
A Formally Proved, Complete Algorithm for Path
Resolution with Symbolic Links

Ran Chen

Institute of Software, Chinese Academy of Science, Beijing, China

Martin Clochard

LRI (CNRS & Univ. Paris-Sud), Université Paris-Saclay, F-91405 Orsay

and

Claude Marché

Inria, Université Paris-Saclay, F-91120 Palaiseau

In the context of file systems like those of Unix, path resolution is the operation that given a

character string denoting an access path, determines the target object (a file, a directory, etc.)
designated by this path. This operation is not trivial because of the presence of symbolic links.

Indeed, the presence of such links may induce infinite loops in the resolution process.

We consider a path resolution algorithm that always terminates, detecting if it enters an infinite
loop and reports a resolution failure in such a case. We propose a formal specification of path

resolution and we formally prove that our algorithm terminates on any input, and is correct and
complete with respect to our formal specification.

1. INTRODUCTION

The problem of path resolution takes place in the context of the file system compo-
nent of operating systems. It is the operation that, given a pathname, determines
the target object (typically a file or a directory) it denotes in the current file system,
if any. In particular for the operating systems of the Unix family, target objects can
also be symbolic links: objects that themselves denote a pathname. When meet-
ing a symbolic link, path resolution must proceed with resolution of the pathname
denoted by that link. The presence of symbolic links gives to the path resolution
process a recursive nature, that may lead to non-termination if caution is not taken.

The goal of this paper is to consider an algorithm for path resolution that carefully
takes care of the potentially non-terminating situations, and formally prove this
algorithm correct with respect to a formal specification expressing the expected
functional behavior of path resolution.

In this paper, we adopt the notations of Unix file systems, as they are stan-
dardized by the Portable Operating System Interface (POSIX) IEEE family of
standards [IEE]. A pathname is a character string that is made of a sequence of
filenames separated by the special character "/". A pathname is absolute if it
starts with "/" and relative otherwise. A filename, also called pathname compo-
nent in POSIX, is a non-empty sequence of characters, containing neither "/" nor

Work partly supported by the Joint Laboratory ProofInUse (ANR-13-LAB3-0007, http://www.
spark-2014.org/proofinuse) and by the CoLiS project (ANR-15-CE25-0001, https://www.irif.

fr/~treinen/colis/) of the French national research organization

Journal of Formalized Reasoning Vol.10, No.1, Pages 51–66.

http://www.spark-2014.org/proofinuse
http://www.spark-2014.org/proofinuse
https://www.irif.fr/~treinen/colis/
https://www.irif.fr/~treinen/colis/

52 · Chen et al.

pdftex

lat
ex

p
d
ft

ex

/etc/alternatives/emacs

em
acs

emacs24-x
b
in

lib

us
r

h
o
m

e

/usr/bin/emacs24-x

em
a
cs

a
ltern

a
tiv

es

etc

Fig. 1. Excerpt of the file system tree typically found in a Debian installation. Black nodes denote

directories, white nodes denote regular files, and gray nodes denote symbolic links.

the NUL character (i.e. ASCII code 0). The filenames "." and ".." have special
meanings, respectively the current and the parent directory. When the given path-
name is absolute, pathname resolution starts from the root directory, otherwise it
starts from the current directory of the process that attempts resolution. Figure 1
presents an excerpt of the real file system tree that appears in a computer with a
typical Debian installation. Notice the relative symbolic link /usr/bin/latex that
points to pdftex, that is /usr/bin/pdftex as an absolute path, and the absolute
symbolic link /usr/bin/emacs that points to /etc/alternatives/emacs which is
itself a symbolic link to /usr/bin/emacs24-x.

In practice, they are several possible causes for a path resolution failure. For
example, a pathname may denote an existing object but resolution can fail if the
user has insufficient access permissions. Our goal is to focus on the difficulty induced
by the presence of symbolic links, hence we are going to abstract away other aspects
such as permissions. The difficulty with symbolic links is that the file system
tree becomes some kind of a graph in which symbolic links may define cycles. A
simple example would be a symbolic link that points to itself, or, on Figure 1, if
the link /etc/alternatives/emacs was pointing to /usr/bin/emacs instead of
/usr/bin/emacs24-x. In the presence of such cycles, the pathname resolution
algorithm must be careful not to go into an infinite loop. This is the issue we
address in this paper. This issue is solved in practice by setting an arbitrary
bound on the number of symbolic links that can be traversed during a given path
resolution1. It means that the typical algorithm for path resolution implemented in
a real OS is an incomplete one. To our knowledge, the question of the existence of

1POSIX requires this number to be at least 8 (http://pubs.opengroup.org/onlinepubs/
9699919799/, constant POSIX SYMLOOP MAX)

Journal of Formalized Reasoning Vol.10, No.1

pdftex
/etc/alternatives/emacs
/usr/bin/emacs24-x
/usr/bin/latex
pdftex
/usr/bin/pdftex
/usr/bin/emacs
/etc/alternatives/emacs
/usr/bin/emacs24-x
/etc/alternatives/emacs
/usr/bin/emacs
/usr/bin/emacs24-x
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/

A Formally Proved, Complete Algorithm for Path Resolution with Symbolic Links · 53

a terminating and complete algorithm for this problem has never been investigated
in an academic point of view. The only source of information we found where this
question was discussed is on a few discussion threads on the Web2. Indeed, it is
not hard to invent such an algorithm from scratch, by adapting known ideas from
classical graph traversal algorithms. The algorithm we use in this paper is designed
like that. The hard question we address is not how to design such an algorithm,
but how to formally prove it correct. Our main inspiration, for designing both
the formal specification and the formal proof, comes from formally verified graph-
traversal algorithms. However, the issue with symbolic links is significantly different
from graph-traversal specification and proofs we have seen in the literature. The
hardest task was to discover an appropriate invariant preserved across the recursive
calls of the algorithm, sufficient to prove the completeness of resolution: when the
algorithm reports a failure then it is true that no valid resolution exist.

Concretely, the formalization is done using the Why3 program verifier [FP13].
This system permits to write algorithms that include non-purely functional features
such as in-place modification and exceptions. Algorithms can be given formal speci-
fications, under the form of annotations such as pre- and postconditions. The Why3
system generates verification conditions from annotated programs, that can be dis-
charged by several possible automated provers. Bobot et al. [BFMP15] present an
introduction to the use of Why3 on some case studies. Many examples can be found
in the Why3 gallery of verified programs3.

In Section 2 we first present how we model file systems. We then present our
resolution algorithm in Section 3. We describe our formal specification in Sec-
tion 4 and show how the algorithm is proved in Section 5. Section 6 presents
some conclusions and related work. The complete code for this work, annotated
with formal specifications, is available at URL http://toccata.lri.fr/gallery/

path_resolution.en.html. For simplicity, in this paper we only consider the case
of absolute links, the case of relative links being very similar. We considered both
cases in the complete code, which is also presented in a research report [CCM16]
giving the full details of the proof results.

2. ABSTRACT MODEL OF THE FILE SYSTEM

For our development, we formalize the file system in an abstract way. Regular
files play no role in the symbolic link issues of path resolution algorithm so we just
ignore them. The file system is seen as a directed graph where the vertices are
directories, called dirnodes. Edges of this graph are labeled by file names. An edge
from a dirnode d1 to a dirnode d2 labeled by f means that f is a name that belongs
to directory d1 and that points to the sub-directory d2.

2.1 Pathnames

A pathname is a sequence of file names, separated by slash characters, used to
identify a file or a directory in the file system. In a pathname, “.” and “..” have
a special meaning, respectively to denote the current directory and the parent
directory. We formalize them abstractly as follows.

2e.g. http://unix.stackexchange.com/questions/99159/is-there-an-algorithm-to-decide-if-a-symlink-loops
3http://toccata.lri.fr/gallery

Journal of Formalized Reasoning Vol.10, No.1

http://toccata.lri.fr/gallery/path_resolution.en.html
http://toccata.lri.fr/gallery/path_resolution.en.html
http://unix.stackexchange.com/questions/99159/is-there-an-algorithm-to-decide-if-a-symlink-loops
http://toccata.lri.fr/gallery

54 · Chen et al.

type dirnode

constant root : dirnode

type child =

| Absent

| Dir dirnode

| AbsLink path

function lookup dirnode filename : child

function parent dirnode : dirnode

axiom parent_root: parent root = root

axiom parent_non_root: forall d1 f d2. lookup d1 f = Dir d2 → parent d2 = d1

Fig. 2. Formalization of the file system as a graph

f g f g

Fig. 3. Parent of a dirnode must be unique. Shape at left is forbidden whereas shape at right is
allowed.

type filename

type pathcomponent = Down filename | Up | Here

type path = list pathcomponent

The type for filenames is left abstract, since for our purpose we don’t need to know
anything about it. A path is a list of path components, which can be either Up to
denote "..", Here to denote ".", or (Down f) to denote a normal filename f .

2.2 The file system

The graph formed by the file system is formalized using the declarations given on
Figure 2. The constant root denotes the root directory of the file system. The
function lookup is a total function which looks up a filename of a directory and
returns the corresponding child. A child could be of three kinds, namely Absent

denoting that this filename does not appear in that directory, (Dir d) denoting that
it exists and points to a sub-directory d, and (AbsLink p) meaning it is a symbolic
link that stores an absolute path p. We finally declare the function parent to
get the parent directory of some dirnode. We axiomatize that function with two
axioms. The first axiom parent root indicates that the parent directory of root
is root itself. The second axiom parent non root specifies that if we can lookup a
filename f from directory d1 to directory d2, then d1 is the parent directory of d2.

It should be noted that the introduction of the parent function implies that the
underlying graph is almost a tree: it is not possible to have two different dirnodes
pointing to the same sub-directory, as in the left part of Figure 3. Yet, the shape
of the right part of the same figure is allowed. Notice that this second situation is
forbidden to occur in a Unix filesystem (at least for directories), but we don’t need
to rule it out since our algorithm still works in such a case. Notice finally that in
this formalization, nothing requires the graph to be finite.

Journal of Formalized Reasoning Vol.10, No.1

A Formally Proved, Complete Algorithm for Path Resolution with Symbolic Links · 55

Example 1. Considering the structure of Figure 1, we have

lookup root "usr" = Dir d1

lookup d1 "bin" = Dir d2

lookup d2 "emacs" = AbsLink "/etc/alternatives/emacs"

lookup d2 "foo" = Absent

3. RESOLUTION ALGORITHMS

We can give a naive path resolution algorithm now. We start to resolve a path p
from some directory d. We match the path with several cases.

—If it’s an empty path, then we stay in directory d.

—If the path starts with “..” , then we go to the parent directory of d and resolve
the rest of the path.

—If it starts with “.”, then we stay in the current directory d and resolve the rest
of the path.

—If it starts with a normal file name, then we lookup the filename in directory d:
—If it is absent, then path p resolves to nowhere. We raise an error then.
—If it is a directory d′. then we resolve the remaining path from d′.
—If it denotes an absolute link ps, then we recursively resolve the path ps from

root to some directory d′, and then resolve the remaining path of p from d′.

Here is the corresponding Why3 code for this naive algorithm.

exception Error

let rec aux_resolve (d:dirnode) (p:path) : dirnode =

match p with

| Nil → d

| Cons Up pr → aux_resolve (parent d) pr

| Cons Here pr → aux_resolve d pr

| Cons (Down f) pr →
match lookup d f with

| Absent → raise Error

| Dir d’ → aux_resolve d’ pr

| AbsLink ps →
let d’ = aux_resolve root ps in

aux_resolve d’ pr

end

end

The naive algorithm above doesn’t check the existence of loops in the path.
Because of the presence of symbolic links, we may have a loop in the path, thus
the path cannot be resolved to anywhere and the algorithm keeps looping forever.
Figure 4 presents some examples of such loops. /a/e is a path with a loop in it
since there is a symbolic link that points to itself. /c/f is also a path with a loop
in it because there are two symbolic links in the path and they point to each other.
From these two examples, one may suggest that we can detect a loop in the path
by recording the symbolic links we meet in it, and stop if we traverse a symbolic
link for a second time. Unfortunately such a check would be wrong because it is
too much restricted, as shown by the example /b/d/d/d/d/c in which we meet the
same symbolic link d several times. But this path can be resolved successfully.

Journal of Formalized Reasoning Vol.10, No.1

56 · Chen et al.

/a/e

e

a

/b

d
b

/c/g

f

/c/f

g

c
Fig. 4. Toy examples of partial path resolution.

From the third example above, we can now present a better algorithm to resolve
a path. It has an extra parameter active needed to detect loops: it is a set of
pairs made of a directory node and a file name that resolves to a symbolic link at
that directory. Each time we meet a symbolic link (d, f) in the path, we check if it
is already present in the active set, so as to detect the repetition of symbolic links
when we resolve the link itself. Here is the Why3 code of the algorithm.

1 type lnk = (dirnode,filename)

2

3 let rec aux_resolve (d: dirnode) (p:path) (active:set lnk) : dirnode

4 = match p with

5 | Nil → d

6 | Cons Up pr → let d’ = parent d in aux_resolve d’ pr active

7 | Cons Here pr → aux_resolve d pr active

8 | Cons (Down f) pr →
9 match lookup d f with

10 | Absent → raise Error

11 | Dir d’ → aux_resolve d’ pr active

12 | AbsLink ps →
13 if mem (d,f) active

14 then raise Error

15 else begin

16 let actadd = add (d,f) active in

17 let d’ = aux_resolve root ps actadd in

18 aux_resolve d’ pr active

19 end

20 end

21 end

The resolving function aux_resolve keeps looking up the path components re-
cursively. Every time we meet a symbolic link in the path, we store the link in
the active set used for resolving the link itself (line 17). If we meet the same link
again, we know that the link is looping and the path could not be resolved. On
the other hand, notice in the second recursive call (line 18) that the active set does
not contain the link anymore, that is after resolution of a link is done, resolution
continues with the rest of the path, which is allowed to traverse the link again.

Journal of Formalized Reasoning Vol.10, No.1

A Formally Proved, Complete Algorithm for Path Resolution with Symbolic Links · 57

4. FORMAL SPECIFICATION OF PATH RESOLUTION

Our goal is now to express in a formal way the informal property “from some
directory d1 we can resolve a path p to some other directory d2”. Because resolution
does not always succeed, we cannot formalize this property as a total function (that
from d1 and p would return d2) in a classical two-valued logic like those of Why3,
in which all functions are total. Instead, we formalize this property as a ternary
predicate, that we denote in this paper as d1, p ; d2.

We define this predicate inductively, that is we define it as the smallest predicate
satisfying the rules below. The notation d(f) is an abbreviation for lookup d f .

d, ε ; d
(ResolveNil)

d1(f) = Dir d2 d2, p ; d3
d1, f/p ; d3

(ResolveDir)

d1(f) = AbsLink ps root, ps ; d2 d2, p ; d3
d1, f/p ; d3

(ResolveAbsLink)

parent d1 = d2 d2, p ; d3
d1, ../p ; d3

(ResolveUp)

d1, p ; d2
d1, ./p ; d2

(ResolveHere)

The first rule means that resolving the empty path from some node d results to d
itself. The second rule means that if from node d1 the filename f denotes a directory
node d2, and if from d2 the path p resolves to some node d3, then we know that
from node d1 we can resolve the path f/p to node d3. The third rule indicates that
if from some node d1 we look up filename f and meet an absolute link which stores
a path ps, if we resolve this link from root to some node d2 and if from d2 we can
resolve path p to d3, then from node d1 we can resolve path f/p to node d3. The
fourth rule means if d2 is the parent directory of some node d1, and from d2 we can
resolve path p to some node d3, then the path ../p can be resolved from d1 to d3.
The last rule handles similarly the case of a path ./p.

The predicate d1, p ; d2 can be formalized in the Why3 logic using an inductive
definition, as follows, that corresponds closely to the rules above.

inductive resolve_to dirnode path dirnode =

| ResolveNil : forall d. resolve_to d Nil d

| ResolveDir : forall d1 f d2 p d3.

lookup d1 f = Dir d2 → resolve_to d2 p d3 →
resolve_to d1 (Cons (Down f) p) d3

| ResolveAbsLink : forall d1 f ps p d2 d3.

lookup d1 f = AbsLink ps → resolve_to root ps d2 → resolve_to d2 p d3 →
resolve_to d1 (Cons (Down f) p) d3

| ResolveUp: forall d1 d2 d3 p.

parent d1 = d2 → resolve_to d2 p d3 → resolve_to d1 (Cons Up p) d3

| ResolveHere: forall d1 p d2.

resolve_to d1 p d2 → resolve_to d1 (Cons Here p) d2

Example 2. Here are some examples of valid resolution, in the file system of
Figure 1. First we pretend that resolving the path /usr/bin from root results in

Journal of Formalized Reasoning Vol.10, No.1

58 · Chen et al.

d2, that is root, usr/bin ; d2. The proof of this fact is

root(usr) = d1

d1(bin) = d2 d2, ε ; d2
d1, bin ; d2

root, usr/bin ; d2

Suppose the parent directory of some directory node d1 is root, and we pretend
that resolving the path ../etc/alternatives/emacs from d1 results in d4. The
proof of d1, ../etc/alternatives/emacs ; d4 is

parent d1 = root

root(etc) = d2

d2(alternatives) = d3 Π1

d2, alternatives/emacs ; d4
root, etc/alternatives/emacs ; d4

d1, ../etc/alternatives/emacs ; d4

where Π1 is the proof

d3(emacs) = AbsLink(/usr/bin/emacs24-x) Π2 d4, ε ; d4
d3, emacs ; d4

and Π2 is the proof

root(usr) = d5

d5(bin) = d6

d6(emacs24-x) = d4 d4, ε ; d4
d6, emacs24-x ; d4

d5, bin/emacs24-x ; d4
root, usr/bin/emacs24-x ; d4

4.1 Comparison with POSIX specification of resolution

If we compare our formal specification of path resolution with the informal one of
POSIX4, we can notice a slight divergence, lying on the way symbolic links must
be handled: “If a symbolic link is encountered during pathname resolution, [...]
the system shall prefix the remaining pathname, if any, with the contents of the
symbolic link”. In other words, in our rule ResolveAbsLink, we should not have two
premises but only one to resolve the concatenation of the link and the remaining
pathname.

Our definition is indeed simpler because it does not use concatenation, and in
particular it will make the proofs easier. To show that there is no difference with
POSIX informal specification, we now define another predicate closer to POSIX
specification and prove the equivalence between this specification and the one above.
The predicate d1, p ;

POSIX
d2 is defined inductively with the same rules as d1, p ; d2

except the rule for symbolic links which becomes as follows, where the operator ++
denotes the concatenation of paths.

d1(f) = AbsLink ps root, ps++ p ;
POSIX

d2

d1, f/p ;
POSIX

d2
(ResolveAbsLinkPOSIX)

4http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_13

Journal of Formalized Reasoning Vol.10, No.1

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_13

A Formally Proved, Complete Algorithm for Path Resolution with Symbolic Links · 59

We want to prove that the predicate above is equivalent to the first one, as stated
by the following theorem.

Theorem 3. For any directory node d1, d2, and any path p,

d1, p ;
POSIX

d2 if and only if d1, p ; d2

To prove this theorem we have to state a few auxiliary lemmas. The first lemmas
below are related to the first resolution predicate.

Lemma 4. for all dirnodes d1, d2, d3 and paths p, q, if d1, p ; d2 and
d2, q ; d3 then d1, p++ q ; d3 .

The proof is done by induction on the hypothesis d1, p1 ; d2 . Within Why3
such a lemma can be stated directly as follows.

lemma resolve_to_append : forall d1 d2 d3 p q.

resolve_to d1 p d2 → resolve_to d2 q d3 → resolve_to d1 (p ++ q) d3

The proof is done using the Why3 transformation induction_pr, that applies an
induction scheme corresponding to the inductive definition of the resolution predi-
cate. The resulting goals are then proved by automatic provers. From now on we
do not mention anymore the Why3 code of our lemmas, and we will come back to
proof results in practice in Section 5.4. See also the report [CCM16] for the full
Why3 code and the detailed proof results.

We establish the converse property of Lemma 4 using two other lemmas. We
denote by operator :: the list cons.

Lemma 5. for all dirnodes d1, d3, any path component c and any path p, if
d1, c :: p ; d3 then there exists d2 such that d1, c :: Nil ; d2 and d2, p2 ; d3 .

This lemma is proved by induction on hypothesis d1, c :: p ; d3 .

Lemma 6. for all paths p1, p2 and all dirnodes d1, d3, if d1, p1 ++ p2 ; d3 then
there exists d2 such that d1, p1 ; d2 and d2, p2 ; d3 .

This lemma is proved by structural induction on p1 seen as a list, and using the
previous lemma.

The next lemma concerns the POSIX variant of resolution predicate. It is similar
to Lemma 4.

Lemma 7. For any directory node d1, d2 and d3, and any path p1, p2, if
d1, p1 ;

POSIX
d2 and d2, p2 ;

POSIX
d3 then d1, p1 ++ p2 ;

POSIX
d3

The proof is done by induction on hypothesis d1, p1 ;
POSIX

d2 .

Finally, the proof of Theorem 3 is done by considering each direction of the
equivalence separately, and reasoning by induction on the predicate in hypothesis
in both cases.

4.2 Resolution Indexed with Explicit Height

For the purpose of proving the completeness of our resolution algorithm, we need
to explicitly refer to the height of the proof of some judgment d1, p ; d2. More
precisely, we will derive that some resolution cannot exist by proving that its height

Journal of Formalized Reasoning Vol.10, No.1

60 · Chen et al.

would satisfy contradictory inequalities. We thus introduce another predicate with
an extra argument corresponding to that height. Moreover, in order to express that
some path p can not be resolved, we say that it can be resolved with an infinite
height. We denote d1, p # o to mean “the outcome of resolving path p from node
d1 is o”. The outcome o is either a pair (d2, h) meaning “it resolves to node d2 with
a proof of height h”, or o =∞ meaning that the resolution does not succeed. That
predicate is also defined inductively with the rules below.

∀d1. ¬(d, p ; d1)
d, p # ∞ (ResolveHeightAbsent)

d, ε # (d, 0)
(ResolveHeightNil)

d1(f) = Dir d2 d2, p # (d3, h)
d1, f/p # (d3, h + 1)

(ResolveHeightDir)

d1(f) = AbsLink ps root, ps # (d2, h1) d2, p # (d3, h2)
d1, f/p # (d3,max(h1, h2) + 1)

(ResolveHeightAbsLink)

parent d1 = d2 d2, p # (d3, h)
d1, ../p # (d3, h + 1)

(ResolveHeightUp)

d1, p # (d2, h)
d1, ./p # (d2, h + 1)

(ResolveHeightHere)

We need some technical lemmas about resolution with height. First, we need to
state that proof height of a resolved path is greater than or equal to 0. Of course
this is a trivial property for human beings, but our formalization in Why3 uses
mathematical integers for heights, so this has to be stated and proved.

Lemma 8. For any directory node d1 and d2, and any path p, and any height h
if d1, p # d2, h then h ≥ 0

The proof can be done by induction on the hypothesis d1, p ; d2, and looking at
all the cases of rules applied to establish d1, p ; d2.

We also need lemmas that relate the resolution predicate with explicit height to
the original resolution predicate. First, if there is a resolution with explicit height
d1, p # (d2, h) with any finite height h, then there is a resolution d1, p ; d2.

Lemma 9. For any directory nodes d1 and d2, any path p, and any height h if
d1, p # d2, h then d1, p ; d2.

The proof can be done by induction on the hypothesis d1, p ; d2, and looking at
all the cases of rules applied to establish d1, p ; d2.

A second lemma works the other way around: every time we resolve a path to
some directory we can always resolve with some height.

Lemma 10. For any directory node d1 and d2, and any path p, if d1, p ; d2
then there exists h such that d1, p # (d2, h).

The proof proceeds also by induction.
The last set of lemmas concern the determinism of resolution: the target node of

path resolution is unique, if it exists. The following lemma states this property.

Journal of Formalized Reasoning Vol.10, No.1

A Formally Proved, Complete Algorithm for Path Resolution with Symbolic Links · 61

Lemma 11. For any directory node d1, d2 and d3, and any path p, if d1, p ; d2
and d1, p ; d3 then d2 = d3

A similar property exists for the predicate on resolution with height, stating that
two resolutions of the same path must have the same outcome (finite or infinite).

Lemma 12. For any directory node d, and any path p, and any outcomes o1 and
o2, if d, p # o1 and d, p # o2 then o1 = o2

The last lemma below is saying that we can always find an outcome (possibly
infinite) for any path resolving from any directory.

Lemma 13. For any directory node d, and any path p, there exists o such that
d, p # o

5. PROOF OF THE PATH RESOLUTION ALGORITHM

5.1 Termination

Up to now, we did not specify that the filesystem has finitely many nodes. Po-
tentially, resolution could not terminate even if there is no loop: imagine a link l1
pointing to another link l2 itself pointing to l3 etc.

To prove termination, we thus need to add more constraints in our model of the
filesystem, as follows.

use import set.FSet (* finite sets, from Why3’s standard library *)

constant alllinks : set lnk (* a finite set *)

axiom alllinks_in : forall d f ps.

lookup d f = AbsLink ps → mem (d,f) alllinks

In other words, there exists some finite set alllinks of pairs (dirnode,filename)
such that all links in the file system belong to alllinks. Indeed, we show that our
algorithm always terminates even if the file system is infinite: only the number of
symbolic links must be assumed finite.

To achieve the proof of termination, we just need to state a variant, that is a
quantity that decreases at each recursive call. A proper variant in this case is as
follows: either the active set increases, or it remains unchanged and the length
of the path p decreases. Instead of saying that the active set increases, we say
that the complement set (alllinks − active) decreases. This requires to add a
precondition stating that the active set is always a subset of alllinks. Such a
precondition acts as an invariant maintained for all the recursive calls.

let rec aux_resolve (d: dirnode) (p:path) (active:set lnk) : dirnode

requires { subset active alllinks }

variant { cardinal alllinks - cardinal active, p }

= ...

From the variant above, given as a pair of an integer and a list, Why3 implicitly
considers that the associated well-founded ordering is the lexicographic composition
of the natural ordering on non-negative integers and the sub-list ordering on lists.
The proof of termination is then obtained by automatic provers.

5.2 Correctness

The correctness of the algorithm is stated using the following post-condition.

Journal of Formalized Reasoning Vol.10, No.1

62 · Chen et al.

let rec aux_resolve (d: dirnode) (p:path) (active:set lnk) : dirnode

ensures { resolve_to d p result }

The proof is very easy, because the recursive calls of the algorithm recursively
construct the needed premises to build the inductive proof of d, p ; result .
Though, notice that for this proof it is important to use our first variant of the
resolution predicate, and not the POSIX one.

5.3 Completeness

The completeness is stated using the following post-condition stated when the func-
tion raises the exception Error.

let rec aux_resolve (d: dirnode) (p:path) (active:set lnk) : dirnode

raises { Error → forall d’. not resolve_to d p d’ }

The hardest part of our formal proof is to prove this completeness property. We
need to add more invariants on the active set, again under the form of preconditions
to be satisfied by the recursive calls.

The invariants on the active set are as follows: for all (d1, f) ∈ active and for
any ps, if d1(f) = AbsLink ps then

—∀d2. (root, ps ; d2) → ∃d′. (d, p ; d′)

—∀d2, h1, d
′, h. (root, ps # d2, h1) → (d, p # d′, h) → h ≤ h1

Both assertions say something about an arbitrary pair (d1, f) in the active set.
If the filename f in dirnode d1 denotes an absolute link to some path ps, then:

—The first assertion states that if ps is resolvable from root (to some d2) then p is
resolvable from d (to some d′).

—The second assertion states that if ps is resolvable from root with some finite
height h1 and if p is resolvable from d with some finite height h then h is smaller
than h1.

In other words, these two assertions together mean that if you resolve any pair in
the active set, then the input path p is resolvable also, and the proof must have
a smaller height. This is the key property that allows us to prevent cycles in the
proofs of path resolution, as we will see below. Still another way to express this is
to say that the resolution of the current path p is a part of the resolution of all the
paths that appear in the active set.

The code is thus annotated as shown on Figure 5. The assertion in the first line
of the body of aux_resolve is added to guide the automatic provers to instantiate
Lemma 13. Notice the use of an option type to encode outcomes of resolution with
height.

The proof of the exceptional post-condition must be done in the case of each oc-
currence of raise Error in the code. The first case, when the considered filename
does not exists (line 20), is easy: no rules for constructing a proof of resolution can
apply. The other case (line 24) concerns the symbolic links. By contradiction, if
we assume that it is possible to resolve d, p to some d′, then this proof has some
finite height h. But then since (d, f) is in the active set and points to AbsLink ps,
the first part of the invariant says that root, ps is resolvable. Moreover, the second
part of the invariant says that the height of that resolution is some h1 ≥ h. By

Journal of Formalized Reasoning Vol.10, No.1

A Formally Proved, Complete Algorithm for Path Resolution with Symbolic Links · 63

1 let rec aux_resolve (d: dirnode) (p:path) (active:set lnk) : dirnode

2 requires { subset active alllinks }

3 requires { forall d1 f ps d2.

4 mem (d1, f) active → lookup d1 f = AbsLink ps →
5 resolve_to root ps d2 → exists r. resolve_to d p r }

6 requires { forall d1 f ps d2 h1 d’ h.

7 mem (d1,f) active → lookup d1 f = AbsLink ps →
8 resolve_with_height root ps (Some(d2, h1)) →
9 resolve_with_height d p (Some(d’, h)) → h ≤ h1 }

10 ensures { resolve_to d p result }

11 raises { Error → forall d’. not resolve_to d p d’ }

12 variant { cardinal alllinks - cardinal active, p }

13 = assert { exists h. resolve_with_height d p h }; (* to help provers *)

14 match p with

15 | Nil → d

16 | Cons Up pr → let d’ = parent d in aux_resolve d’ pr active

17 | Cons Here pr → aux_resolve d pr active

18 | Cons (Down f) pr →
19 match lookup d f with

20 | Absent → raise Error

21 | Dir d’ → aux_resolve d’ pr active

22 | AbsLink ps →
23 if mem (d,f) active

24 then raise Error

25 else begin

26 let actadd = add (d,f) active in

27 let d’ = aux_resolve root ps actadd in

28 aux_resolve d’ pr active

29 end

30 end

31 end

32

33 let resolve (d: dirnode) (p:path) : dirnode

34 ensures { resolve_to d p result }

35 raises { Error → forall d2. not resolve_to d p d2 }

36 = aux_resolve d p empty

Fig. 5. Code annotated with formal specifications

applying the rule ResolveAbsLink we can then build a proof of resolution of d, p of
height h′ = 1 + min(h1, h

′′) where h′′ is the height of the proof of resolution of the
remaining path pr. Hence h′ ≥ h1 + 1, but by uniqueness of resolution h′ must be
equal to h, contradicting h1 ≥ h.

5.4 Proof results

The table of Figure 6 summarizes the provers’ results on all the verification condi-
tions of our development, including preliminary lemmas. The total number of VCs
is 198. We run all provers on all VCs with a time limit of 10 seconds. The first col-
umn gives the number of VCs successfully proved by the given prover. The other
columns give respectively the minimum, average and maximum time the prover
took to solve the VCs it proved. The last column gives the number of VCs that are
proved only by the given prover. This number is 0 for Z3, meaning that Z3 is not

Journal of Formalized Reasoning Vol.10, No.1

64 · Chen et al.

Prover number of min time max time average time number of VCs
VCs solved solved only by

this prover

Coq (8.5pl3) 1 0.52 0.52 0.52 1

CVC3 (2.4.1) 115 0.01 2.89 0.20 9
CVC4 (1.4) 136 0.01 2.37 0.14 8

Alt-Ergo (1.01) 119 0.00 8.17 0.41 7

Eprover (1.8-001) 125 0.01 7.87 0.26 6
Z3 (4.4.1) 108 0.00 6.25 0.26 0

Fig. 6. Summary of proof results

really needed, but all the other provers are needed to make a complete proof of our
development.

Notice that we needed one Coq proof to solve one VC in the part where we prove
the equivalence between our definition of resolution and the one closer to POSIX
informal definition. This Coq proof is not complex at all (only 9 lines, see [CCM16])
and does not involve any complex reasoning step (e.g. such as induction). It requires
however to provide explicit instantiations for quantified formulas, which is probably
the reason why it is not discharged by our automatic provers. See [CCM16] for the
details of each verification condition and which transformations and provers we
used to discharge them.

6. CONCLUSIONS

We designed a formal specification of the intended meaning of pathname resolution
in a file system involving symbolic links. We considered an algorithm that is not
limited in the number of traversed symbolic links, and we formally proved that
this algorithm is terminating, correct and complete. The most difficult part of
this work is to design an adequate definition of the meaning of path resolution
under the form of a ternary predicate d1, p ; d2, and also, in order to achieve the
formal verification of the algorithm, to discover an appropriate invariant, expressed
using an extended variant of this predicate, indexed with an explicit height of the
derivation. Our approach was designed so that the proofs can be performed with
automatic provers, with the exception of a single, yet simple, proof that was done
in Coq.

This idea of using the height of the derivation is a new lesson we learned during
this work. In particular, such a concept have not be used so far in the formal
verification of other algorithms for graph traversal. Yet, reasoning on proof trees is
routinely used in formalized reasoning about semantics of programming languages,
in particular when using a proof assistant like Coq where proofs are first-class
objects. Even when structural recursion is not enough, reasoning on proof size
or proof height is of course possible. However, in a context like in Why3 where
proofs are not first-class objects, and where proofs are mainly done using automatic
provers, it is new to us that such an inductive reasoning on proofs can be performed,
by adding an extra parameter (like the height for us) to the considered inductive
predicate. Although, adding an explicit parameter to an inductive predicate, so as
to simplify reasoning with it, is not new per se, it is for example the case of the
technique so-called step-indexing [AM01].

Journal of Formalized Reasoning Vol.10, No.1

A Formally Proved, Complete Algorithm for Path Resolution with Symbolic Links · 65

Generally speaking, we believe that this case study promotes the idea that a
formalization involving complex objects, such as inductive predicates, can be per-
formed within an environment based on automatic theorem proving: it does not
necessarily require the use of an interactive proof assistant.

Related work. Our path resolution algorithm is indeed some kind of graph traver-
sal, and its formal proof could be compared with those of standard graph algorithms.
In particular, there exists a collection of such graph algorithms proved using Why3
due to Chen and Lévy5 [CL17]. It seems that the notion of symbolic links adds
a significant difficulty when reasoning about graph traversal, which required the
use our technique of indexing with height. More recently, the idea of indexing an
inductive predicate by a skeleton was used by Jeannerod et al. for reasoning, using
Why3, about the semantics of Shell scripts [JMT17].

There exists an increasing amount of work on formal reasoning about Unix, file
systems and shell scripts, which are too numerous to cite. Though, our work does
not pretend to contribute in this category, since our algorithm for path resolution
is somehow a theoretical one, that does not need to be considered in practice in
operating systems: first the need for a complete algorithm is not important in
practice, second our algorithm would be inefficient in practice because it uses extra
memory. When formalizing file systems more closely to their practical implementa-
tions, the issue of symbolic links is certainly not the main one. For example, Ridge
et al. in 2015 built a large and detailed formalization of POSIX file system for
the purpose of testing real world system [RST+15]. They emphasize the intrica-
cies of path resolution, but do not discuss the possibility of loops: they model the
pragmatic approach limiting the number of traversed links. On the contrary they
emphasize other issues, for example the fact that path resolution may be performed
non-atomically in a concurrent environment. Concurrency is clearly a very difficult
issue that we don’t take into account in our formalization.

A related work where symbolic links are specifically taken into account is by Ntzik
and Gardner in 2015. They propose a framework based on an ad-hoc separation
logic to reason about Unix commands that modify the file system [NG15]. Their
main goal is to verify the functional behavior of complex commands like rm -r that
traverse an arbitrary-size part of the file system. In their settings, the question of
whether resolution is complete is not considered, and in fact a loop in resolution
may induce a non-terminating behavior.

ACKNOWLEDGMENTS

We gratefully thanks N. Jeannerod, R. Treinen and the anonymous reviewers for
their useful feedback on this work.

References

[AM01] Andrew W. Appel and David McAllester. An indexed model of recursive
types for foundational proof-carrying code. ACM Trans. Program. Lang.
Syst., 23(5):657–683, September 2001.

5pauillac.inria.fr/~levy/why3/

Journal of Formalized Reasoning Vol.10, No.1

pauillac.inria.fr/~levy/why3/

66 · Chen et al.

[BFMP15] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei
Paskevich. Let’s verify this with Why3. International Journal on Soft-
ware Tools for Technology Transfer (STTT), 17(6):709–727, 2015. See
also http://toccata.lri.fr/gallery/fm2012comp.en.html.

[CCM16] Ran Chen, Martin Clochard, and Claude Marché. A formal proof of
a Unix path resolution algorithm. Research Report RR-8987, Inria,
December 2016.

[CL17] Ran Chen and Jean-Jacques Lévy. A semi-automatic proof of strong
connectivity. In 9th Working Conference on Verified Software: Theories,
Tools and Experiments (VSTTE), Heidelberg, Germany, July 2017.

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where pro-
grams meet provers. In Matthias Felleisen and Philippa Gardner, edi-
tors, Proceedings of the 22nd European Symposium on Programming,
volume 7792 of Lecture Notes in Computer Science, pages 125–128.
Springer, March 2013.

[IEE] IEEE and The Open Group. POSIX.1-2008/Cor 1-2013. http://pubs.
opengroup.org/onlinepubs/9699919799/.

[JMT17] Nicolas Jeannerod, Claude Marché, and Ralf Treinen. A formally veri-
fied interpreter for a shell-like programming language. In Andrei Paske-
vich and Thomas Wies, editors, 9th Working Conference on Verified
Software: Theories, Tools and Experiments (VSTTE), Lecture Notes in
Computer Science, Heidelberg, Germany, July 2017. Springer.

[NG15] Gian Ntzik and Philippa Gardner. Reasoning about the POSIX file
system: Local update and global pathnames. In Int. Conf. on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA, pages 201–220. ACM, 2015.

[RST+15] Tom Ridge, David Sheets, Thomas Tuerk, Anil Madhavapeddy, Andrea
Giugliano, and Peter Sewell. SibylFS: formal specification and oracle-
based testing for POSIX and real-world file systems. In 25th ACM
Symposium on Operating Systems Principles, 2015.

Journal of Formalized Reasoning Vol.10, No.1

http://toccata.lri.fr/gallery/fm2012comp.en.html
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/

	Introduction
	Abstract Model of the File System
	Pathnames
	The file system

	Resolution Algorithms
	Formal Specification of Path Resolution
	Comparison with POSIX specification of resolution
	Resolution Indexed with Explicit Height

	Proof of the Path Resolution Algorithm
	Termination
	Correctness
	Completeness
	Proof results

	Conclusions

