price of this convenience is that these real numbers expressions
have to be automatically translated by the strategy into a deep embedding repre-
sentation of polynomial expressions. The correctness of these translations has to
be proved for every polynomial expression. These proofs, while logically simple,
are time consuming for large polynomials. The bottleneck appears to be due to
the performance limitations of the PVS rewriting capabilities. Implementing the
algorithm presented in this paper in an interactive theorem prover with a better
support for rewriting and computational reflection, such as Isabelle/HOL or Coq,
may provide a simple to verify, efficient approach to determining satisfiability of
univariate systems.

Journal of Formalized Reasoning Vol.11, No.1, 2018

36

A. Narkawicz, C. Mufioz, and A. Dutle

References

[1]

2]

[10]

Behzad Akbarpour and Lawrence C. Paulson. MetiTarski: An automatic theo-
rem prover for real-valued special functions. Journal of Automated Reasoning,
44(3):175-205, 2010.

Saugata Basu, Richard Pollack, and Marie-Frangoise Roy. Algorithms in Real
Algebraic Geometry (Algorithms and Computation in Mathematics). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

Cyril Cohen and Assia Mahboubi. Formal proofs in real algebraic geometry:
from ordered fields to quantifier elimination. Logical Methods in Computer
Science, 8(1:02):1-40, February 2012.

Luis G. Crespo, César A. Munoz, Anthony J. Narkawicz, Sean P. Kenny,
and Daniel P. Giesy. Uncertainty analysis via failure domain characteriza-
tion: Polynomial requirement functions. In Proceedings of European Safety
and Reliability Conference, Troyes, France, September 2011.

Marc Daumas, David Lester, and César Munoz. Verified real number calcu-
lations: A library for interval arithmetic. IEEE Transactions on Computers,
58(2):1-12, February 2009.

Leonardo de Moura and Grant Passmore. Computation in real closed infinites-
imal and transcendental extensions of the rationals. In Automated Deduction
- CADE-24, 24th International Conference on Automated Deduction, Lake
Placid, New York, June 9-14, 2013, Proceedings, 2013.

William Denman and César Mufioz. Automated real proving in PVS via Meti-
Tarski. In Cliff Jones, Pekka Pihlajasaari, and Jun Sun, editors, Proceedings
of the 19th International Symposium on Formal Methods (FM 2014), volume
8442 of Lecture Notes in Computer Science, pages 194-199, Singapore, May
2014. Springer.

Manuel Eberl. Sturm’s theorem. Archive of Formal Proofs, January 2014.
http://afp.sf.net/entries/Sturm_Sequences.shtml, Formal proof devel-
opment.

Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for
nonlinear theories over the reals. In Maria Paola Bonacina, editor, Automated
Deduction - CADE-2/ - 24th International Conference on Automated Deduc-
tion, Lake Placid, NY, USA, June 9-14, 2013. Proceedings, volume 7898 of
Lecture Notes in Computer Science, pages 208-214. Springer, 2013.

John Harrison. Verifying the accuracy of polynomial approximations in HOL.
In Elsa L. Gunter and Amy Felty, editors, Theorem Proving in Higher Order
Logics: 10th International Conference, TPHOLs’97, volume 1275 of Lecture
Notes in Computer Science, pages 137-152, Murray Hill, NJ, 1997. Springer-
Verlag.

John Harrison. Verifying nonlinear real formulas via sums of squares. In
Theorem Proving in Higher Order Logics, volume 4732 of Lecture Notes in
Computer Science, pages 102-118. Springer, 2007.

Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univari-
ate polynomial problems using untrusted certificates in Isabelle/HOL. Journal
of Automated Reasoning, Aug 2017.

Journal of Formalized Reasoning Vol.11, No.1, 2018

http://afp.sf.net/entries/Sturm_Sequences.shtml

[13]

[14]

[15]

[17]

[18]

A Decision Procedure for Univariate Polynomial Systems : 37

Assia Mahboubi. Implementing the cylindrical algebraic decomposition within
the Coq system. Mathematical Structures in Computer Science, 17(1):99-127,
February 2007.

Assia Mahboubi and Loic Pottier. Elimination des quantificateurs sur les réels
en Coq. In Journées Francophone des Langages Applicatifs (JFLA), 2002.

Sean McLaughlin and John Harrison. A proof-producing decision procedure
for real arithmetic. In Robert Nieuwenhuis, editor, Proceedings of the 20th
International Conference on Automated Deduction, proceedings, volume 3632
of Lecture Notes in Computer Science, pages 295-314, 2005.

Guillaume Melquiond. Proving bounds on real-valued functions with computa-
tions. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,
Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Syd-
ney, Australia, August 12-15, 2008, Proceedings, volume 5195 of Lecture Notes
in Computer Science, pages 2—-17. Springer, 2008.

David Monniaux and Pierre Corbineau. On the generation of Positivstellensatz
witnesses in degenerate cases. In Proceedings of Interactive Theorem Proving
(ITP). Lecture Notes in Computer Science, 2011.

Mariano Moscato, Laura Titolo, Aaron Dutle, and César A. Mufioz. Auto-
matic estimation of verified floating-point round-off errors via static analysis.
In Stefano Tonetta, Erwin Schoitsch, and Friedemann Bitsch, editors, Com-
puter Safety, Reliability, and Security: 36th International Conference, SAFE-
COMP 2017, Trento, Italy, September 13-15, 2017, Proceedings, volume 10488
of Lecture Notes in Computer Science, pages 213-229, Cham, 2017. Springer
International Publishing.

César Munoz, Victor Carreno, and Gilles Dowek. Formal analysis of the op-
erational concept for the Small Aircraft Transportation System. In Rigorous
Engineering of Fault-Tolerant Systems, volume 4157 of Lecture Notes in Com-
puter Science, pages 306-325, 2006.

César Munoz, Aaron Dutle, Anthony Narkawicz, and Jason Upchurch. Un-
manned Aircraft Systems in the National Airspace System: A formal methods
perspective. ACM SIGLOG News, 3(3):67-76, July 2016.

César Munoz and Anthony Narkawicz. Formalization of a representation of
Bernstein polynomials and applications to global optimization. Journal of
Automated Reasoning, 51(2):151-196, August 2013.

Anthony Narkawicz and César Mufioz. A formally verified generic branching
algorithm for global optimization. In Ernie Cohen and Andrey Rybalchenko,
editors, Fifth Working Conference on Verified Software: Theories, Tools and
Ezperiments (VSTTE 2013), volume 8164 of Lecture Notes in Computer Sci-
ence, pages 326-343. Springer, 2014.

Anthony Narkawicz, César Munoz, and Gilles Dowek. Provably correct con-
flict prevention bands algorithms. Science of Computer Programming, 77(1-
2):1039-1057, September 2012.

Anthony Narkawicz, César Munoz, and Aaron Dutle. Formally-verified deci-
sion procedures for univariate polynomial computation based on Sturm’s and
Tarski’s theorems. Journal of Automated Reasoning, 54(4):285-326, 2015.

Journal of Formalized Reasoning Vol.11, No.1, 2018

38 . A. Narkawicz, C. Mufioz, and A. Dutle

[25] Sam Owre, John Rushby, and Natarajan Shankar. PVS: A prototype verifi-
cation system. In Deepak Kapur, editor, Proceeding of the 11th International
Conference on Automated Deduction (CADE), volume 607 of Lecture Notes in
Artificial Intelligence, pages 748-752. Springer, June 1992.

[26] Alexey Solovyev and Thomas C. Hales. Formal verification of nonlinear in-
equalities with Taylor interval approximations. In Guillaume Brat, Neha
Rungta, and Arnaud Venet, editors, Proceedings of the 5th International Sym-
posium NASA Formal Methods, volume 7871 of Lecture Notes in Computer
Science, pages 383-397, 2013.

[27] Charles Francois Sturm. Mémoire sur la résolution des équations numériques.
In Jean-Claude Pont, editor, Collected Works of Charles Francois Sturm, pages
345-390. Birkh&user Basel, 2009.

A. BENCHMARKS

Exl:VzeR:z>-9ANz<10Az*>0 = z'2>0.

Ex2:VzeR:(z -2 (—2+4)>0A2?- (2-32>0A2—-1>0A
—(z=3%4+1>0 = (—(z —11/12))®- (x — 41/10)3 > 0.

Ex3:3z€R:2° —2—1=0 A "% +425/23 - 2™ —228/23 - 2'0 — 2.2
—896/23 - 27 —394/23 - 2% 4-456/23 - 2° 4 x* +471/23 - 3
+645/23 - 2% —31/23 -2 —228/23 =0 A 23 +22-22 —31 >0 A
x?? —234/567 - 220 — 419 - 21 + 1948 > 0.

Exd:VreR:x>0V —((61-2)/9) + (5-2%)/9+ (20-2%)/9 > —4 v
1<zva<0oVv —((19-2)/9)+(10-2%)/9 < -1 vV —((13-z)/9)
+ (31-22) /45 + 23 /18 < —(7/10) V —((61-x)/9) + (5 - x2)/9
+(20-2%)/9 < —4.

Ex5:VreR:—((5-2)/6) — (10-2*)/3 —2%/3 >0V (5-2)/6
+(10-2%)/3+2%/3>0Vv 1<z Vae<0V —((19-2)/9)
+(10-2%)/9 < =1 v —((13-2)/9) + (31 - 2%) /45 + 23 /18 < —(7/10)
vV —((101 - 2)/30) — (64 - 2%)/15 + (14 - 23) /15 < —(11/5) v
—((61-2)/9)+ (5-2%)/9 + (20 - 2%)/9 < —4.

Journal of Formalized Reasoning Vol.11, No.1, 2018

A Decision Procedure for Univariate Polynomial Systems : 39

:Fz € R: —((51-2)/10) — (267 - 22)/2 — (5409 - £3)/10 — (4329 - 2*) /5
— (2052 - %) /5 — 70 - 2® > —(7/10) A —((10327 - 2)/270)

71681 - 22) /270 — (135853 - x3) /810 — (57328 - 2*) /135

77743 - 2°) /135 4 (115774 - 25) /405 + (175 - 27) /18 + (49 - 2%)/3

+ (49 - 29) /162 > —(721/90) A —((2981 - x)/90) — (251 - 22) /6

24217 - %) /270 4 (2698 - 2*) /135 + (18964 - 2°) /135

595 - £5) /54 4 (280 - ") /27 + (7 - 2®) /27 > —(206/45) A

(799 - 2)/90) + (169 - £2)/18 — (7933 - 2*) /270 + (2672 - 2*) /135

329 - 2°)/90 + (112 - 2%) /27 + (7 - ") /54 > —(103/90) A

(781 - x)/90) — (701 - 22) /6 — (12217 - 2%) /270 + (11323 - z*) /135

264 - 2°) /135 + (935 - 25) /54 + (280 - ") /27

7-2%)/27 > —(77/15) A —((361 -)/30)

811 -2%)/30 + (307 - 2®) /45 + (2353 -) /90 — (17 - 2°) /6

+(52-2%)/9 4+ (2-27)/9 > —(44/15) A —((33 - 2)/10) — (2-x?)/15

41-2%)/90 + (2-2*) /15 +2 - 2° + 25/9 > —(11/15) A

(1339 - 2)/405) — (70225 - %) /324 — (11549 - %) /270

+ (65378 -) /405 + (23483 - °) /810 + (1109 - 25) /27

1540 - 27) /81 + (49 - 2%)/162 > —(721/60) A —((10741 - x)/540)

2263 - 2)/45 + (5191 - 23) /180 + (7753 - 1) /270 — (52 - 2°) /9

203 - 2%) /18 4 (7- ") /27 > —(103/15) A —((1481 - z)/90)

811 -x2)/180 + (2113 - 3)/90 — (493 - %) /36 4 (59 - 2°) /9

29)/9 > —(22/5) A —((913 - 2)/180) + (563 - 2%)/90

257 - 23)/60 + (17 - 2*)/9 + 2°/9 > —(11/10) A

(91-2)/18) + (10-2%)/3 — (5-2) /2 + (20 - %) /9 > —2 A

(2-2)/9) — (25-2%) /18 + (10 -) /9 > —(1/2) A

(61-2)/9)+ (5-2%)/9+(20-2%)/9> -4 AN1>zAz>0A
—((19-2)/9) + (10-2%)/9 > =1 A —((13-2)/9) + (31 - 2?) /45

+23/18 > —(7/10) A —((253 - x)/90) — (53 - £2)/30 + (34 - 2°) /15

+2%/9 > —(11/5) A —((97 - x)/90) — (2051 - 2%)/90 + (86 - 23) /15
+(82-21) /94 (2-2°)/9 > —(44/5) A —((93307 - x)/1620)

298609 - x2)/810 + (30583 - 3) /270 4 (264373 -) /810

289811 - 2°)/1620 + (3113 - 2%) /27 4 (931 - 27) /81 4 (8 - 2%) /81 >

—(193/5) A —((4741 - 2)/540) — (9151 - 2%) /90 + (6397 - %) /60

2686 - 21) /135 + (28 - 2°) /9 + (38 - 2%) /3 4 (7 - 27) /27 > —(77/10).

+

|

—(
+
+(
=
—(
=
(
—(
+(7
+(
=
+
+(
—(
+(
+
—(
(
—(
+(2-
—(
—
=
—(

o~ o~ o~ o~

Journal of Formalized Reasoning Vol.11, No.1, 2018

40 . A. Narkawicz, C. Mufioz, and A. Dutle

ExT:VrxeR:x< -1V O0>aV (41613-2)/2 + 26169 - 22
+ (64405 - 2°) /4 + 4983 - x* + (7083 - 2°) /10 + (1207 - 25)/35
+27/8 > —6435 Vv 11821609800 - = + 22461058620 - #* + 35 - z'? <
4171407240 - 23 + 45938678170 - 2* 4 54212099480 - x5
+ 31842714428 - 25 4 10317027768 - =7 + 1758662439 - z°
+ 144537452 - 2° 4 5263834 - 10 + 46204 - 21t v 2 <0 V
9609600 - 2 + 45805760 - 2% + 92372280 - 3 + 102560612 - z*
+ 68338600 - 2° + 27930066 - 2° + 6857016 - = + 938908 - x°
+ 58568 - ¥ + 753 - 210 < 0 Vv 788107320 - x + 1101329460 - 22
+10- 2! < 782617220 - 2® + 2625491260 - z* + 2362290448 - 25
+ 1063536663 - 2° + 240283734 - 27 4 24397102 - 2® 4 1061504 - z°
+9179 - ' v 90935460 - x + 81290790 - % 4 5 - 'Y < 125595120 - 2°
+ 237512625 - x* + 161529144 - 2° + 51834563 - 2° + 6846880 - z”
+ 356071 - 2% + 2828 - 2 Vv 640640 - x 4 2735040 - 2% + 4837448 - 2®
+ 4581220 - * 4 2505504 - 2° + 794964 - 25 + 138652 - 2 + 11237 - 2®
+207-2° <0V 528 < 73920 - 2 4 238560 - 2% 4 303324 - 2°
+ 192458 - zt + 63520 - 2° + 10261 - 25 4+ 608 - 7 v 73920 - x
+ 278880 - 2% + 424284 - 2° + 332962 - 2t + 142928 - 2° + 32711 - 28
+3514-2" 49828 <0V < —1.

quads2:Vz eR:z2>0N2<2 = ((z—-0)-(z—-1) <0V
(x—1) - (x—2)<0).

quads3:VzeR:z2>0N2<3 = ((—-0)-(z—-1) <0V
(z—1)-(z—=2)<0V (x—2) - (x—3) <0).

quads4:VzeR:2>0Nz2<4 = ((z—-0)-(z—-1) <0V
(z—1)-(2—-2)<0V (—-2)-(—3) <0V (x—3)-(x—4) <0).

quads 5V eR:z2>0AN2<5 = ((—0)-(z—1) <0V
-1 - (z—-2)<0V (x—2)-(—3) <0V (r—3)-(x—4) <0V
(x—4) - (x—5)<0).

quads 6 :Vz eR:z2>0N2<6 = ((z—-0)-(z—-1) <0V
(-1 (z—=2)<0V(x—2)- (—3)<0V (z—=3)-(x—4) <0V
(x—4)-(x=5)<0V (x—=5) - (x—6)<0).

Journal of Formalized Reasoning Vol.11, No.1, 2018

A Decision Procedure for Univariate Polynomial Systems : 41

quads.T:Vz eR:z2>0AN2<7 = ((—0)-(z—1) <0V
-1 - (z—2)<0V(x—2)-(z—3) <0V (z—3)-(x—4) <0V
(x—4) (=5 <0V (x—=5)-(x—6) <0V (x—6) - (x—7) <0).

quads 8 :Vz eR:z>0AN2<8 = ((z—0)-(z—-1) <0V
(-1 -(z2—-2)<0V(z—2)-(—3)<0V (z—3)-(x—4) <0V
(x—4)-(x=5)<0V(x=5)-(z—6)<0V (z—6)-(x—7)<0
(x="T7) (x—8)<0).

quads 9:Vz eR:z>0Nz2<9 = ((z—-0)-(z—-1) <0V
(z—1)-(z—2) <0V (z—2) (x—3) -4)<0

<0
(x—4) - (2=5)<0V (x—=5)-(z—6)<0
(x—=T7)- (=8 <0V (x—8)-(z—9) <0

quads 10:VzeR:z >0 A2 < 10 =

((z=0)-(z—1)<0V
(=1 -(x—2)<0V (z—2)(
- (
(

z—3)<0V (z—-3)-(x—4) <0V
2—6)<0V (z—6)-(z—7)<0V
x—9) <0V (x—9)-(x—10) <0).

(x—4)-(x—=5) <0V (z-5)
(x=7)-(x—8) <0V (x—28)

B. TABLE OF THEOREMS AND THEIR CORRESPONDING PVS NAMES

In following table, the notation 1ib@th. thm refers to the theorem thm in the theory
th of the library 1ib. The notation 1ib@th.func(...) refers to the type of the
function func in the theory th of the library lib.

Theorem PVS Name

Theorem 2.1 | Tarski@sturmtarski.sturm_tarski and
Tarski@sturmtarski.sturm_tarski_unbounded
Theorem 2.2 | Sturm@compute_sturm.roots_closed_int_def
Theorem 3.1 | Tarski@hutch.decide_interval_def

Theorem 3.2 | Tarski@hutch.known_signs_update_sound
Theorem 3.3 | Tarski@hutch.decide_interval_def

Theorem 3.4 | Tarski@hutch.decidable_intervals_exist
Theorem 3.5 | Tarski@hutch.decidable_intervals_sq-exist
Theorem 3.6 | Tarski@hutch.hutch_int_basic(...)

Theorem 3.7 | reals@hutch.Knuth poly_root_strict_bound(...)
Theorem 3.8 | Tarski@hutch.hutch_int_def

Theorem 3.9 | Tarski@hutch.hutch_def

Journal of Formalized Reasoning Vol.11, No.1, 2018

	Introduction
	Sturm's Theorem
	Decision Procedure Based on Interval Subdivision
	Deciding Satisfiability on Small Intervals
	Determining if an Interval is Sufficiently Small
	Decision Procedure for Integer Polynomials on Bounded Intervals
	Decision Procedure for Integer Polynomials on the Real Line
	Decision Procedure for Rational Polynomials on the Real Line

	Automated Proof Producing Strategy
	Benchmarks
	Related Work
	Conclusion
	Benchmarks
	Table of Theorems and their Corresponding PVS Names

