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Context-free languages are highly important in computer language processing technology as well

as in formal language theory. The Pumping Lemma is a property that is valid for all context-free

languages, and is used to show the existence of non context-free languages. This paper presents a

formalization, using the Coq proof assistant, of the Pumping Lemma for context-free languages.

1. INTRODUCTION

The formalization of context-free language (CFL) theory is key to certi�cation of
compilers and programs, as well as to development of new languages and tools for
certi�ed programming.
Context-free language theory formalization is a relatively new area of research,

with some results already obtained with a diversity of proof assistants, including
Coq, HOL4 and Agda. Most of the e�ort started in 2010 and has been devoted to
the certi�cation and validation of parser generators. Examples of this are the works
of Koprowski and Binsztok (using Coq, [KB10]), Ridge (using HOL4, [Rid11]),
Jourdan, Pottier and Leroy (using Coq, [JPL12]) and, more recently, Firsov and
Uustalu (in Agda, [FU14]).
On the more theoretical side, on which the present work should be considered,

Norrish and Barthwal published on general context-free language theory formaliza-
tion using the using HOL4 proof assistant [Bar10, BN10a, BN10b, BN14], including
the Pumping Lemma, normal forms for grammars, pushdown automata and clo-
sure properties. Recently, Firsov and Uustalu proved the existence of a Chomsky
Normal Form grammar for every context-free grammar, using the Agda proof assis-
tant [FU15]. A special case of the Pumping Lemma, namely the Pumping Lemma
for regular languages, is included in a comprehensive work on the formalization of
regular languages [DKS] using SSRre�ect, an extension of Coq.
We aim at formalizing a substantial part of context-free language theory in the

Coq proof assistant, making it possible to reason about it in a fully checked en-
vironment, with all the related advantages. Initially, however, the focus has been
restricted to context-free grammars and associated results. Pushdown automata
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and their relation to context-free grammars are not considered at this point.
The work, that started with the formalization of closure properties for context-

free grammars [RdQ14], evolved later into the formalization of context-free gram-
mar simpli�cation [RdQ15] and then into the Chomsky normalization of context-
free grammars. Formalization of simpli�cation enabled Chomsky normalization,
which in turn enabled the present formal proof of the Pumping Lemma. The whole
work is described in detail in [Rama].
In order to follow this paper, the reader is required to have basic knowledge

of Coq and of context-free language theory. For the beginner, the recommended
starting point for Coq is the book by Bertot and Castéran [BC04]. Background on
context-free language theory can be found in [Sud06], [HU79] or [RNV09], among
others. Previous results, which were used in the formalization of the Pumping
Lemma, will not be discussed here and can be retrieved from the above references.
The statement and applications of the Pumping Lemma for CFLs (or Pumping

Lemma for short) are presented in Section 2. A typical informal proof, which
served as the basis for the present formalization, is described in Section 3. Section
4 introduces results obtained previously and which are required for this work. The
formalization is then described in Section 5, where the de�nitions and auxiliary
lemmas used are discussed in some detail, as well as the Pumping Lemma itself.
A brief comparison with the work of Barthwal is included in Section 6. Final
conclusions are presented in Section 7.
As far as the authors are aware of, this is the second ever formalization of the

Pumping Lemma for context-free languages (the �rst, in HOL4, is due to Barthwal,
see [Bar10]) and the �rst ever with the Coq proof assistant. All the de�nitions and
proof scripts discussed in this paper were written in plain Coq and are available for
download at [Ramb].

2. STATEMENT AND APPLICATION

A language is a set of sentences de�ned over an alphabet. A context-free grammar is
a grammar whose rules have the formX → β, whereX is a non-terminal symbol and
β is a sequence (possibly empty) of terminal and non-terminal symbols. A context-
free language is a language that is generated by some context-free grammar. The
Pumping Lemma for CFLs was stated and proved for the �rst time by Bar-Hillel,
Perles and Shamir in 1961 [BHPS61]. In what follows, it will be referred simply as
�Pumping Lemma�.
The Pumping Lemma does not characterize the CFLs, however, since it is also

veri�ed by some non CFLs ([HU79]). Besides that, the authors are not aware of any
independent characterization of the class of languages that satisfy it. The Pumping
Lemma states that, for every context-free language and for every sentence of such
a language that has a certain minimum length, it is possible to obtain an in�nite
number of new sentences that must also belong to the language. This minimum
length depends only on the language de�ned. In other words (let L be de�ned over
alphabet Σ):

∀L, (c� L)→ ∃n | ∀α, (α ∈ L) ∧ (|α| ≥ n)→

∃u, v, w, x, y ∈ Σ∗ | (α = uvwxy) ∧ (|vx| ≥ 1) ∧ (|vwx| ≤ n)∧
Journal of Formalized Reasoning Vol. 9, No. 2, 2016.
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∀i, uviwxiy ∈ L

A typical use of the Pumping Lemma is to show that a certain language is not
context-free by using the contrapositive of the statement of the lemma. The proof
proceeds by contraposition: the language is assumed to be context-free, and this
leads to a contradiction from which one concludes that the language in question
can not be context-free.
As an example, consider the language L = {aibici | i ≥ 1}. This language is

de�ned over the alphabet {a, b, c} and includes sentences such as abc, aabbcc and
aaabbbccc.
Should L be context-free, then the Pumping Lemma should hold for it. Consider

n to be the constant of the Pumping Lemma and let's choose the sentence α =
anbncn. Clearly, α ∈ L and |α| = 3n ≥ n. Thus, exists u, v, x, w, y such that
α = uvwxy, |vx| ≥ 1, |vwx| ≤ n and ∀i ≥ 0, uviwxiy ∈ L.
However, it is easy to observe that, due to its length limitation, the sentence

vwx should contain only one or two di�erent symbols (namely, vwx should belong
to either a∗, b∗, c∗, a∗b∗ or b∗c∗). This implies that the repetition of v and x in
uviwxiy should increase (or decrease) the number of at most two di�erent symbols
while keeping the number of the other symbol(s) unchanged. As a result, the new
sentence can not belong to the language and this proves that the initial hypothesis
is not true. Thus, L is not a context-free language.

3. INFORMAL PROOF

In short, the Pumping Lemma derives from the fact that the number of non-terminal
symbols in any context-free grammar G that generates L is �nite. The classical
proof considers that G is in the Chomsky Normal Form (CNF, a form in which the
rules of the grammar have at most two symbols in the right-hand side), which means
that derivation trees have the simpler form of binary trees. Then, if the sentence
has a certain minimum length, the derivation tree for this sentence should have two
or more instances of the same non-terminal symbol in some path that starts in the
root of the tree and has maximal length. Finally, the context-free character of G
guarantees that the subtrees related to these duplicated non-terminal symbols can
be cut and pasted in such a way that an in�nite number of new derivation trees are
obtained, each of which is related to a new sentence of the language.
The proof comprises the following steps (more details can be found in [Sud06],

[HU79] or [RNV09]):

(1) Since L is declared to be a context-free language (predicate cfl), then there
exists a context-free grammar G such that L(G) = L;

(2) Obtain G′ such that G′ is in Chomsky Normal Form and L(G′) = L(G);

(3) Take n as 2k, where k is the number of non-terminal symbols in G′;

(4) Consider an arbitrary sentence α such that α ∈ L and |α| ≥ n;
(5) Obtain a derivation tree t that represents the derivation of α in G′;

(6) Take a path that starts in the root of t and whose length is the height of t plus
1 (maximum length);

(7) Then, the height of t should be greater than or equal to k + 1;
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(8) This means that the selected path has at least k + 2 symbols, being at least
k + 1 non-terminals and one (the last) terminal symbol;

(9) Since G′ has only k non-terminal symbols, this means that this path has at
least one non-terminal symbol that appears at least two times in it;

(10) Call the duplicated symbol d and the corresponding subtrees t1 and t2 (note
that t2 is a subtree of t1 and t1 is a subtree of t);

(11) It is then possible to prove that the height of t1 is greater than or equal to 2,
and less than or equal to 2k;

(12) Also, that the height of t2 is greater than or equal to 1 and less than or equal
to 2k−1;

(13) This implies that the frontier of t can be split into �ve parts: u, v, w, x, y,
where w is the frontier of t2 and vwx is the frontier of t1;

(14) As a consequence of the heights of the corresponding subtrees, it can be shown
that |vx| ≥ 1 and |vwx| ≤ n;

(15) If t1 is removed from t, and t2 is inserted in its place, then we have a new tree
t0 that represents the derivation of string uv0wx0y = uwy;

(16) If, instead, t1 is inserted in the place where t2 lies originally, then we have a
tree t2 that represents the derivation of string uv2wx2y;

(17) Repetition of the previous step generates all trees ti that represent the deriva-
tion of the string uviwxiy, ∀i ≥ 2.

This proof is used in 6 out of 13 sources researched. In other 5 sources, the proof
is based on generic derivation trees (not necessarily binary), where the grammar
is not required to be in CNF. In such cases, it is enough to take n = mk, where
m is the length of the longest right-hand side among all rules of the grammar,
and k is the number of non-terminal symbols in the grammar. The two other cases
derive the proof of the Pumping Lemma, respectively, from the proof of the stronger
Ogden's Lemma and from pushdown automata instead of context-free grammars.
For the sources and more information on these informal proofs, see [Rama].
Since 11 out of 13 proofs considered use grammars and derivation trees and, of

these, 6 use CNF grammars and binary trees (including the authors of the original
proof), this strategy was considered as the best choice for the present work. Besides
that, binary trees can be easily represented in Coq as simple inductive types, where
generic trees require mutually inductive types, which increases the complexity of
related proofs. Thus, for all these reasons we have adopted the proof strategy that
uses CNF grammars and binary trees.

4. BACKGROUND

Formalization in the Coq proof assistant requires the formalization of the existence
of CNF for context-free grammars. This, in turn, demands the formalization of
context-free grammar simpli�cation (useless and inaccessible symbol elimination
and unit and empty rules elimination). For details on how these have been accom-
plished, please refer to [RdQ15] and [Rama].
The Chomsky Normal Form (CNF) theorem asserts that

∀G = (V,Σ, P, S), ∃G′ = (V ′,Σ, P ′, S′) | L(G) = L(G′) ∧
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∀ (α→G′ β) ∈ P ′, (β ∈ Σ) ∨ (β ∈ N ·N)

where N = V \Σ and N ′ = V ′\Σ. That is, every context-free grammar can be
converted to an equivalent one whose rules have only one terminal symbol or two
non-terminal symbols in the right-hand side. Naturally, this is valid only if G does
not generate the empty string. If this is the case, then the grammar that has
this format, plus a single rule S′ →G′ ε, is also considered to be in the Chomsky
Normal Form, and generates the original language, including the empty string. It
can also be assured that in either case the start symbol of G′ does not appear on
the right-hand side of any rule of G′.
The CNF theorem has been stated in our formalization in Coq as:

Theorem g_cnf:
∀ g: cfg non_terminal terminal,

(produces_empty g ∨ ∼ produces_empty g) ∧
(produces_non_empty g ∨ ∼ produces_non_empty g) →
∃ g': cfg non_terminal' terminal,

g_equiv g' g ∧ (is_cnf g' ∨ is_cnf_with_empty_rule g').

Context-free grammars are represented by record cfg in a way that resembles
the classical de�nition:

Notation sf := (list (non_terminal + terminal)).
Record cfg: Type:= {

start_symbol: non_terminal;
rules: non_terminal → sf → Prop;
t_eqdec: ∀ (x y:terminal), {x=y}+{x6= y};
nt_eqdec: ∀ (x y:non_terminal), {x=y}+{x6= y};
rules_finite:
∃ n: nat,
∃ ntl: nlist,
∃ tl: tlist,

rules_finite_def start_symbol rules n ntl tl

}.

This de�nition is parametrized by the types of terminal and non-terminal sym-
bols, both required to have a decidable equality (�elds t_eqdec and nt_eqdec

respectively). De�nition sf represents the type of sentential forms that can be
generated with the corresponding grammar.
The set of grammar rules is captured by the corresponding characteristic predi-

cate rules. The predicate rules_finite_def ensures that the set of rules of the
grammar is �nite by proving that the length of right-hand side of every rule is equal
to or less than a given value, and also that both left and right-hand side of the rules
are built from �nite sets of, respectively, non-terminal and terminal symbols (rep-
resented here by lists). This is a direct consequence of the fact that standard Coq
types are used to represent the sets of terminal and non-terminal symbols in the
formalization. The same result, however, could have been obtained if lists were
used instead of Prop to represent the rules of the grammar, as discussed before.
In this case, the predicate rules_finite_def would not be necessary. As it is, it
is necessary to explicitly prove that this predicate holds for every grammar that is
used as an argument of a theorem. Besides that, the formalization itself ensures
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that the predicate holds for new grammars constructed in it (for example, when a
CNF grammar is constructed from another grammar).
The decision of representing grammar rules as propositions (that is, inhabitants

of the sort Prop) has the consequence that it prevents direct extraction of exe-
cutable code from the formalization. It does not directly a�ect the formalization of
the Pumping Lemma, however it prevents obtaining certi�ed algorithms for other
results included in this work, such as grammar union, concatenation and closure,
as well as grammar simpli�cation and Chomsky Normal Form.
To achieve this, an alternative would be to represent the set P of rules as a

member of type list (non_terminal * sf) instead (that is, an inhabitant of the
sort Set). In this case, P would be represented as a list of rules, and each rule
as a pair where the �rst element is a non-terminal symbol and the second is a
list of terminal and non-terminal symbols. Then, the inductive de�nitions used
to construct new grammars (for previous results of this work) would have to be
replaced by functions that construct the new grammars from the previous one.
Finally, the desired lemmas and theorems would have to be proved on top of these
functions. After that, the extraction of certi�ed programs from these functions
could be obtained directly using Coq's appropriate facilities.
All this, however, would have changed the declarative approach of the present

work into an algorithmic one, by creating functions that generate new grammars
with the desired properties. On the other hand, the purely logical approach adopted
was considered more appealing, since it maps directly from the textbooks, and thus
was selected as the choice for the present formalization.
The predicate produces g s asserts that context-free grammar g produces the

list of terminals s as a sentence of the language. It is based on the more fundamental
notion of derivation, present in the whole formalization and de�ned as:

Inductive derives (g: cfg): sf → sf → Prop :=
| derives_refl:
∀ s: sf,

derives g s s

| derives_step:
∀ s1 s2 s3: sf,
∀ left: non_terminal,
∀ right: sf,

derives g s1 (s2 ++inl left :: s3) →
rules g left right →
derives g s1 (s2 ++right ++s3).

The predicates used in theorem g_cnf assert that:

�a grammar produces the empty string:

Definition produces_empty

(g: cfg non_terminal terminal): Prop:=
produces g [].

�a grammar produces a non-empty string:

Definition produces_non_empty

(g: cfg non_terminal terminal): Prop:=
∃ s: sentence, produces g s ∧ s 6= [].
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�two grammars are equivalent:

Definition g_equiv

(non_terminal non_terminal' terminal: Type)
(g1: cfg non_terminal terminal)
(g2: cfg non_terminal' terminal): Prop:=
∀ s: sentence,

produces g1 s ↔ produces g2 s.

�a rule is in the Chomsky Normal Form:

Definition is_cnf_rule

(left: non_terminal) (right: sf): Prop:=
(∃ s1 s2: non_terminal, right = [inl s1; inl s2]) ∨
(∃ t: terminal, right = [inr t]).

�a grammar is in the Chomsky Normal Form:

Definition is_cnf

(g: cfg non_terminal terminal): Prop:=
∀ left: non_terminal,
∀ right: sf,

rules g left right → is_cnf_rule left right.

�a grammar is in the Chomsky Normal Form and has a single empty rule with the
start symbol in the left-hand side:

Definition is_cnf_with_empty_rule

(g: cfg non_terminal terminal): Prop:=
∀ left: non_terminal,
∀ right: sf,

rules g left right →
(left = (start_symbol g) ∧ right = []) ∨ is_cnf_rule left right.

The predicates produces_empty and produces_non_empty used in Theorem
g_cnf describe grammars that, respectively, generate the empty string and gen-
erate a non-empty string. Since these questions are decidable for every context-free
grammar, the hypotheses that claim their decidability would not need to be included
in the statement. However, the proof of these questions (among other decidable
questions for context-free grammars) were not considered in the work developed
so far, thus the related hypotheses have to be explicitly included. This is also a
consequence of the fact that Coq uses a constructive logic, for which the law of the
excluded middle (LEM) can not be generically accepted as being true without the
corresponding proof.

5. FORMALIZATION

The formalization follows closely the steps described in Section 3. The (classical
version of the) Pumping Lemma has been stated in Coq as follows (please refer and
compare to the statement of Section 2):

Lemma pumping_lemma:
∀ l: lang terminal,
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(contains_empty l ∨ ∼ contains_empty l) ∧
(contains_non_empty l ∨ ∼ contains_non_empty l) →
cfl l →
∃ n: nat,
∀ s: sentence,

l s →
length s ≥ n →
∃ u v w x y: sentence,

s = u ++v ++w ++x ++y ∧
length (v ++x) ≥ 1 ∧
length (v ++w ++x) ≤ n ∧
∀ i: nat, l (u ++(iter v i) ++w ++(iter x i) ++y).

A language is de�ned as a function that maps a sentence (a list of terminal
symbols) to a proposition (Prop):

Definition lang (terminal Type):= list terminal → Prop.

Two languages are equal if they have the same sentences:

Definition lang_eq (l k: lang) :=
∀ w, l w ↔ k w.

Finally, a language is context-free if it is generated by some context-free grammar:

Definition cfl (terminal: Type) (l: lang terminal): Prop:=
∃ non_terminal: Type,
∃ g: cfg non_terminal terminal,

lang_eq l (lang_of_g g).

where lang_of_g represents the language generated by grammar g:

Definition lang_of_g (g: cfg non_terminal terminal): lang :=
fun w: sentence ⇒ produces g w.

Predicates contains_empty and contains_non_empty are language counterparts
of the previously presented grammar predicates, respectively produces_empty and
produces_non_empty. The same observations made in Section 4 for the presence
of hypotheses concerning the decidability of the former questions apply here for
the latter questions, and justify their inclusion in the statement of the Pumping
Lemma.
Application iter l i on a list l and a natural number i yields a list li, that is,

a list that corresponds to the concatenation of l to itself i times (iter l 0 yelds
the empty list for any argument).
Initially, the type btree (for binary trees) has been de�ned with the objective

of representing derivation trees for strings generated by context-free grammars in
Chomsky Normal Form:

Inductive btree (non_terminal terminal: Type): Type:=
| bnode_1: non_terminal → terminal → btree

| bnode_2: non_terminal → btree → btree → btree.

The constructors of btree relate to the two possible forms that the rules of a
CNF grammar can assume (namely with one terminal symbol or two non-terminal
symbols in the right-hand side).
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The proof of the Pumping Lemma starts by �nding a grammar G that generates
the input language L (this is a direct consequence of the predicate is_cfl and
corresponds to step 1 of Section 3). Next, we obtain a CNF grammar G′ that
is equivalent to G (step 2), using previous results. Then, G is substituted for G′

and the value for n is de�ned as 2k (step 3) where k is the length of the list of
non-terminals of G′ (which in turn is obtained from the predicate rules_finite).
An arbitrary sentence α of L(G′) that satis�es the required minimum length n is
considered (step 4).
Lemma derives_g_cnf_equiv_btree is then applied in order to obtain a btree

t that represents the derivation of α in G′ (step 5). This lemma is general enough
in order to accept that the input grammar might either be a CNF grammar, or
a CNF grammar with an empty rule. If this is the case, then we have to en-
sure that α 6= ε, which is true since by assumption |α| ≥ 2k. The proof of
derives_g_cnf_equiv_btree is reasonably long and uses induction on the number
of derivation steps in G′ in order to generate α:

Lemma derives_g_cnf_equiv_btree:
∀ g: cfg non_terminal' terminal,
∀ n: non_terminal',
∀ s: sentence,

s 6= [] →
(is_cnf g ∨ is_cnf_with_empty_rule g) →
start_symbol_not_in_rhs g →
derives g [inl n] (map term_lift' s) →
∃ t: btree non_terminal' terminal,

btree_cnf g t ∧
broot t = n ∧
bfrontier t = s.

The next step is to obtain a path (a sequence of non-terminal symbols ended by
a terminal symbol) that has maximum length, that is, whose length is equal to the
height of t plus 1 (steps 6 and 7). This is accomplished by means of the de�nition
bpath (for binary path) and the lemma btree_ex_bpath:

Inductive bpath (bt: btree): sf → Prop:=
| bp_1:
∀ n: non_terminal,
∀ t: terminal,

bt = (bnode_1 n t) → bpath bt [inl n; inr t]
| bp_l:
∀ n: non_terminal,
∀ bt1 bt2: btree,
∀ p1: sf,

bt = bnode_2 n bt1 bt2 → bpath bt1 p1 → bpath bt ((inl n) :: p1)
| bp_r:
∀ n: non_terminal,
∀ bt1 bt2: btree,
∀ p2: sf,

bt = bnode_2 n bt1 bt2 → bpath bt2 p2 → bpath bt ((inl n) :: p2).
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Lemma btree_ex_bpath:
∀ bt: btree,
∀ ntl: list non_terminal,

bheight bt ≥ length ntl + 1 →
bnts bt ntl →
∃ z: sf,

bpath bt z ∧
length z = bheight bt + 1 ∧
∃ u r: sf,
∃ t: terminal,

z = u ++r ++[inr t] ∧
length u ≥ 0 ∧
length r = length ntl + 1 ∧
(∀ s: symbol, In s (u ++r) → In s (map inl ntl)).

The length of this path (which is ≥ k+2) allows one to infer that it must contain
at least one non-terminal symbol that appears at least twice in it (steps 8, 9 and
10). This result comes from the application of the lemma pigeon which represents
a list version of the well-known pigeonhole principle (for any type A with decidable
equality):

Lemma pigeon:
∀ A: Type,
∀ x y: list A,
(∀ e: A, In e x → In e y) →

length x = length y + 1→
∃ d: A,
∃ x1 x2 x3: list A,

x = x1 ++[d] ++x2 ++[d] ++x3.

Since a path is not unique in a tree, it is necessary to use another representation
that can describe this path uniquely, which is done by the predicate bcode (for
binary code) and the lemma bpath_ex_bcode:

Inductive bcode (bt: btree): list bool → Prop:=
| bcode_0:
∀ n: non_terminal,
∀ t: terminal,

bt = (bnode_1 n t) → bcode bt []
| bcode_1:
∀ n: non_terminal,
∀ bt1 bt2: btree,
∀ c1: list bool,

bt = bnode_2 n bt1 bt2 → bcode bt1 c1 → bcode bt (false :: c1)
| bcode_2:
∀ n: non_terminal,
∀ bt1 bt2: btree,
∀ c2: list bool,

bt = bnode_2 n bt1 bt2 → bcode bt2 c2 → bcode bt (true :: c2).

The predicate bcode uses a sequence of Boolean values (false, true) to respec-
tively select the left or right subtrees in a tree, and thus de�ne a path in it.
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Lemma bpath_ex_bcode:
∀ t: btree,
∀ p: sf,

bpath t p →
∃ c: list bool,

bcode t c ∧
bpath_bcode t p c.

The predicate bpath_bcode merely ensures that bcode c is valid for bpath p in
tree t. Once the path has been identi�ed with a repeated non-terminal symbol,
and a corresponding bcode has been assigned to it, lemma bcode_split is applied
twice in order to obtain the two subtrees t1 and t2 that are associated respectively
to the �rst and second repeated non-terminals of t. This lemma, which is key in the
formalization, has a statement with a number of hypotheses and conclusions which
provide useful information on the newly identi�ed subtree. Among them, its height
and its frontier (the latter as the result of a call to function btree_decompose,
presented next):

Lemma bcode_split:
∀ t: btree,
∀ p1 p2: sf,
∀ c: list bool,

bpath_bcode t (p1 ++p2) c →
length p1 > 0 →
length p2 > 1 →
bheight t = length p1 + length p2 − 1 →
∃ c1 c2: list bool,

c = c1 ++c2 ∧
length c1 = length p1 ∧
∃ t2: btree,
∃ x y: sentence,

bpath_bcode t2 p2 c2 ∧
btree_decompose t c1 = Some (x, t2, y) ∧
bheight t2 = length p2 − 1.

Function btree_decompose takes as arguments a btree and a sequence of Boolean
values, and returns a triple consisting of the subtree of the �rst argument located
at the corresponding position speci�ed by the second argument, and the two sen-
tences to the left and right of it. It is used to enable reasoning on the frontiers of
the subtrees obtained before:

Fixpoint btree_decompose (bt: btree) (c: list bool):
option (sentence ∗ btree ∗ sentence):=
match bt, c with

| bnode_1 n t, [] ⇒
Some ([], bt, [])

| bnode_1 n t, _ ⇒
None

| bnode_2 n bt1 bt2, [] ⇒
Some ([], bt, [])

| bnode_2 n bt1 bt2, false :: c ⇒
match btree_decompose bt1 c with
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| None ⇒ None

| Some (l, bt, r) ⇒ Some (l, bt, r ++bfrontier bt2)
end

| bnode_2 n bt1 bt2, true :: c ⇒
match btree_decompose bt2 c with

| None ⇒ None

| Some (l, bt, r) ⇒ Some (bfrontier bt1 ++l, bt, r)
end

end.

From this information it is then possible to extract most of the results needed to
prove the goal (steps 11, 12, 13 and 14), except for the pumping condition. This is
obtained by an auxiliary lemma pumping_aux, which takes as hypothesis the fact
that a tree t1 (with frontier vwx) has a subtree t2 (with frontier w), both with the
same roots, and asserts the existence of an in�nite number of new trees obtained
by repeated substitution of t2 by t1 or simply t1 by t2, with respectively frontiers
viwxi, i ≥ 1 and w, or simply viwxi, i ≥ 0:

Lemma pumping_aux:
∀ g: cfg _ _,
∀ t1 t2: btree (non_terminal' non_terminal terminal) _,
∀ n: _,
∀ c1 c2: list bool,
∀ v x: sentence,

btree_decompose t1 c1 = Some (v, t2, x) →
btree_cnf g t1 →
broot t1 = n →
bcode t1 (c1 ++c2) →
c1 6= [] →
broot t2 = n →
bcode t2 c2 →
(∀ i: nat,
∃ t': btree _ _,

btree_cnf g t' ∧
broot t' = n ∧
btree_decompose t' (iter c1 i) = Some (iter v i, t2, iter x i) ∧
bcode t' (iter c1 i ++c2) ∧
get_nt_btree (iter c1 i) t' = Some n).

The proof continues by showing that each of these new trees can be combined
with tree t obtained before, thus representing strings uviwxiy, i ≥ 0 as necessary
(steps 15 and 16).
Finally, it must be proved that each of these trees is related to a derivation in G′,

which is accomplished by lemma btree_equiv_produces_g_cnf, the dual version
of lemma derives_g_cnf_equiv_btree (step 17).
The Pumping Lemma has some 400 lines of Coq script, which adds to auxiliary

lemmas and an extensive library of lemmas on binary trees and on the relation of
binary trees to CNF grammars. The approach is constructive and requires, in the
proof of the pigeon lemma (only), decidable equality. That was indeed the main
reason why the de�nition of cfg enforces decidable equality on the types of the
terminal and non-terminal symbols.
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6. COMPARISON

Coq and HOL4 share many characteristics in common, in particular both are typed
systems that use higher order logics. Coq, however, is based on the very powerful
Calculus of Inductive Constructions (and thus supports constructive logic) and in-
cludes dependent types, a feature that is not o�ered by HOL4. HOL4 uses classical
higher-order logic with axioms of in�nity, extensionality and choice, and is based
on simply typed lambda-calculus with polymorphic type variables. Both systems
follow the LCF approach, a set of ideas about the design of proof assistants with the
objective of granting a high level of con�dence in their operation [Zam97, Wie06].
As a preparation to the formalization of the Pumping Lemma, Barthwal ([Bar10])

discusses the importance of generic parse trees (not necessarily binary) and formal-
izes its de�nition and some properties. Also, the relationship between valid parse
trees and derivations in a grammar, and the notion of subtrees along with some
functions. The strategy adopted in the proof is the same as ours. She uses the clas-
sical statement, however considering that the grammar is already in CNF, which
means that the proof is valid only for grammars that do not generate the empty
string. Basically, Barthwal proceeds by showing that su�ciently long sentences
have parse trees with a repeated non-terminal in some path, and then by showing
that a subtree can be �pumped� in such a way that the statement can be proved.
Barthwal ends with some brief considerations about the complexity of the formal-
ization in comparison to the informal proof. Still, the proof presented in the thesis
is concise, using a mixture of informal arguments and HOL4 lemmas previously
introduced.
In comparison, our statement refers to any context-free language (including those

with the empty string) and we have also proved an alternative version with an
additional clause (|uy| ≥ 1, which is not present in the classical statement) and a
smaller value of n, as in the original proof (for details, please refer to [Rama]).

7. CONCLUSIONS

The formalization of the Pumping Lemma for context-free languages represents
the culmination of an e�ort that started with closure properties for context-free
grammars [RdQ14] and continued with simpli�cation for context-free grammars
[RdQ15] and the Chomsky Normal Form [Rama]. The whole formalization has
20.000+ lines of Coq script and was developed over a period of two years.
The Pumping Lemma for CFLs is a signi�cant result in language theory in general

and this is, as far as the authors are aware of, the second ever formalization of it, 55
years after is was stated and informally proved for the �rst time (this is, however,
the �rst in Coq and the �rst constructive proof). It has to be seen against the
backdrop of the important and well sought after goal of formalizing fundamental
results in language theory, as well as formalizing mathematics in general.
The libraries developed to support this formalization will hopefully play an

equally important role, as they include general results on context-free language
theory that can be used or adapted to prove other results. The whole work can
serve di�erent purposes, including the continued formalization of language theory
and the teaching of formal languages, formalization and Coq itself.
Short-term future work includes the formalization of decidable questions for
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context-free languages (emptiness, membership, existence of empty string and ex-
istence of non-empty string), in order to simplify the statement of some theorems
(as explained in Sections 4 and 5). Medium and long-term future work include
the formalization of the Greibach Normal Form Theorem, pushdown automata and
Ogden's Lemma (a stronger version of the Pumping Lemma for CFLs).
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