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We report on the formalization in Ssreflect/Coq of a number of concepts and results from algorith-

mic game theory, including potential games, smooth games, solution concepts such as Pure and
Mixed Nash Equilibria, Coarse Correlated Equilibria, ε-approximate equilibria, and behavioral

models of games such as better-response dynamics. We apply the formalization to prove Price

of Stability bounds for, and convergence under better-response dynamics of, the Atomic Rout-
ing game, which has applications in computer networking. Our second application proves that

Affine Congestion games are (5/3, 1/3)-smooth, and therefore have Price of Anarchy 5/2. Our
formalization is available online.

1. INTRODUCTION

Game theory studies the interactions of self-interested parties in situations in which
the actions of one party may interfere with those of another. Algorithmic game
theory [25] studies games through the lenses of algorithms and theoretical computer
science. For various classes of games, how tractable are the traditional solution
concepts, e.g. Nash equilibria? Can we approximate such equilibria to make them
more tractable? How does the cost of the worst equilibrium state compare with
that of an optimal state (the Price of Anarchy for the game)? Are there subclasses
of games that have bounded Price of Anarchy?

Game theory itself has proved widely relevant since Bachelier, Borel, and Zermelo
in Europe and von Neumann, Nash, and Morgenstern in the United States first
promulgated it in the first part of the 20th century [2, 7, 37, 24, 23, 22]. Algorithmic
game theory is less venerable but seeks answers to questions that are no less relevant,
especially to the application of game-theoretic models. For example, if calculating
the equilibria of some game is PPAD-complete, can we expect such equilibria to be
good models of an underlying game-like phenomenon?

In this paper, we report on the formalization of some recent (and not so re-
cent) results in game theory and algorithmic game theory. These include, all in
Ssreflect/Coq:

—multiplayer games;

—solution concepts such as Pure Nash Equilibria, Mixed Nash Equilibria, Coarse
Correlated Equilibria and their ε-approximate variations;
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—subclasses of games such as potential games and smooth games;

—a formalization of better-response dynamics;

—a proof that potential games converge to Pure Nash Equilibria (PNE);

—a bound on the Price of Stability of the PNE of potential games;

—a bound on the Price of Anarchy of smooth games;

—a proof that the Atomic Routing game converges under better response dynamics;

—a proof that Affine Congestion games are (5/3, 1/3)-smooth.

We formalized these results for two reasons. First, they are relevant – especially the
results on potential and smooth games, and on Price of Stability and Anarchy – to
recent developments in Algorithmic Game Theory; our formalization provides tools
with which researchers could validate new results. Second, the authors are working
in parallel on applications of some results from this paper to the design and proof
of game-theoretic models of distributed systems, e.g. distributed network routers,
which we reported on recently in a brief announcement at PODC [3]. We believe
that the results in this paper – which focuses on formalization-related aspects of
the underlying Ssreflect/Coq libraries – are of independent interest from the work
described briefly in [3].

Our formalization is available online at:

https://github.com/gstew5/games.

2. RELATED WORK

Games in Formal Cryptography. Barthe and colleagues have published exten-
sively on formal verification (in CertiCrypt) of cryptographic protocols such as
encryption [5] and signature schemes [36]. In the cryptographic setting, such pro-
tocols can be expressed as games against a (typically computationally bounded)
adversary. The CertiCrypt model deeply embeds games via a probabilistic pro-
gramming language, pWHILE, with an associated relational Hoare logic. This
deep embedding facilitates the definition of program refinements, which are used
to prove bounds on, e.g., an adversary’s advantage against a particular encryp-
tion scheme. Other researchers, such as Nowak [26], have used shallow embeddings
of games to formalize similar cryptographic proofs to those in CertiCrypt. The
shallow-embedding style more closely matches the definitions we use in this paper.

Formalized Mechanism Design. Perhaps more relevant to this article are recent
results in the formalization of protocols from mechanism design, a field closely
related to algorithmic game theory. Barthe and his co-authors have done pioneering
work in this area as well, e.g., [4]. One of the main goals of such work is to
formally prove that mechanisms such as those used in auction design incentivize
participants to faithfully report their preferences (so-called truthfulness properties).
For example, in [4], Barthe et al. verify the truthfulness of the random sampling
auction of Goldberg et al. [10]. A secondary contribution of [4] was to formally
prove the correctness of a mechanism for computing approximate Nash equilibria
of aggregative games [9]. This mechanism plays a role similar to that of the better-
response dynamics we formalize in Section 7. Our work is complementary in the
sense that we provide a unified library for proving results in algorithmic game
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theory which could be used to prove additional results in mechanism design. As
we outline in Section 1, we also prove a number of results that – to the best of our
knowledge – have not yet been mechanized, such as the facts that Atomic Routing
games converge under better-response dynamics, and that Affine Congestion games
are (5/3, 1/3)-smooth.

Game Theory Formalized. A few researchers have previously mechanized results
from game theory in theorem provers such as Coq and Isabelle [16, 18, 17, 34,
32, 15]. Lescanne [16], for example, reports on a library of extensive games in
Coq, in which (potentially infinite) games are represented as a Coq co-inductive
type. Our library is limited to finite games (the set of player strategies is finite)
but includes a number of results from algorithmic game theory that do not appear
in [16]. In 2006, Vestergaard [34] reported on an earlier mechanization of game
theory in Coq in which he proved via backward induction that finite sequential
games (also represented in extensive form, this time as an inductive rather than co-
inductive type) have Nash equilibria. More recently, Le Roux [14, 15] generalized
Vestergaard’s result, which was limited to binary games with natural-valued payoff
functions, to arbitrary finite games with acyclic preference relations over abstract
outcomes.

3. BACKGROUND

3.1 Game Theory

Game theory studies the design and analysis of systems of mutually competitive
actors: a set of N players, each attempting to minimize their individual costs wrt.
some cost function C over an action space A.1 The type A might be indexed by
the player number i ∈ [0, N) (as in Ai) to allow each player to specialize its action
space to a particular type.

The overall state after a round of multiplayer play is an N -tuple of actions
(a1, a2, · · · , aN ), where the action of player i is drawn from Ai. The cost Ci to
player i is calculated wrt. the tuple (a1, · · · , ai, · · · , aN ) and can be understood as
the cost to i of its chosen action (ai) wrt. the actions of the other N − 1 players.
A state (a1, · · · , ai, · · · , aN ) is a Pure Nash Equilibrium (PNE) [23] if for every i
and potential deviant action a′i,

Ci(a1, · · · , ai, · · · , aN ) ≤ Ci(a1, · · · , a′i, · · · , aN )

The notion of PNE generalizes to situations in which players may randomize over
their actions (Mixed Nash Equilibrium) and to situations in which the players’
distributions over actions may be correlated (Correlated Equilibrium). An even
broader generalization, called Coarse Correlated Equilibrium (CCE), classifies those
distributions σ over states a such that

Ea∼σ[Ci(a1, · · · , ai, · · · , aN )] ≤ Ea∼σ[Ci(a1, · · · , a′i, · · · , aN )]

for all i and a′i. The expected cost to player i in σ of a = (a1, · · · , ai, · · · , aN ) is
less than or equal to the expected cost of (a1, · · · , a′i, · · · , aN ).

1We use a cost-minimization formulation of games. However, everything we present in this paper

could be suitably dualized to formulate games in payoff-maximization style.
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All the equilibrium notions above have approximate counterparts. For example,
ε-approximate CCEs are those distributions σ such that

Ea∼σ[Ci(a1, · · · , ai, · · · , aN )] ≤ Ea∼σ[Ci(a1, · · · , a′i, · · · , aN )] + ε

Player i can gain (in expectation) at most ε by deviating to a′i.

3.2 Algorithmic Game Theory

Algorithmic game theory (AGT) [25] applies traditional computer science tech-
niques such as algorithm analysis to the study of games. A number of recent AGT
results [28, 6, 1, 19, 29, 31, 27] have sought to bound the degree to which the solu-
tions of particular games approximate socially optimal solutions to problems such
as network routing, the so-called Price of Anarchy (POA) [13] of the game. By so-
cially optimal, we mean states of the game that minimize some objective function
such as the sum of all player costs. The POA of a game is the ratio of the cost of
the worst equilibrium state to the cost of a socially optimal solution.

More informally, POA quantifies the loss of efficiency one pays by allowing mu-
tually competitive agents to selfishly calculate an equilibrium or solution state for
the game, wrt. an optimal (perhaps centrally coordinated) solution. The POA for
some classes of games can be quite small. For example, affine congestion games,
which can be used to model network routing, have POA 5/2 [8]. Other classes of
games (e.g., facility location [35]) also have low POA.

Related to POA is Price of Stability (POS), the ratio of the cost of the best
equilibrium state to that of an optimal state. POA and POS are equal in games
with only one equilibrium state.

3.3 Game Dynamics

By a game dynamics, we mean a model of the strategy used by the players of the
game to choose their actions over the course of iterated play.

One such strategy is better response: In each round, a player may move from
current action a to new action a′ only if the cost of a′, wrt. the actions of other
players, is less than the cost of a (each move by player i reduces player i’s cost).
For certain classes of games, e.g. potential games [21], better-response dynam-
ics leads naturally to Nash equilibria, as we prove formally in Section 7. Other
strategies, such as no-regret dynamics, drive all games to the wider solution class
of ε-approximate CCEs. [30, Chapter 17]

3.4 Ssreflect/Coq

We use Ssreflect [11] libraries throughout our formalization. For readers more fa-
miliar with standard Coq or with another theorem prover, we briefly summarize
some of the definitions and notation we use most heavily:

Finite Types. Ssreflect models finite types (notation A : finType) as pairs of the
type A and an enumerator enum : list A. The enumerator satisfies the property:

∀a : A. count a enum = 1.

In the enumeration of the values of type A, every element is included exactly once.
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Finite Functions. Ssreflect models functions with finite domain:

{ffun A → B}

as tuples of values of type B, of size |A|, where |A| is the cardinality of the finite
type A. The cardinality of a finite type is naturally defined as the length of its enu-
meration, which works because the enumeration is defined to include each element
in the type exactly once.

Bounded Naturals. One useful finite type which we use widely is the set of nat-
urals [0 . . . N) between 0 and N exclusive, for a particular bound N . Ssreflect’s
syntax for this type is ’I N . To clarify in code listings, we often replace ’I N with
the slightly less cumbersome syntax [N ]. For example, the type of finite functions
mapping integers in the range [0 . . . N) to values of type A has type:

{ffun ’I N → A}

or in the notation which we use in this paper:

{ffun [N ] → A}.

4. GAMES IN SSREFLECT/COQ

Ssreflect uses packed classes and canonical structures [20] to construct type hierar-
chies. We use Ssreflect’s numeric hierarchy and other Ssreflect types in packed-class
form, but depart from packed classes to operational type classes [33] when defining
new types (aside from the discrete distributions of Section 5). Operational type
classes facilitate parameter sharing, e.g., in the definition of combinators.2 As an
example of one such typeclass hierarchy, consider our encoding of games:

Class CostClass (N : nat) (R : realFieldType) (A : finType) ,
cost fun : [N ] → {ffun [N ] → A} → R.

Notation ‘‘’cost’’’ , (@cost fun ) (at level 30).

Class CostAxiomClass N R A ‘(CostClass N R A) ,
cost axiom (i : [N ]) (f : {ffun [N ] → A}) : 0 ≤ cost i f .

Section costLemmas. Context {N R A} ‘(CostAxiomClass N R A).
Lemma cost nonneg i f : 0 ≤ cost i f . Proof. apply: cost axiom. Qed.

End costLemmas.

Class MovesClass (N : nat) (A : finType) , moves fun : [N ] → rel A.

Notation ‘‘’moves’’’ , (@moves fun ) (at level 50).
Class game (A : finType) (N : nat) (R : realFieldType)

‘(costAxiomClass : CostAxiomClass N R A)

(movesClass : MovesClass N T ) : Type , {}.

The operational type class CostClass N R A – in a game with N players and ac-
tion space A – asserts the existence of an R-valued cost function cost fun (notation

2While we do not use such combinators in this article, they are nevertheless quite useful when
defining, e.g., domain-specific languages for the combinatorial construction of games, as we have

done in the work described in [3].
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Fig. 1. Equilibrium Refinements. Illustration modeled on [30, Figure 13.1].

cost) mapping a player index of type [N ] and state of type {ffun [N ] → A} (as-
signing an action of type A to each player) to a real-valued cost of type R. The
class costAxiomClass ensures that cost is nonnegative. Games in our formulation
are finite, a constraint enforced by the fact that the type of game states A is it-
self a finType. We often use the phrase “game A” to refer metonymously to the
entire game over type A (including its other defining components such as the cost
function).

The game typeclass packages the cost function with a second class, MovesClass,
that defines the game’s allowable moves. For example, although a game operates
over a single action type A, we can implement indexed action types Ai (in which
each player has its own action space) through a combination of

—dependent pairs Σi : [N ]. Ai, for some function A : {ffun [N ] → Type}, and

—an auxiliary moves relation λa a′. π1 a = π2 a
′ enforcing that players leave un-

changed the i that indexes the type of the second part of each player’s strategy.

We use this construction in Section 8.2 to index the player actions in an Atomic
Routing game by their respective network sources and sinks.

An alternative to the single-type-with-Move-constraints strategy is to allow each
player in the game to specify its own type Ai, dependent on the player’s index i.
This formulation of games, as generalized in [32] to support abstract agents and ob-
servations, builds the dependency of strategy types on players into the definition of
games itself. It therefore does not require an auxiliary Moves relation as we impose
above. But it is also less straightforward, under the dependently-typed formula-
tion, to construct a typeclass hierarchy indexed by the single type of strategies A
associated with a particular game, as we do in [3] to build a library of combinators
over smooth games.

5. SOLUTION CONCEPTS

Game theory is concerned as much with the definition of equilibrium notions –
the solutions of games – as it is with the games themselves. In this section, we
present our formalization of key equilibrium notions from the equilibrium hierarchy
in Figure 1, following Roughgarden [30, Chapter 13]. To simplify some of the
definitions, we use the following short-hand in a Section context parameterized by
the number of players N and the action type A:
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Definition state N A , ({ffun [N ] → A})%type.

We first consider Pure Nash Equilibria, the smallest equilibrium notion in Figure 1.

Definition PNE (t : state N A) : Prop ,
∀(i : [N ]) (t′i : A),
moves i (t i) t′i → cost i t ≤ cost i (upd i t t′i).

In the definition of PNE, the relation moves i (t i) t′i asserts that player i’s move is
valid with respect to the current game’s MovesClass. The function upd i t t′i returns
the new state t′ for which t′ i = t′i and t′ j = t j for all i 6= j.

Because the event space A is finite, the predicate PNE is decidable, which we
express by defining the following boolean version of PNE:

Definition PNEb (t : state N A) : bool ,
[∀ i : [N ],

[∀ t′ : state N A, Move i t t′ =⇒ (cost i t ≤ cost i t′)]].

along with the following reflection lemma:

Lemma PNEP t : reflect (PNE t) (PNEb t).

In the definition of PNEb above, we use features from Ssreflect such as the boolean-
valued enumeration [∀i : [N ], . . .] of a boolean-valued predicate over a finite do-
main, as well as Ssreflect’s boolean implication (=⇒) and equality (==) operators.

Discrete Distributions. The larger equilibrium classes of Figure 1 (MNE, CE,
and CCE) are probabilistic rather than deterministic. To define these equilibria,
we first define discrete distributions (over finite event spaces A) as follows:

Section Dist.
Variable A : finType.
Variable R : realFieldType.

Definition dist axiom (f : {ffun A → R}) : bool ,
[&&

∑
a (f a) == 1

& [∀ a : A, f a ≥ 0]].

Record dist : Type ,
mkDist { pmf :> {ffun A → R}; dist ax : dist axiom pmf }.

(∗ ... canonical projections ... ∗)
End Dist.

We represent discrete distributions as finite probability mass functions pmf (type
{ffun A → R}) that map values in the event space A to their weights in R. To ensure
that pmfs are well-formed probability distributions, we impose axioms (dist axiom)
asserting that the pmf (1) sum to 1 and (2) be nonnegative. Elided are a few canon-
ical projections which ensure that distributions inherit structures (e.g., decidable
equality) from the pmf projection.3

3There are alternative ways to model distributions within a theorem prover. For example, one

could formalize the theory of measurable spaces, on top of which probability spaces are measurable
spaces with measure 1. The measure-theory formulation would extend to continuous distributions

but introduces needless complexity wrt. our discrete (decidable) distributions over finite-strategy
games. Computable distributions, as applied to programming language semantics by Huang and
Morrisett [12], are perhaps a promising middle ground for future consideration.
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Standard definitions like the expected value of a discrete random variable are
easily given with respect to the formulation of distributions above. We do so within
a section that is parameterized by A, R, and a particular distribution d.

Section expectedValue.
Variable A : finType.
Variable R : numDomainType.
Variable d : dist A R.

We define expected value as the specialization of an auxiliary function, expectedCondValue,
to the constant predicate predT = (λ ⇒ true)

Definition expectedCondValue (f : A → R) (p : pred A) ,
(
∑

(t : A | p t) (d t ∗ f t)) / (
∑

(t : A | p t) d t).

Definition expectedValue (f : A → R) , expectedCondValue f predT.

where expectedCondValue takes the sum over only those values of A that satisfy the
predicate p, divided by the probability in d that p occurs. In our development, we
prove some useful facts about expectedValue such as:

Lemma expectedValue linear f g :
expectedValue (λ t ⇒ f t + g t) = expectedValue f + expectedValue g.

Lemma expectedValue mull f c :
expectedValue (λ t ⇒ c ∗ f t) = c ∗ expectedValue f.

Lemma expectedValue const c : expectedValue (λ ⇒ c) = c.
Lemma expectedValue range f :

(∀ t : A, 0 ≤ f t ≤ 1) → 0 ≤ expectedValue f ≤ 1.
(∗ . . . ∗)

End expectedValue.

Formulating basic and derived distributions is also straightforward. For example,
here is the uniform distribution, which we define within a section parameterized by
the event type A and an element t0 of type A.

Section uniform.
Variable A : finType.
Variable t0 : A.

Definition uniform dist : {ffun A → rat} ,
finfun (λ ⇒ 1 / #|A|%:R).

Lemma uniform normalized : dist axiom uniform dist.

Definition uniformDist : dist A [numDomainType of rat] ,
mkDist uniform normalized.

Lemma expectedValue uniform (f : A → rat) :
expectedValue uniformDist f = (

∑
(t : A) (f t)) / #|A|%:R.

End uniform.

The element t0 : A ensures that the cardinality #|A| of type A is greater than 0, a
fact necessary to prove that the division 1 / #|A|%:R is well defined.

We define product distributions, which are used to define Mixed Nash Equilibria,
as follows:
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Section product.
Variable A : finType.
Variable R : numDomainType.
Variable N : nat.
Variable f : {ffun [N ] → dist A R}.
Notation type , ({ffun [N ] → A}).

Definition prod pmf : {ffun type → R} ,
finfun (λ p : type ⇒

∏
(i : [N ]) f i (p i)).

Lemma prod pmf dist : dist axiom (A , [finType of type]) (rty , R) prod pmf.

Definition prod dist : dist [finType of type] R ,
mkDist prod pmf prod pmf dist.

End product.

We assume N distributions, given by the finite function f : {ffun [N ] → dist A R}
mapping indices in the range 0 to N − 1 to distributions over A. The event space
of the product distribution is the type of N -tuples over A, which we represent as
finite functions of type , ({ffun [N ] → A}).

MNEs, CEs, CCEs, and Approximations. We work backward to build MNEs,
CEs, and CCEs (the most general class in Figure 1), by first defining ε-approximate
CCEs, and then specializing ε = 0 to yield nonapproximate CCEs. CEs are a
refinement of ε-approximate CEs, which are themselves a subset of ε-approximate
CCEs. MNEs specialize CEs to the case in which the distribution over actions is a
product distribution (the players’ mixed strategies are independent).

We define the most general class, ε-CCEs, as follows (N , A, and R are section
parameters):

Definition eCCE (ε : R) (d : dist [finType of state N A] R) : Prop ,
∀(i : [N ]) (t′i : A),

(∀ t : state N A, t ∈ support d → moves i (t i) t′i) →
expectedCost i d ≤ expectedUnilateralCost i d t′i + ε.

Player i can gain at most ε by making a unilateral move from distribution d to
action t′i. The support of d is the set of values t : A with nonzero probability
(0 < d t). The expectedCost to player i in distribution d is simply the expected
value in d of the cost to player i:

Definition expectedCost (i : [N ]) (d : dist [finType of state N A] R) ,
expectedValue d (cost i).

Here cost is the cost function associated with the game over type A.
The function expectedUnilateralCost gives the expected value, to player i, of a

unilateral move by i to action t′i:

Definition expectedUnilateralCost

(i : [N ]) (d : dist [finType of state N A] R) (t′i : A) ,
expectedValue d (λ t : state N A ⇒ cost i (upd i t t′i)).

The function upd is the same as that used to define PNE above. Nonapproximate
CCEs specialize ε-CCEs to ε = 0:
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Definition CCE (d : dist [finType of state N A] R) : Prop , eCCE 0 d.

and thus are trivially also eCCEs.
Correlated equilibria are distributions σ over states a such that

Ea∼σ[Ci(a1, · · · , bi, · · · , aN )] ≤ Ea∼σ[Ci(a1, · · · , b′i, · · · , aN )]

for all i, bi, and b′i. That is, player i’s calculation is conditioned on the fact ai =
bi (the realization of player i’s action in state a drawn from σ is known). For
completeness, we formalize CEs in our development but do not use them much,
except to define Mixed Nash Equilibria (MNEs) as those CEs in which σ is a
product distribution over the players’ strategies and to prove that every CE is a
CCE. Thus every MNE is a CCE as well, validating two more of the inclusion
relationships in Figure 1.

5.1 Efficiency of Equilibria

Equilibria are most useful if it is possible to quantify – for a given game or class of
games – the quality of that class of game’s equilibria with respect to some objective
function. Two commonly used measures, as we outlined in Section 3, are Price of
Anarchy (POA) and Price of Stability (POS). POA calculates the ratio of the cost
of the worst equilibrium state, with respect to an objective function (typically the
sum of player costs), to that of an optimal state. POS calculates the ratio of the
cost of the best equilibrium state to that of an optimal state. POA helps to quantify
the quality of the equilibria of a game – which is especially useful in combination
with procedures that calculate such equilibria. POS bounds, while weaker than
POA bounds, can be useful when games have just a single equilibrium state (in
which case POS and POA coincide) or in, e.g., network routing games, in which
a central authority may propose the best rather than worst equilibrium network
route plan (cf. [25, Chapter 17]).

Price of Anarchy. In our formal development, we define POA as:

Definition POA : R ,
Cost (arg max PNEb Cost t0) / Cost (arg min predT Cost t0).

This definition’s main ingredients are:

—The objective function

Definition Cost (t : state N A) : R ,
∑

i (cost i t).

which sums the per-player costs cost i t of state t in the context of game A;

—An optimal state of game A, defined as:

arg min predT Cost t0

satisfies optimality as given by the following predicate over states:

Definition optimal : pred (state N A) , λt ⇒ [∀ t′, Cost t ≤ Cost t′].

The function arg min (P : pred I) (F : I → R) (i0 : I) – with respect to some
finite type I, a predicate P over I, and a valuation function F : I → R – returns
an i : I that minimizes F restricted to P . We supply a default value t0 :
state N A to arg min to ensure that state N A is inhabited, and arg min predT is
therefore total (because all t0 satisfy the top predicate predT).
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—The maximum-cost Pure Nash Equilibrium state

arg max PNEb Cost t0,

a state of type state N A that maximizes the cost function Cost restricted to
PNEb.

To define POA as a computable (boolean- rather than Prop-valued) function, it is
important that the auxiliary predicates used above – optimal and PNEb – are them-
selves computable. To use Ssreflect’s boolean quantification (e.g., [∀t′, Cost t ≤
Cost t′], returning a boolean), we must also know that states state N A are finite.
To prove, e.g., that the state arg max PNEb Cost t0 is a Pure Nash Equilibrium, it
is necessary to show that game A has at least one PNE (for example, by proving
that the default state t0 is a PNE).

Price of Stability. Our formal definition of Price of Stability (POS) is quite sim-
ilar to POA:

Definition POS : R ,
Cost (arg min PNEb Cost t0) / Cost (arg min predT Cost t0).

the main difference being that the numerator of the ratio is now the cost of the
minimum-cost PNE rather than the maximum-cost PNE.

As one might expect, it is straightforward to prove that for every game with
nonnegative cost functions, POS is always less than or equal than POA:

Lemma POS le POA
(has PNE : PNEb t0) : POS ≤ POA.

In order for POS and POA to be defined, we must assume that game A has at
least one PNE (has PNE : PNEb t0). The cost function for the game must also be
nonnegative, a constraint satisfied by the game’s CostAxiomClass instance.

All the definitions in this section easily dualize to a payoff-maximization formu-
lation of games (for example, by requiring negative cost functions and by switching
the directions of various inequalities).

6. GAME SUBCLASSES

Some games, such as the potential and smooth games that we formalize in this
section, have bounds on either POS or POA or both. Such bounds are most useful
in connection with models of the dynamics of games (Section 7), which define
the conditions under which a particular game converges to equilibrium (assuming
equilibria exist).

6.1 Potential Games

Potential games are those for which there exists a potential function Φ – mapping
game states to R – such that

∀i t t′i. let t′ , upd i t t′i in
Φ(t′)− Φ(t) = costi(t

′)− costi(t).

For any unilateral deviation by some player i from action t i to t′i, the potential
function Φ exactly captures the cost difference incurred by i from the deviation (t′
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is the state that updates player i’s strategy from ti to t′i but is otherwise equal t).
Potential games are guaranteed to have at least one PNE (a state that minimizes
the potential function Φ) and are guaranteed to converge to equilibrium under
better-response dynamics, a fact we prove formally in Section 7.

We formalize potential games using operational type classes, just as we did the
(unqualified) games of Section 4. We first define an operational type class for the
potential function itself:

Class PhiClass (N : nat) (R : realFieldType) (A : finType)
‘(costAxiomClass : CostAxiomClass N R A)

(movesClass : MovesClass N A) : Type ,
Phi : state N A → R.

and then a type class for the potential axiom:

Class PhiAxiomClass (N : nat) (R : realFieldType) (A : finType)
‘(costAxiomClass : CostAxiomClass N R A)
(movesClass : MovesClass N A)

(phiClass : PhiClass costAxiomClass movesClass) : Type ,
PhiAxiom :
∀(i : [N ]) (t : state [N ] A) (t′i : A),

moves i (t i) t′i →
let t′ , upd i t t′i in
Phi t′ − Phi t = cost i t′ − cost i t.

The main difference in PhiAxiom from the mathematical definition of potential
games above is that we assume, additionally, that players are limited to moves
allowed by the game’s moves relation: moves i (t i) t′i. Stated another way, the Φ
function need be exact only with respect to action updates permitted by moves.
The moves hypothesis can always be made vacuous by constructing a game in
which moves is the constant relation λ ⇒ true (in which case we get the standard
definition of potential games).

In a context in which we assume the type A together with its associated cost and
moves functions define a potential game, we then prove a number of facts, such as:

Theorem exists PNE (t0 : state N A) : ∃t : state N A, PNE t.

Every potential game with at least one action (or equivalently, at least one state)
has at least one Pure Nash Equilibrium.

The structure of this proof is as follows. First, call minimal those states that
minimize the potential function Φ:

Definition minimal : pred (state N A) ,
[pred t : state N A | [∀ t′ : state N A, Phi t ≤ Phi t′]].

Any state minimal wrt. the potential function is a PNE, because Φ exactly tracks
the cost function of the game:

Lemma minimal PNE (t : state N A) : minimal t → PNE t.

We formalize this intuition in the following lemma about the relation of Φ and game
A’s cost function:
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Lemma Phi cost le (t : state N A) i (t′i : A) :
moves i (t i) t′i →
let t′ , upd i t t′i in
Phi t ≤ Phi t′ → cost i t ≤ cost i t′.

If Φ increases after a unilateral move by player i, than so does the cost to player i.
From Lemma minimal PNE, it is straightforward to prove that at least one PNE

exists, by exhibiting a state t that minimizes Φ:

Definition Phi minimizer (t0 : state N A) : state N A , arg min predT Phi t0.

In order to build Phi minimizer, we must first ensure that at least one state exists
(t0 : state N A).

6.1.0.1 Price of Stability Bound. Every potential game has bounded Price of
Stability assuming there exist values α and β such that α is greater than 0:

Hypothesis (HAgt0 : 0 < α)

and for any state t, Φ t is bounded below by 1/α times the cost of t and above by
β times the cost of t:

Hypothesis AB bound Phi :
∀t : state N A, Cost t / α ≤ Phi t ≤ β ∗ Cost t.

The proof that POS is bounded by αβ:

Lemma POS bounded (t : state N A) (PNE t : PNE t) : POS t ≤ α ∗ β.

then follows from the following series of inequalities, letting t∗ be a state with
optimal cost and tΦ a state that minimizes the potential function:

Cost (arg min PNEb Cost t0) ≤ Cost tΦ (1)

≤ α · Phi tΦ (2)

≤ α · Phi t∗ (3)

≤ αβ · Cost t∗ (4)

where inequalities (2) and (4) follow from AB bound Phi, (3) follows from the fact
that tΦ minimizes Phi, and (1) from Lemma minimal PNE.

6.2 Smooth Games

Potential games are guaranteed to have Pure Nash Equilibria. However, the exis-
tence of a potential function does not in itself imply any particular bounds on the
cost of such PNEs with respect to the optimal cost of the game.

Smooth games – a class of games first described by Roughgarden [28] that is
distinct from potential games – are guaranteed, by contrast, to have POA bounds
that quantify the quality of the equilibria of the games. How good such POA
bounds are depends on two technical parameters, called λ and µ: as Rougharden
shows in [28, Section 2.1], a game that is (λ,µ)-smooth has POA λ

1−µ , by a simple
generic argument.

Smoothness was motivated in part by Roughgarden’s desire to encapsulate in a
single condition the essence of proofs of POA for disparate games such as routing

Journal of Formalized Reasoning Vol.10, No.1, 2017



80 · A. Bagnall et al.

and location games (cf. [30, Section 14.3]). However, games that are smooth also
exhibit a number of nice properties, such as POA bounds that extend not just to
PNEs but even to CCEs, the largest equilibrium class of Figure 1.

We say a game is (λ,µ)-smooth if for every two states t and t∗, the following
condition holds:∑N

i=1 cost i (t1, . . ., t∗i , . . ., tN ) ≤ λ · Cost t∗ + µ · Cost t

The overall cost of the “mixed” state in which we consider the cost to each player
i of a unilateral deviation from ti to t∗i is bounded above by λ times the cost of
the new state t∗ plus µ times the cost of the previous state t. For intuition, think
of t∗ as a possible optimal state to which the game might move from t. The λ
parameter, which is typically greater than or equal to 1, relates the mixed state on
the left to the “optimal” deviation t∗. The µ parameter, which should be greater
than or equal to 0 and strictly less than 1, relates the mixed state to the previous
state t before any player has moved to t∗.

Assuming that game A is (λ,µ)-smooth, one can show (cf. [28, Section 2.1] or [30,
Section 14.4.1]) that the game’s Pure Nash Equilibria have POA λ

1−µ by the fol-
lowing derivation:

Cost t =

N∑
i=1

cost i t (5)

≤
N∑
i=1

cost i (t1, . . . , t
∗
i , . . . , tN ) (6)

≤ λ · Cost t∗ + µ · Cost t (7)

≤ λ

1− µ
· Cost t∗ (8)

Inequality 6 follows from the fact that t is assumed a PNE. Inequality 7 follows
from the smoothness condition. Inequality 8, which establishes the POA bound,
follows from 7 by rearranging terms.

We formalize smooth games just as we did potential games, via a series of type
class declarations:

(∗ Operational type class for λ ∗)
Class LambdaClass (A : finType) (R : realFieldType) : Type , lambda val : R.

Notation ‘‘’lambda’ ’of’ A’’ , (@lambda val A ) (at level 30).
Class LambdaAxiomClass (A : finType) (R : realFieldType) ‘(LambdaClass A R)

: Type , lambda axiom : 0 ≤ lambda of A.

(∗ Operational type class for µ ∗)
Class MuClass (A : finType) (R : realFieldType) : Type , mu val : R.

Notation ‘‘’mu’ ’of’ A’’ , (@mu val A ) (at level 30).
Class MuAxiomClass (A : finType) (R : realFieldType) ‘(MuClass A R)

: Type , mu axiom : 0 ≤ mu of A < 1.
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(∗ Smooth games ∗)
Class SmoothnessAxiomClass (N : nat) (R : realFieldType) (A : finType)

‘(costAxiomInstance : CostAxiomClass N R A)
(movesInstance : MovesClass N A)
(gameInstance : game costAxiomInstance movesInstance)
‘(lambdaAxiomInstance : LambdaAxiomClass A R)

‘(muAxiomInstance : MuAxiomClass A R) : Type ,
SmoothnessAxiom :
∀t t′ : {ffun [N ] → A},
valid Move t t′ →∑

(i : [N ]) cost i (upd i t (t′ i)) ≤
lambda of A ∗ Cost t′ + mu of A ∗ Cost t.

Notation ‘‘’smooth ax’’’ ,
(@SmoothnessAxiom ).

As was true for potential games above, our formalized smoothness condition matches
the mathematical definition of smoothness except for the additional moves-related
condition valid Move t t′, which is defined as ∀i : [N ], moves i (t i) (t′ i) (each per-
player move from t to t′ is valid wrt. the moves relation of the game).

For a game to be (λ,µ)-smooth, it must also be the case that 0 ≤ λ (LambdaAxiomClass)
and 0 ≤ µ < 1 (MuAxiomClass).

Generically for all smooth games, we have proved results such as:

Lemma smooth PNE POA (t t′ : {ffun [N ] → A}) :
PNE t →
valid Move t t′ →
Cost t ≤ (lambda of A / (1 − mu of A)) ∗ Cost t′.

By instantiating t′ to the maximum-cost PNE of game A, smooth PNE POA implies
the λ

1−µ POA bound we derived above.
One advantage of smooth games, however, is that such POA bounds are robust:

they extend even to Coarse Correlated Equilibria (as well as to Correlated Equilibria
and Mixed Nash Equilibria). For instance, the following lemma proves that any
distribution d that is a CCE for game A has expected cost less than λ

1−µ times that

of any (potentially optimal state) t′:

Lemma smooth CCE (d : dist [finType of state N A] R) (t′ : state N A) :
CCE d →
dist valid Move d t′ →
ExpectedCost d ≤ (lambda of A / (1 − mu of A)) ∗ Cost t′.

The conclusion of this lemma generalizes POA to CCEs, which predicate over state
distributions rather than states as do PNEs. ExpectedCost is defined as the sum of
the individual player costs

∑
(i : [N ]) expectedCost i d, which is equivalent to the

expected total cost by linearity of expectation.

7. DYNAMICS

It is fruitless to prove bounds on the quality of equilibria of games if such games
never reach equilibrium states in the first place. In this section, we formalize
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dynamics, or operational semantics, for the games of the previous section – defining
the behavior of the games under iterated play by multiple agents. Although our
model of game dynamics is modular, we focus here on the specialization to better-
response dynamics [25, Section 1.4.3], which require that players take only those
moves that either minimize or decrease at each step their individual (expected)
costs with respect to the actions chosen by other players. Our general operational
semantics for games is parameterized by a step relation, step, and a predicate,
halted, that specifies when an execution has safely ended.

Section stepDefs.
Context {A : Type}.
Variable step : A → A → Prop.
Variable halted : A → Prop.
Hypothesis haltedP : ∀t t′ : A, halted t → step t t′ → False.
(∗ . . . ∗)

Hypothesis haltedP relates halted and step by asserting that halted states cannot
execute further. As one instantiation of the step relation, consider the following
definition of a version of better-response dynamics:

Inductive better response step N A : {ffun [N ] → A} → {ffun [N ] → A} → Prop ,
| better response step progress t (i : [N ]) t′i :

moves i (t i) t′i →
let t′ , upd i t t′i in
cost i t′ < cost i t →
better response step t t′.

which states that a step from state t to t′ is allowed only if it strictly reduces some
player i’s cost (and satisfies the game’s moves relation).

We define the reflexive transitive closure of the step relation as the following fixed
point on the number of steps n:

Fixpoint stepN (n : nat) : A → A → Prop ,
[λ t t′ ⇒

if n is S n′ then
∃t′′, [∧ step t t′′ & stepN n′ t′′ t′]

else t = t′].

This fixpoint definition of the closure of step is equivalent to the more standard
inductive characterization, which is also useful:

Inductive step star : A → A → Prop ,
| step refl t : step star t t
| step trans t′′ t t′ :

step t t′′ →
step star t′′ t′ →
step star t t′.

Lemma stepN step star t t′ : (∃ n, stepN n t t′) ↔ step star t t′.

We say a state t : A is safe, as is standard, if
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Definition safe t ,
∀t′′, step star t t′′ →

[∨ ∃t′, step t′′ t′ | halted t′′].

Any state we can reach from t can either take a step or is halted. This characteri-
zation of safety works both for deterministic and nondeterministic step relations.

A state t : A everywhere halts if every state it could possibly reach has at least
one path to a halted state:

Definition everywhere halts (t : A) ,
∀t′′, step star t t′′ →
∃t′, [∧ step star t′′ t′ & halted t′].

By contrast, we say a state t somewhere halts if there exists a halting path from
state t:

Definition somewhere halts (t : A) ,
∃t′, [∧ step star t t′ & halted t′].

It naturally follows that if a state satisfies everywhere halts then it also satisfies
somewhere halts.

7.1 Termination of Finite Games

In games with finite action spaces A, one can prove termination of a multiplayer
dynamics by showing that the dynamics never revisits states. Our Coq library cap-
tures such reasoning generically, for any step relation that satisfies certain proper-
ties, by mapping step to a new operational semantics hstep, for “step with history”,
that tracks the history of states visited at each point in an execution.

We build hstep within a section parameterized by a game over actions of type A:

Section history.
Context {A} ‘{gameClass : game A}.
Notation state , ({ffun [N ] → A}).
Variable step : state → state → Prop.
(∗. . .∗)

A state of the hstep semantics is defined as a triple (s, u, t) of type:

Let hstate , (simpl pred state ∗ simpl pred state ∗ state)%type

comprising

—a predicate s giving the states visited so far;

—a predicate u giving the states not yet visited; and

—the current state t.

The hstep relation is defined as:

Inductive hstep : hstate → hstate → Prop ,
| hstep step (s u : simpl pred state) t t′ :

let: s′ , predU1 t′ s in

let: u′ , predD1 u t′ in
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u t′ →
step t t′ →
hstep (s,u,t) (s′,u′,t′).

where predU1 t′ s is the predicate corresponding to the set {t′} ∪ s while predD1 u t′

corresponds to the set u − {t′}. That is, we can take an hstep from (s, u, t) to
(s′, u′, t′) as long as t′ is unvisited (u t′), step t t′ holds in the underlying step
relation, and s′ and u′ mark the unvisited state t′ as visited.

To ensure that the predicates s and u consistently cover the entire state space,
we impose the following invariant on hstates:

Definition inv (sut : hstate) : Prop ,

let: (s,u,t) , sut
in [∧ predU s u =1 λx ⇒ x ∈ (enum state) (∗Condition 1∗)

, predI s u =1 λ ⇒ false (∗Condition 2∗)
& s t (∗Condition 3∗)].

which asserts that (1) the union of s and u is extensionally equivalent to the entire
state space (enum state); (2) s and u are disjoint; and (3) the current underlying
state t of type state is in s. The initial hstate:

Definition init (t : state) , (pred1 t, predD1 predT t, t).

parameterized by some underlying initial state t satisfies this invariant, for example.
The predicate pred1 t is the singleton set {t}. An hstate sut is halted:

Definition hstep halted (sut : hstate) ,

[∨ halted sut.2 | let: (s,u,t) , sut in #|u| = O]

when either the underlying state t is halted (halted sut.2) or the size of the unvisited
set is 0 (there are no more states to visit).

Some step relations may revisit previously visited states. To rule out such step re-
lations in our termination proof, we require that step be packaged with a predicate,
P, over hstates that satisfies the following properties:

Variable P : hstate → Prop.
Hypothesis init P : ∀t, P (init t).
Hypothesis step P :
∀s u t t′,

inv (s,u,t) → P (s,u,t) → step t t′ →
[∧ u t′ & P (predU1 t′ s, predD1 u t′, t′)].

P must hold of the initial state, for any initial underlying state t. Furthermore,
if inv (s,u,t) and P (s,u,t) hold initially, and the system steps from t to some new
state t′, then t′ is a previously unvisited state (u t′) and P can be reestablished on
the new hstate that results from removing t′ from u and adding it to s.

The step P property is sufficient to prove a number of other properties, such
as the following lemma about the preservation of P and inv under the reflexive
transitive closure of hstep:

Lemma hstep star inv sut sut′ :
inv sut → P sut →

Journal of Formalized Reasoning Vol.10, No.1, 2017



A Library for Algorithmic Game Theory in Ssreflect/Coq · 85

step star hstep sut sut′ →
[∧ inv sut′ & P sut′].

The step P property also implies that steps from states t to t′ can be matched by
corresponding steps in the history step relation hstep:

Lemma step hstep su t t′ :
inv (su,t) →
P (su,t) →
step t t′ →
∃su′, [∧ hstep (su,t) (su′,t′) & P (su′,t′)].

assuming the initial hstate (su, t) satisfies inv and P.
How is P typically instantiated? For potential games with potential function Φ,

we define it as:

Definition P (sut : hstate) : Prop ,

let: (s,u,t) , sut in
∀t0, s t0 → Φ t ≤ Φ t0.

A state (s, u, t) satisfies P only if every previously visited state t0 (s t0: in the “seen”
set s) has potential greater than or equal to that of the current state t (Φ t ≤ Φ t0).
This inequality, together with the condition cost i t′ < cost i t that defines better
response in the definition of better response step, implies that potential games never
revisit states (the step P condition given above).

To prove termination of games like potential games that satisfy step P, we first
prove a few useful auxiliary lemmas:

—hstep everywhere halts (assuming a safe initial hstate sut):

Lemma hstep everywhere halts or stuck sut :
safe hstep hstep halted sut →
everywhere halts hstep hstep halted sut.

—everywhere termination of hstep implies everywhere termination of step from safe
initial states t (assuming step P within a Section context):

Lemma everywhere halts hstep step s u t :
safe step halted t →
inv (s,u,t) →
P (s,u,t) →
everywhere halts hstep hstep halted (s,u,t) →
everywhere halts step halted t.

—hstep either everywhere terminates or is stuck (proved by induction on the un-
visited set u):

Lemma hstep everywhere halts or stuck sut :
safe hstep hstep halted sut →
everywhere halts hstep hstep halted sut.

—for states (s, u, t) satisfying inv and P, safety of step implies safety of hstep:
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Fig. 2. An Atomic Routing Game With Three Players.

Lemma safe step hstep s u t :
inv (s,u,t) →
P (s,u,t) →
safe step halted t →
safe hstep hstep halted (s,u,t).

The formal proof that step terminates (assuming step P):

Theorem step everywhere halts or stuck t :
safe step halted t →
everywhere halts step halted t.

applies lemma safe step hstep to the safety hypothesis safe step halted t to prove
safety, under hstep, of the initial hstate init t , (pred1 t, predD1 predT t, t). State
init t also satisfies inv (because it is initial) and P (by init P). By the previously
proved lemma everywhere halts hstep step, it suffices to prove that

everywhere halts hstep hstep halted (init t),

which itself follows by lemma hstep everywhere halts or stuck and from safety under
hstep of init t.

8. APPLICATIONS

8.1 Atomic Routing Games

As an example of a potential game that converges under better-response dynamics,
consider Atomic Routing as depicted in Figure 2. In the general Atomic Routing
game, N players each attempt to choose a path from some source to some sink vertex
(both of which may differ across players) such that the path chosen minimizes the
player’s cost. The cost of a path is the sum of the costs of the edges in the path,
where the cost of each edge is determined by a function e(x) of the number of
players that chose that edge (the traffic x).

For example, in Figure 2, the solid-arrow blue player pays 5.5 (1.5 plus 4 for the
shared edge) while the dotted red player pays 5. The half-dotted half-solid gray
player pays 7. It would not be profitable for the half-solid half-dotted gray player
to follow the red–blue path since then it would pay 10: 3 for the edge shared with
blue, 6 for the edge shared with red and blue, and 2 for the edge shared just with
red.
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We formalize Atomic Routing in a section that declares the type of vertices T, the
number of players num players, the graph g as an adjacency matrix, the codomain
of the cost function R, the cost functions ecosts associated with each edge in the
graph, and a proof ecosts pos that the cost functions are positive.

Section AtomicRoutingGame.
Variable T : finType.
Variable num players : nat.
Variable g : ’M[bool] (#|T|, #|T|).
Variable R : realFieldType.
Variable ecosts : ∀x y : [#|T|], nat → R.
Hypothesis ecosts pos :
∀x y n, (0 ≤ ecosts x y n)%R.
. . .

Recall that #|T| is the cardinality of the finite type of vertices T, while [#|T|]
is syntax for the dependent type of natural numbers in the range [0,#|T|). We
represent the graph g : ’M[bool] (#|T|, #|T|) as an adjacency matrix mapping each
pair of vertices to a boolean value indicating whether or not there is an edge between
them. The ecosts function takes (the indices of) two vertices as arguments, along
with the traffic on that edge (type nat), and returns the cost (type R).

We represent a player in the game as a pair of a source and a sink:

Record player : Type ,
mkPlayer {

source : [#|T|];
sink : [#|T|] }.

and the set of all players as a function from player indices [num players] to player
records:

Variable players : [num players] → player.

A path of size up to #|T| is defined as a tuple of (indices to) vertices that maps
each vertex in the path to that vertex’s successor. Paths must additionally satisfy
the predicate sspred pred x y, standing for “source–sink path from vertex x to y”:

Definition path , ([#|T|]ˆ#|T|)%type.

Fixpoint sspath rec n (x y : [#|T|]) : pred path ,
[pred p : path |
[|| [&& p x == y & g x (p x)]
| [&& g x (p x) & if n is n′.+1 then sspath rec n′ (p x) y p else false]]].

Definition sspath pred (x y : [#|T|]) , sspath rec #|T| x y.

A path satisfies sspath rec n x y (and therefore sspath pred x y, assuming n ≤ #|T |)
when either (1) the path p maps vertex x to y and edge (x, y) is an available edge
in the graph ([&& p x == y & g x (p x)]), or (2) n is greater than 0 and p maps
vertex x to an available vertex p x such that sspath rec (n− 1) (p x) y p (p x, y is
recursively a valid path). The type strategy i:

Notation src i , (source (players i)).
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Notation snk i , (sink (players i)).

Definition strategy (i : [num players]) ,
sig (λ the path ⇒ sspath pred (src i) (snk i) the path).

packages together in a sigma type player i’s path with a proof that the path satisfies
sspath pred (src i) (snk i) the path.

The sspath pred predicate assumes that paths are of size no greater than #|T|,
which is sufficient to represent all cycle-free paths. An alternative representation (if
cyclical paths of size greater than #|T| are necessary) is to define paths as linked
lists together with an inductively-defined predicate in place of the the fixpoint
sspath rec.

We define states of the Atomic Routing game as tuples mapping player indices
to dependent pairs of a player index i and a strategy indexed by i:

Definition strategy pkg , {: {i : [num players] & strategy i}}.
Notation st , ((strategy pkgˆnum players)%type.

The amount of traffic over a particular edge in the graph is defined as the number
of players that have chosen paths that contain that edge:

Definition traffic edge (s : st) (x y : [#|T|]) : nat ,
#|edgePlayers s x y|.

where edgePlayers is a predicate that returns true for each player index i for which
i’s path contains an edge from x to y:

Definition edgeOfPlayer i (s : st) (x y : [#|T|]) ,
path of s i x == y.

Definition edgePlayers (s : st) (x y : [#|T|]) : pred [num players] ,
[pred i | edgeOfPlayer i s x y].

The predicate edgeOfPlayer i s x y is satisfied only if there is a edge (x, y) in player
i’s path in state s.

The cost of an edge (x, y) is defined, using the parameterized ecosts, as a function
of the traffic over that edge:

Definition cost edge (s : st) (x y : [#|T|]) ,
ecosts x y (traffic edge s x y).

The cost to a particular player i is the sum of the costs of each edge in player i’s
source–sink path:

Definition costFun (i : [num players]) (s : st) : R ,∑
(x : [#|T|])∑
(y : [#|T|]) if edgeOfPlayer i s x y then cost edge s x y else 0.

Instance costInstance : CostClass num players R [finType of strategy pkg]

, costFun.
Program Instance costAxiomInstance

: CostAxiomClass costInstance. (∗proof elided∗)

The costs given by costFun are all positive, and therefore satisfy the CostAxiomClass
of our formalization of games in Section 4.
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To construct the overall game instance for Atomic Routing, we define the allow-
able moves of each player i as those that leave unmodified the first projection of i’s
strategy pkg:

Definition movesFun (i : [num players]) : rel strategy pkg ,
[λ p p′ : strategy pkg ⇒ projT1 p == projT1 p′].

Instance movesInstance : MovesClass num players [finType of strategy pkg]

, movesFun.
Instance gameInstance : game costAxiomInstance movesInstance.

This definition of movesInstance ensures that players only ever update their strate-
gies, never the values i : [num players] that index the types of their strategies.

Atomic Routing is a Potential Game. Atomic Routing is a potential game with
the following potential function:

Definition phiFun (s : st) : R ,∑
(x : [#|T|])∑
(y : [#|T|])∑
(1 ≤ z < (traffic edge s x y).+1)

ecosts x y z.

That is, for any state s and any new state s′ , upd i s s′i resulting from a unilateral
deviation of player i, the following equation holds:

phiFun s′ − phiFun s = cost i s′ − cost i s. (∗Potential Equation∗)

To see why, consider the effect of a player i’s unilateral deviation on the traffic at
some edge (x, y). Either i’s strategy in state s′ differs from s at edge (x, y) or it
doesn’t, leading to four possibilities as encapsulated by the following lemmas. In
each case, traffic at edge (x, y) can differ by at most 1:

Lemma traffic00 (i : [num players]) (x y : [#|T|]) s s′ : Move i s s′ →
edgeOfPlayer i s′ x y = false → edgeOfPlayer i s x y = false →
traffic edge s′ x y = traffic edge s x y.

Lemma traffic01 (i : [num players]) (x y : [#|T|]) s s′ : Move i s s′ →
edgeOfPlayer i s′ x y = false → edgeOfPlayer i s x y →
(traffic edge s′ x y).+1 = traffic edge s x y.

Lemma traffic10 (i : [num players]) (x y : [#|T|]) s s′ : Move i s s′ →
edgeOfPlayer i s′ x y → edgeOfPlayer i s x y = false →
traffic edge s′ x y = (traffic edge s x y).+1.

Lemma traffic11 (i : [num players]) (x y : [#|T|]) s s′ : Move i s s′ →
edgeOfPlayer i s′ x y → edgeOfPlayer i s x y →
traffic edge s′ x y = traffic edge s x y.

In each of the traffic lemmas above, the Move i s s′ states that s′ is a valid unilateral
update by player i (i’s strategy may differ, as allowed by movesFun above, but the
strategies of all other players j 6= i are unchanged).

As a representative case of the proof of Potential Equation above, consider
traffic10 in which a player i uses some edge (x, y) in state s′ but not in state s.
In this case, Potential Equation simplifies to:
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Fig. 3. An Affine Congestion Game Mapping Two Players (Blue–Solid, Red–Hatched) to 4 Servers.

Costs incurred by each player are listed in the lower left.∑
(1 ≤ z < (traffic edge s′ x y).+1) ecosts x y z −∑
(1 ≤ z < (traffic edge s x y).+1) ecosts x y z

= ecosts x y (traffic edge s′ x y) − 0

which by traffic10 can be rewritten in terms of s as:∑
(1 ≤ z < (traffic edge s x y).+2) ecosts x y z −∑
(1 ≤ z < (traffic edge s x y).+1) ecosts x y z

= ecosts x y (traffic edge s x y).+1 − 0

The left-hand side equals:

ecosts x y (traffic edge s x y).+1)

by the following equality, over functions f and positive m:∑
(1 ≤ i < m.+1) f i −

∑
(1 ≤ i < m) f i = f m

thus finishing the proof of this case. The other 3 cases follow in a similar fashion,
by application of the appropriate traffic lemma and some arithmetic.

Once the Atomic Routing game is proved a potential game:

Instance PhiAxiomInstance : PhiAxiomClass phiInstance , (∗. . .∗).
Instance AtomicPotentialInstance : Potential PhiAxiomInstance.

it is straightforward to apply our library results from Section 6.1 to prove both
that the Atomic Routing game has a PNE and that Atomic Routing converges to
a PNE under better-response dynamics (recall that halted t is defined as PNE t):

Lemma AtomicRouting exists PNE (t0 : st) : ∃t : st, PNE t.
Proof. by apply: (exists PNE t0). Qed.
Lemma AtomicRouting everywhere halts (t : st) : everywhere halts step halted t.
Proof. by apply: better response everywhere halts. Qed.
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8.2 Affine Congestion Games

Our second application is to Affine Congestion games (Figure 3), in which N players
each must choose a subset of M resources. In the figure, we represent the resources
as servers and the players (which might be, e.g., network flows) as circles. The
cost incurred by each player is the sum of the costs of the resources chosen by that
player, where the cost of each resource is an affine function (ax+ b) of the amount
of traffic x on that resource (the number of players having chosen that resource).
We require that a and b are nonnegative so that costs are nonnegative, as required
by the CostAxiomClass.

We model the congestion game in a section parameterized by the finite type of
resources T : finType and the number of players num players : nat.

Section CongestionGame.
Variable T : finType. (∗∗ The type of resources ∗)
Variable num players : nat. (∗∗ The number of players ∗)

The number of resources is therefore #|T|, the cardinality of T. A strategy in this
game is a subset of the resources in T, which we represent as finite functions from
T to bool.

Definition strategy , {ffun T → bool}.
Note that with this definition of strategy, a player may choose the empty subset
of resources. It is straightforward to update the game type to enforce a particular
policy on valid strategies. For example, one might let strategy equal:

Definition strategy′ , {f : ffun T → bool | ∃t : T. f t = true}
thus enforcing that each player choose at least one server.

To define the cost function for the game, we first model affine functions via the
following record:

Record affineCostFunction : Type ,
{ aCoeff : rat;

bCoeff : rat;
aCoeff positive : 0 ≤ aCoeff;
bCoeff positive : 0 ≤ bCoeff }.

The cost function for each resource is then a parameter of the model:

Variable costs : {ffun T → affineCostFunction}.
Definition evalCost (t : T) (x : nat) : rat ,

aCoeff (costs t)∗x + bCoeff (costs t).

The function evalCost t x calculates, with respect to costs, the affine function asso-
ciated with resource t when applied to x traffic.

States of the congestion game are finite functions from player indices to strategies,
as abbreviated by the following notation:

Notation st , ({ffun [num players] → strategy})%type.

To define the cost incurred by a player i in state s : st, we first define the load on
a resource t – or total number of players using that resource – as the cardinality of
the set of players using t:
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Definition load (s : st) (t : T) : nat , #|[set i | s i t]|.

The cost to player i of a state s is then just the sum of the costs of all resources in
i’s strategy:

Definition costFun (i : [num players]) (s : st) : rat ,∑
t if s i t then evalCost t (load s t) else 0.

In the routing game of the previous section, the movesFun prohibited players from
updating the indices of their strategies. Here, the type of player strategies is uniform
across indices, making movesFun the trivial relation:

Definition movesFun (i : [num players]) : rel strategy , [λ : strategy ⇒ true].

that simply accepts all strategy updates.

Affine Congestion is Smooth. The Affine Congestion game we model above is
( 5

3 ,
1
3 )-smooth, as was first proved by Roughgarden [28]. Smoothness in turn implies

a robust Price of Anarchy guarantee of 5/2 (Section 6.2).
The proof relies on the following arithmetic fact, originally noted by Christodoulou

and Koutsoupias in [8]:

∀yz : nat. y ∗ (z + 1) ≤ 5

3
y2 +

1

3
z2

which we formalize as the lemma:

Lemma christodoulou (y z : nat) :
y%:Q ∗ (z%:Q + 1) ≤ 5%:Q/3%:Q∗y%:Qˆ2 + 1%:Q/3%:Q∗z%:Qˆ2.

In our statement of christodoulou, the ubiquitous %:Q simply coerces natural num-
bers to Q. Its proof is by case analysis on y where the only nontrivial case, in which
we have 1 < y, is dispatched by reduction to the inequality of arithmetic and ge-
ometric means (AGM inequality). Ssreflect’s ssrnum module provides a convenient
proof of the AGM inequality via the lemma lerif AGM2.

Smoothness of the game follows from a consequence of christodoulou and the
fact that in a unilateral deviation of any player i, the load at a given resource
can increase by at most one. For a fuller exposition of the structure of this proof,
see [28, Section 2.3.1].

9. CONCLUSION

In this paper, we report on a library in Ssreflect/Coq for doing algorithmic game
theory. Our results include a number of definitions and theorems, including: multi-
player games; solution concepts such as Pure Nash Equilibria, Mixed Nash Equilib-
ria, Coarse Correlated Equilibria and ε-approximate variations; subclasses of games
such as potential games and smooth games; better-response dynamics; convergence
of potential games to Pure Nash Equilibria (PNE); bounds on the Price of Stability
of the PNE of potential games; bounds on the Price of Anarchy of smooth games;
a proof that the Atomic Routing game converges under better-response dynamics;
and a proof that Affine Congestion games are (5/3, 1/3)-smooth. As far as we are
aware, we are the first to formalize Atomic Routing and Affine Congestion games
and to formalize the proofs that (1) Atomic Routing games are potential games
and (2) Affine Congestion games are (5/3, 1/3)-smooth.
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[14] Stéphane Le Roux. Generalisation and formalisation in game theory. PhD
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