
Verified Representations of Landau’s “Grundlagen”
in the λδ Family and in the Calculus of Constructions

Ferruccio Guidi

Department of Computer Science and Engineering

University of Bologna

Mura Anteo Zamboni 7, 40127, Bologna, ITALY

e-mail: ferruccio.guidi@unibo.it

Landau’s “Grundlagen der Analysis” formalized in the language Aut-QE, represents an early

milestone in computer-checked mathematics and is the only non-trivial development finalized in
the languages of the Automath family. Here we discuss an implemented procedure producing a

faithful representation of the Grundlagen in the Calculus of Constructions, verified by the proof

assistant Coq 8.4.3. The point at issue is distinguishing λ-abstractions from Π-abstractions where
the original text uses Automath unified binders, taking care of the cases in which a binder corre-

sponds to both abstractions at one time. It is a fact that some binders can be disambiguated only

by verifying the Grundlagen in a calculus accepting Aut-QE and the Calculus of Constructions.
To this end, we rely on λδ version 3, a system that the author is proposing here for the first time.

Our representation of the Grundlagen as a user-level script that Coq 8.4.3 accepts without

warnings, is hosted on λδ Web site at <http://lambdadelta.info/download/grundlagen_2.v>.

1. INTRODUCTION

Jutting’s representation [vB79] of Landau’s “Grundlagen der Analysis” [Lan65] in
the Automath language Aut-QE [vD94a] is an early milestone in computer-checked
mathematics and is the only non-trivial development finalized in the languages of
the Automath family [NGdV94]. Actually, the development of significant formal-
ized mathematics on the grounds of the Grundlagen is limited in that the current
proof-checking software based on Aut-QE [Wie02] seems incapable to compete with
the most recent proof management systems. Thus, some authors propose transla-
tions of Aut-QE into Pure Type Systems [Bar93, KLN03], which give the back-
ground for making the Grundlagen accessible to systems like Coq [Coq15], which
accepts the Calculus of Constructions [CH88] (henceforth, CC for short).

Here we discuss a farther step: an implemented procedure producing a representa-
tion of the Grundlagen in CC. This representation has the form of a user-level script
that is available at <http://lambdadelta.info/download/grundlagen_2.v> and
that Coq 8.4.3 can process without reporting errors or warnings.

To our knowledge, the only related work is [Bro11], where the author reports
on representations of the Grundlagen in several Contextual Pure Type Systems
[AP10] originating from ECC [Luo90]. One of these representations yields a user-
level script for Coq, that is very close to ours. Nevertheless, we claim that our
script is a closer approximation of the original Automath text, that we produce
with a simpler and more innovative translation procedure from Aut-QE.

Firstly, we recall some concepts about CC and Aut-QE for convenience.

Journal of Formalized Reasoning Vol. 8, No. 1, 2015, Pages 93–116.

http://lambdadelta.info/download/grundlagen_2.v
http://lambdadelta.info/download/grundlagen_2.v

94 ⋅ Ferruccio Guidi

The terms of both systems are organized in three classes of increasing degree
(kinds, types, and elements) comprising two sorts denoting the universes of sets
and propositions, references by name, applications, and binding abstractions.

On the one hand, CC has distinct abstractions λxN.M and ΠxN.M for functions
and function spaces respectively. On the other hand, Aut-QE is best known for its
unified abstraction [x:N]M representing both abstractions of CC, as well as for its
reversed notational convention for application with respect to CC. In particular, we
remind the reader that the application (M N) in CC appears as <N>M in Aut-QE.

The latter convention, that is assumed also in the calculus we shall present in
Section 3.1, helps the visual understanding of redexes as [KN96] explains.

Being an Automath text, the formalized Grundlagen amounts to a list of (almost
7000) constants declared or defined within a system of sections (known as para-
graphs), and introduced in a context of unified binders (known as block openers).

Considering the verification of an Automath text from the CC perspective, uni-
fied abstraction yields no logical confusion as long as the verifier can separate λ-
abstractions and Π-abstractions during type conversion and type inference.

On the contrary, when the author of the text assumes the unpleasant equality
λxN.M = ΠxN.M , which in Aut-QE is an identity, and which implies ΠxN.S = S
if S is the sort typing M , then logical confusion is unavoidable since, for instance,
a predicate is equated to the formula representing its universal quantification.

Unfortunately, this inconvenience affects the Grundlagen indeed, as we see in the
case of the constant all"l", whose name stands for “∀-introduction”, defined as
the function λσType.λp(Πxσ.Prop).p that maps the predicate p to itself, instead of
mapping it to the formula Πxσ.(p x) that is the universal quantification of p.

We want to stress that the Π-introduction p ↦ Πxσ.(p x) reads in Aut-QE as
p ↦ [x:sigma]<x>p, exactly like the η-reduction p ↦ λxσ.(p x). For this reason
some authors address these transformations with misleading terminology.

interestingly, the mechanical translation of the Grundlagen into CC is not an
issue once references are resolved, and unified binders are disambiguated.

While static analysis suffices to resolve all references in the Grundlagen, and to
disambiguate the majority of its approximately 47000 unified binders, almost 3000
such binders can be disambiguated only by observing their reductional behavior
during verification in a calculus that accepts Aut-QE and CC at once.

To this end, we rely on λδ version 3, a system that the author is proposing in this
article for the first time. Other calculi of the same family appear in [Gui09b, Gui15].

In particular, the mechanical translation reported in this article works as follows:
by static analysis (Section 2), followed by dynamic analysis (Section 3), we build a
representation of the Grundlagen in λδ version 3. This is mapped straightforwardly
to a slightly refined CC (Section 4), and coded for Coq 8.4.3. Our conclusions are in
Section 5, where we show some benchmarks and some examples of the translation.

We find it convenient to agree on the next terminology used henceforth:

—the QE-GdA will refer to Landau’s “Grundlagen” presented in Aut-QE;

—the λδ-GdA will refer to the QE-GdA presented in λδ version 3; a raw version will
have ambiguous binders, while a proper version will have disambiguated binders;

—the CC-GdA will refer to the proper λδ-GdA presented in the refined CC.

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

Landau’s “Grundlagen” in the Calculus of Constructions ⋅ 95

name: x ∶∶= identifier Barendegt’s convention is assumed

term: M,N ∶∶= ’type’,’prop’ sorts
∣ x reference to name x

∣ [x:N]M typed abstraction of x in M

∣ <N>M application of M to N

context: C ∶∶= @ empty context

∣ [x:N]C local typed declaration of x before C

book: B ∶∶= ; empty book
∣ C x:=M:N B global typed definition of x in C before B

∣ C x:=’prim’:N B global typed declaration of x in C before B

Fig. 1. The abstract syntax of an Automath language.

2. STATIC ANALYSIS OF THE “GRUNDLAGEN”

Landau’s “Grundlagen der Analysis” [Lan65] contains 301 propositions on the arith-
metics of rational, irrational and complex numbers. This theory was digitally spec-
ified in the language Aut-QE [vD94a] by Jutting [vB77]. Later, it was recovered
from Jutting’s original files by Wiedijk, who included it in the latest distribution
of his validator for Aut-68 [vB94a] and Aut-QE.

Unfortunately, we have scarce practical information on the specification.
Here is a summary of what we know up to now [Gui09a].

—The concrete syntax, found in [Wie99], (see Section 2.1) relies on the next facilities
meant to decrease the verbosity of Automath books.

—The block system allows to share the formal parameters that several global con-
stants have in common (see Section 2.2). Actually, the discussion on instantiation
in [dB91] explains that this is more than a mere facility.

—The paragraph system, briefly mentioned in [Zan94] and fully explained in [vB77],
allows to reuse identifiers avoiding name collisions (see Section 2.3).

—The abbreviation system (i.e., the shorthand facility [vD94a]) allows to omit some
actual parameters in a reference to a global constant (see Section 2.4).

In any case, some aspects of these facilities seem undocumented and thus remain
ambiguous to us. As a reasonable way out, we checked how these ambiguities are
solved in the QE-GdA knowing that the specification must be correct as it stands.

Contrary to Aut-QE, the formal system λδ version 3 (see Section 3.1) is an ab-
stract language not supporting any facility in the first place. Therefore, in the first
step of our translation, a static analyzer removes the Aut-QE shorthand from the
QE-GdA and disambiguates most of its unified binders as we explain in Section 2.5.

The product of this step is a raw version of the λδ-GdA in which the remaining
binders are still ambiguous and, thus, need additional processing.

Section 2.1, Section 2.2, Section 2.3, and Section 2.4 present in a single text the
most accurate description of Automath concrete syntax and its related facilities.

2.1 Parsing

We recall that a text written in an Automath language (also known as an Automath
book), is structured as a sequence of lines, each asserting a statement.

The following kinds of statement are available:

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

96 ⋅ Ferruccio Guidi

(contents)

<book> ::= [<line>]* <EOF>

<line> ::= <section> | <context> | <opener> | <decl> | <def>

<section> ::= "+" ["*"]? <id> | "-" <id> | "--"

<context> ::= <STAR> | <qid> <STAR>

<opener> ::= <id> <DEF> <EB> <E> <term>

| <id> <E> <term> <DEF> <EB>

| "[" <id> <OF> <term> "]"

<decl> ::= <id> <DEF> <PN> <E> <term>

| <id> <E> <term> <DEF> <PN>

<def> ::= <id> <DEF> ["~"]? <term> <E> <term>

| <id> <E> <term> <DEF> ["~"]? <term>

<term> ::= <TYPE> | <PROP>

| <qid> ["(" [<term> ["," <term>]*]? ")"]?

| "[" <id> <OF> <term> "]" <term>

| "<" <term> ">" <term>

<qid> ::= <id> [‘"‘ [<id>]? [<PATH> <id>]* ‘"‘]?

<id> ::= ["0"-"9" | "A"-"Z" | "a"-"z" | "_" | "’" | "‘"]+

(presentational variants)

<STAR> ::= "*" | "@"

<DEF> ::= ":=" | "="

<EB> ::= "---" | "’eb’" | "EB"

<PN> ::= "???" | "’pn’" | "PN" | "’prim’" | "PRIM"

<E> ::= "_E" | "’_E’" | ";" | ":"

<OF> ::= ":", ","

<TYPE> ::= "’type’" | "TYPE"

<PROP> ::= "’prop’" | "PROP"

<PATH> ::= "-", "."

<EOF> ::= ";" | eof

(spaces and comments)

<space> ::= [space | tab | newline]+

<comment> ::= ["#" | "%"] [.]* [newline | eof]

| "{" [.]* "}"

Fig. 2. Automath concrete syntax.

" " the enclosed characters | choice
‘"‘ the character " []? optional
space tab newline eof special characters []* zero or more
- any character in the specified range []+ one or more
. any character [] bracketing

Fig. 3. Conventions for displaying the concrete syntax.

—Sectioning-related statement. This statement opens or closes a paragraph (a
better translation would be a section as pointed out in [Wie99]). Automath
paragraphs are possibly nested named scopes in which the global constants are
declared or defined. It should be noted that a previously closed scope can be
reopened. Moreover, in a well-formed Automath book, sections are properly
nested so each closing statement can only close the last opened section.

—Block opener. This statement introduces a local declaration in a given context.
The semantics of context formation is recalled in Section 2.2.

—Global declaration. This is like the block opener but the declaration is global.

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

Landau’s “Grundlagen” in the Calculus of Constructions ⋅ 97

—Global definition. This statement defines an identifier as an abbreviation of a
term explicitly typed in a given context. There is a way, never used in the
QE-GdA, to inhibit the δ-expansion of the identifier for speeding reduction.

An identifier declared or defined by a statement which is not sectioning-related,
is termed a notion. Moreover, the notions that are not block openers will be
termed global constants. Automath terms and types are λ-terms of a single syntactic
category comprising two sorts, references, unified typed abstractions, and binary
applications. References to global constants may have actual parameters and a
section indicator acting as a qualifier (see Section 2.3).

In Figure 1 we show the abstract syntax of a typical Automath language. When
an identifier x is introduced in a book (by abstraction, declaration, or definition),
the accompanying term N represents its expected type (terminology from [Cos96]).

The degree of a term stands among the fundamental notions by which the correct-
ness of an Automath book is defined. Generally speaking, it is a number indicating
a position in a type hierarchy. A well-established tradition assigns degree d + 1 to
a term T whose type U has degree d. The choice of the terms having degree 1
depends on the type system in discourse. In the present case, we set:

Definition 1. The degree of a term is defined inductively. The degree of ’type’
and ’prop’ is 1; the degree of x is d+ 1 where d is the degree of the expected type
N of x; the degree of [x:N]M and <N>M is the degree of M. ▲

As to Aut-QE, correct terms must have degree one, two, or three. Moreover the
degree of N in the abstraction [x:N]M must be two. On the other hand, the degree
of N in the local declaration (i.e., block opener) [x:N]C can be one, or two.

The grammar recognized by our Automath parser is presented in Figure 2 (our
notational conventions for displaying grammars are in Figure 3, the monospaced
typeface is just presentational). Properly nested comments are accepted. It should
be noted that the Automath grammar evolved through time and has many variants
[NGdV94], which we try to capture. Our parser recognizes “_E” in place of the
original underscored “E”, anyway this notation does not appear in the QE-GdA.

2.2 Context Chains

The block system is a peculiar feature of concrete Automath languages [NGdV94].
In principle, a global constant has a list of formal parameters that are retrieved by
following a chain of block openers, each representing a parameter declaration. To
this end, every notion has a context marker indicating the start of its chain (i.e.,
its context). The rules for constructing this chain, follow.

—If the notion has an empty marker, then its chain is empty.

—If the notion has a reference marker pointing to a block opener, then its chain
contains the chain of the block opener plus the block opener itself.

—If the notion has no marker and the preceding statement is a block opener, then
the intended marker is a reference to it.

—If the notion has no marker and the preceding statement is a global declaration
or definition, then the intended marker is the one of that statement (recursively).

The intended meaning of “preceding” in the last two rules becomes unclear when
the paragraph system is in effect. Given that the QE-GdA becomes incorrect if

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

98 ⋅ Ferruccio Guidi

“preceding” is understood literally, we argue that the block system must be aware
of the paragraph system somehow. In particular, “preceding” reasonably means
“preceding in the same section or in its parent”, but may also mean “preceding in
the same section fragment or in its parent” (recall that sections can be closed and
reopened, thus a section might be divided in many fragments).

The QE-GdA does not help to solve this ambiguity because Jutting always re-
opens a section with a statement having an explicit context marker.

2.3 Paragraphs

The proper lines of an Automath text using the paragraph system facility, i.e.,
the lines that are not sectioning-related, are grouped into possibly nested named
sections. Furthermore, a complete index is assigned to each such line. This is the
list of the sections’ names containing that line, sorted according to the outermost-
to-innermost order. The paragraph system specification requires a cover section
(named “l” in the QE-GdA) enclosing the entire book, so a complete index is
never empty. A section can be reopened at the same nesting level but two sections
having the same name can not be nested. Once the index of a line is computed, that
line receives a URI based on that index [Gui09a]. Note that the rule for constants
stated in the specification of the paragraph system, implies that different proper
lines of a well-formed book always receive different URI’s.

A reference r in a line l can have a complete index or an incomplete index or no
index at all. Such a reference is resolved by computing either the position index of
the referred local declaration, or the URI of the referred notion.

The original resolution rules from [vB77] Appendix 2, are given next.

—If r has a complete index j, being the concatenation of the component s before
the list jt, and if the line l has the complete index i, being the concatenation of
the list ih before the component s and before the list it, then a constant with r’s
name is looked up in the section whose index is the concatenation of ih before j.
Such a constant must exist and r receives its URI.

—If r has the incomplete index j and if the line l has the complete index i, then a
constant with r’s name is looked up in the section whose index is the concatena-
tion of i before j. Such a constant must exist and r receives its URI.

—If r has no index, a declaration with r’s name is looked up in the local environment
of r. If such a declaration exists, r receives its depth index [dB94b].

—On the other hand, a constant with r’s name is looked up in the sections con-
taining the line l, sorted according to the innermost-to-outermost order. Such a
notion must exist and r is resolved by receiving its URI.

—If r is a context marker, then r must refer to a block opener otherwise r must
refer to a global constant, or to a declaration in r’s local environment.

Our implemented processor generalizes the first two rules by extending the search
for a notion that should be in a section, say k, to the sections containing k, sorted
according to the innermost-to-outermost order. This mechanism agrees with the
forth rule and allows to regard a reference without an index as having the complete
index of the line in which it occurs. We remark that a reference without an index
is resolved first in its local environment and then in the global environment. This

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

Landau’s “Grundlagen” in the Calculus of Constructions ⋅ 99

seems to be the originally intended order of precedence because the QE-GdA fails
to validate if we reverse this precedence [Wie99].

2.4 Implicit Arguments

The abbreviation system [vD94a] is a facility of some concrete Automath languages
including the extension of Aut-QE that Jutting used for the QE-GdA.

This facility works as follows: suppose that a constant c is defined or declared
in a context Γ of formal parameters, say x1, . . . , xn. Then a reference to c in a
subsequent line, say l, generally needs to be applied to n actual parameters and
thus appears like c(t1, . . . , tn). Nevertheless, if the context Γ is an initial segment
of the context of the notion defined or declared in the line l, where the reference to
c appears, this reference is allowed to take less than n actual parameters and the
expression c(tm+1, . . . , tn) must be interpreted as c(x1, . . . , xm, tm+1, . . . , tn). Here
we are assuming m ≤ n, thus all actual parameters may be omitted in some cases.

2.5 Static Disambiguation of Unified Binders

Our static analyzer implements two strategies for disambiguating the binders of the
QE-GdA. One strategy is degree-based, while the other is position-based.

Note that both strategies rely on the fact that the QE-GdA is in β-normal form.
In the disambiguation process each binder receives a layer constant, which is

either “Π”, or “λ”, or else it receives a layer variable in case of ambiguity.

—According to the degree-based strategy [Bro11], we compute the degree of a
binder by innermost-to-outermost propagation. Since Aut-QE features three de-
grees of terms, we argue that a binder of lowest degree (i.e., one) is a “Π”,
whereas a binder of highest degree (i.e., three) is a “λ”. A binder of degree two
remains ambiguous. This strategy is not applied to the block-opening binders.

—According to the position-based strategy, a block-opener in the context of a
declared constant is a “Π”. On the other hand, a block-opener in the context
of a defined constant is a “λ”, that is β-reduced when that constant is referred
to. Moreover, a binder placed along the spine of a term representing a type
annotation, must be a “Π”. The other binders remain ambiguous.

The positioning information is computed by outermost-to-innermost propagation.
Therefore, our our static disambiguation procedure is bidirectional.

Finally, our analyzer annotates all binders with their sort (i.e., either “Type”, or
“Prop”) as hints for presenting Π-binders as ∀-binders when their sort is “Prop”.

3. DYNAMIC ANALYSIS OF THE “GRUNDLAGEN”

The raw version of the λδ-GdA produced by our static analyzer is a global envi-
ronment of λδ version 3, a calculus we introduce in Section 3.1 for the first time.

To the end of managing the ambiguous binders, we allow layer variables (say: φ,
ψ) in abstractors. Therefore, a typical ambiguous abstraction looks like λφxW.T .

The raw λδ-GdA is analyzed by applying a validation procedure that produces a
system of constraints on the layer variables (see Section 3.5). Once this system is
solved (also by correcting some points of the QE-GdA as we explain in Section 3.6),
the proper λδ-GdA, without layer variables, is mapped to the CC-GdA, i.e., our
final outcome. This is a single user-level script that can be processed by Coq 8.4.3.

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

100 ⋅ Ferruccio Guidi

index: k,n ∶∶= integer 0 ≤ k,n <∞

name: u,x ∶∶= identifier Barendegt’s convention is assumed
layer: e ∶∶= ext. integer 0 ≤ e ≤∞

term: T ,U ,V ,W ∶∶= ⋆k sort of index k

∣ $u reference to global name u
∣ #x reference to local name x

∣ δxV.T local abbreviation (x ∶= V) in T

∣ λexW.T local abstraction in layer e of (x ∶W) in T
∣ @V.T applicative term (T V)

∣ ©U.T type-annotated term (T ∶U)

local env.: K,L ∶∶= ⋆ empty environment
∣ L.δxV local definition (x ∶= V) after L

∣ L.λexW local declaration (x ∶W) in layer e after L

global env.: F ,G ∶∶= ⋆ empty environment
∣ G.δuV global definition (u ∶= V) after G

∣ G.λuW global declaration (u ∶W) after G

Fig. 4. The abstract syntax of terms and environments.

G1.λuW.G2, L ⊢ $u
0
↠h $u

ρ$

G,L1.λ
e
xW.L2 ⊢#x

0
↠h #x

ρ#

G,L ⊢ ⋆k
n
↠h ⋆h

n(k)
s

G,L ⊢ V1
0
↠h V2 G,L ⊢ T1

n
↠h T2

G,L ⊢ @V1.T1
n
↠h @V2.T2

ν

G,L.δxV ⊢ T1
n
↠h T2

G,L ⊢ δxV.T1
n
↠h δxV.T2

σ
G,L ⊢W1

0
↠h W2 G,L.λe−nx W1 ⊢ T1

n
↠h T2

G,L ⊢ λexW1.T1
n
↠h λ

e−n
x W2.T2

x

G1, L ⊢ V1
n
↠h V2

G1.δuV1.G2, L ⊢ $u
n
↠h V2

δ$
G,L1 ⊢ V1

n
↠h V2

G,L1.δxV1.L2 ⊢#x
n
↠h V2

δ#

G,L ⊢ δxV2.@V1.T1
n
↠h T2

G,L ⊢ @V1.δxV2.T1
n
↠h T2

θ
G,L ⊢ δx(©W.V).T1

n
↠h T2

G,L ⊢ @V.λexW.T1
n
↠h T2

β

G,L ⊢ T1
n
↠h T2

G,L ⊢ δxV.T1
n
↠h T2

ζ
G,L ⊢ T1

n
↠h T2

G,L ⊢ λexW.T1
n
↠h T2

υ

G,L ⊢ T1
n
↠h T2

G,L ⊢©U.T1
n
↠h T2

ε
G,L ⊢ U1

n
↠h U2

G,L ⊢©U1.T
n+1
↠ h U2

e

G1, L ⊢W1
n
↠h W2

G1.λuW1.G2, L ⊢ $u
n+1
↠ h W2

l$
G,L1 ⊢W1

n
↠h W2

G,L1.λ
e
xW1.L2 ⊢#x

n+1
↠ h W2

l#

Side conditions: n < e for β and e ≤ n for υ; x not free in T1 for ζ and υ.

Fig. 5. The proposed rt-transition system.

The apparatus for validating in λδ version 3 derives essentially from [Gui10],
which refers to a previous version of the calculus, and consists of a reduction ma-
chine (Section 3.2), two controllers (Section 3.3) asserting applicability and convert-
ibility in context, and a validator (Section 3.4) implementing top-level verification.

3.1 The Formal System λδ Version 3: “To Π . . . and Beyond”

The λδ family is a sequence of typed λ-calculi taking their features from several
formal systems. We stress that this family is not related intentionally to any other

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

Landau’s “Grundlagen” in the Calculus of Constructions ⋅ 101

G,L ⊢ ⋆k ! h
S

G,L ⊢ V ! h G,L.δxV ⊢ T ! h

G,L ⊢ δxV.T ! h
F

G,L ⊢W ! h G,L.λexW ⊢ T ! h

G,L ⊢ λexW.T ! h
C

G1, L ⊢ V ! h

G1.δuV .G2, L ⊢ $u ! h
D$

G,L1 ⊢ V ! h

G,L1.δxV .L2 ⊢#x ! h
D#

G1, L ⊢W ! h

G1.λuW.G2, L ⊢ $u ! h
I$

n,G ⊢ L1 ! hW

G,L1.λ
e
xW.L2 ⊢#x ! h

I#

G,L ⊢ U ! h G,L ⊢ T ! h G,L ⊢ U
0
↠h U0 G,L ⊢ T

1
↠h U0

g,L ⊢©U.T ! h
T

G,L ⊢ V ! h G,L ⊢ T ! h G,L ⊢ V
1
↠h W0 G,L ⊢ T

n
↠h λ

e+1W0.U0

G,L ⊢ @V.T ! h
A∗

⊢ ⋆ ! h
S$

⊢ G ! h G,⋆ ⊢ V ! h

⊢ G.δuV ! h
F$

⊢ G ! h G,⋆ ⊢W ! h

⊢ G.λuW ! h
C$

Side condition for A∗: Figure 6(υ) not allowed when reducing the spine of T (forth premise).

Fig. 6. The proposed validity of terms and global environments.

G1, L ⊢ V ∶h W

G1.δuV .G2, L ⊢ $u ∶h W
D$

G,L1 ⊢ V ∶h W

G,L1.δxV .L2 ⊢#x ∶h W
D#

G1, L ⊢W ∶h V

G1.λuW.G2, L ⊢ $u ∶h W
I$

G,L1 ⊢W ∶h V

G,L1.λ
e
xW.L2 ⊢#x ∶h W

I#

G,L ⊢ ⋆k ∶h ⋆(h(k))
S

G,L ⊢ T ∶h U G,L ⊢ U ∶h W

G,L ⊢©U.T ∶h©W.U
T

G,L ⊢ V ∶h W G,L.δxV ⊢ T ∶h U

G,L ⊢ δxV.T ∶h δxV.U
F

G,L ⊢W ∶h V G,λeLx.W ⊢ T ∶h U

G,L ⊢ λexW.T ∶h λ
e−1
x W.U

C

G,L ⊢ V ∶h W G,L ⊢ λ1xW.T ∶h U

G,L ⊢ @V.λ1xW.T ∶h U
A0

G,L ⊢ V ∶h W G,L ⊢ T ∶h λ
e+1
x W.U

G,L ⊢ @V.T ∶h @V.λe+1x W.U
A1

G,L ⊢ T ∶h U G,L ⊢ @V.U ∶h W

G,L ⊢ @V.T ∶h @V.U
P∗

G,L ⊢ T ∶h U1 G,L ⊢ U2 ∶h W G,L ⊢ U1
0
↠h U G,L ⊢ U2

0
↠h U

G,L ⊢ T ∶h U2
E

Fig. 7. The conjectured type assignment.

G,L ⊢ V ! h G,L ⊢ T ! h G,L ⊢ V
1
↠h W0 G,L ⊢ T

1
↠h λ

e+1W0.U0

G,L ⊢ @V.T ! h
A1

Side condition for A1: Figure 6(υ) not allowed when reducing the spine of T (forth premise).

Fig. 8. The proposed restricted applicability condition.

system having (variations of) the symbols λ and δ in its name or syntax. Examples
include (but are not limited to): λ-δ [Chu41], ∆Λ [dB94a, dB93], λ∆ [RS94], λ∆
[RP04], λD [NG14], Cλξ [dB78], and [Ned79, Ned80, BKN96].

The first calculus of the λδ family, introduced in [Gui09b], extends the system λλ

[dG93] taking some features from [dG91]. Another calculus, introduced in [Gui15],
adds the applicability condition of the system Λ∞ [vB94b]. The calculus we are
presenting here as λδ version 3, is designed for the dynamic analysis of the QE-GdA
and adds type inclusion by reduction to the previous calculi of the family.

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

102 ⋅ Ferruccio Guidi

Using this device for the formation of universes, that generalizes sort inclusion
of the system λλ [dV94], our calculus can integrate Λ∞ with Aut-QE and CC.

The calculus comprises three components: the generative grammar (Definition 2),
the transition system (Definition 3), and the validity rules (Definition 4).

We note that the primitive notion for defining the syntactically correct terms
is the validity judgment rather than the type judgment. We justify this approach
in [Gui15] where we remark that the formal treatment of validity can be more
convenient than that of typing. In fact, a type judgment conveys the information
that its subject (say T) is valid and, in addition, shows a specific type U of T .
Nevertheless, the choice of U is sometimes pointless and always arbitrary given
that types are not unique but are assigned up to conversion in the present setting.

Its important to stress that the system we are proposing still lacks a theoretical
study. In particular, the rules of the type judgment have not been established yet.
However, Figure 7 shows our conjecture for these rules. The reader should note that
the rules of λλ are included, as well as the pure type rule for application advocated
in [dB91]. In order to reach such a type system, we might need to correct the
present definitions slightly. A disadvantage of the conjectured type system is that
the single rule Figure 6(A∗) splits in the three rules Figure 6(A0,A1,P∗).

Definition 2. We define terms and environments in Figure 4. References occur
by name. We assume Barendegt’s convention in that the same name does not occur
free and bound in the same term or judgment, nor is bound more than once.
Layers are integers extended with ∞. For n <∞ we set: ∞− n =∞+ n =∞. ▲

Definition 3. Given a function h chosen at will as long as ∀k. k < h(k), and

given an integer n such that 0 ≤ n < ∞, the predicate G,L ⊢ T1
n
↠h T2 defined in

Figure 5 states that T1 computes to T2 in our rt-transition system [vD94b].
Transition occurs in the context of G and L, and with respect to h and n.
The system comprises structural schemes, reduction schemes (the r-transitions),
and type inference schemes (the t-transitions). Thus, the height n indicates the
desired difference of degree between T1 and T2 occurring because of the t-transitions.
Firstly, the structural steps are: ρ$, ρ#, s for n = 0 (termed ρ⋆), ν, σ, and x for
n = 0 (termed ξ). Secondly, the reduction steps are: β (function application), δ$
(global expansion), δ# (local expansion), ζ (abbreviation removal), θ (commutation
of application-abbreviation pair as in [CH00]), ε (annotation removal), and our υ
(λ0-abstraction removal) that generalizes sort inclusion. Thirdly, the type inference
steps are: s for n > 0 (sort typing), l$ (global reference typing), l# (local reference
typing), x for n > 0 (abstraction typing) and e (annotation typing). ▲

Definition 4. The predicate G,L ⊢ T ! h defined in Figure 6 states the validity
of T (i.e., its syntactical correctness) with respect to h in the context of G and L.
In particular, Figure 6(A∗) states the extended applicability condition.
The predicate ⊢ G ! h defined in Figure 6 states the validity of G w.r.t. h.
A type judgment is defined by setting: G,L ⊢ T ∶h U iff G,L ⊢©U.T ! h. ▲

It is a fact that sort inclusion and β-contraction yield a non-confluent critical
pair when applied to the same λ-abstraction. In this respect, Automath’s approach
[Zan94] is to apply sort inclusion only when β-contraction is not applicable.

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

Landau’s “Grundlagen” in the Calculus of Constructions ⋅ 103

On the other hand, the key idea behind λδ version 3 is to apply sort inclusion and
β-contraction to different λ-abstractions. To this end, a λe-abstraction is provided
for each value of the integer layer e in the range 0 ≤ e ≤ ∞. In this setting, sort

inclusion applies to λ0-abstractions in the form G,L ⊢ λ0
xW.T

0
↠h T (x not free in

T) implied from Figure 5(υ), while β-contraction applies to λe+1-abstractions as we
imply from Figure 5(β) when n = 0. Thus, a λe+1-abstraction is a head normal form
and as such it appears in Figure 6(A∗), that states our applicability condition.

The infinitely many λe-abstractions are linked by stating that a λe-abstraction is
canonically typed by a λe−1-abstraction, as we imply from Figure 5(x) when n = 1.

In this respect, λ∞ is typed by λ∞ (as one expects), and λ0 is typed by λ0.
Nevertheless, the strict extension condition k < h(k) of Definition 3, applied to

Figure 5(s) when n = 1, yields that the sort of index k is typed by a sort of higher
index. Therefore, a term is never typed by itself (as the reader might fear).

As of λ1, the assumption G,L ⊢ T
1
↠h ⋆k (i.e., T is typed by the sort of index

k) yields by Figure 5(υ) the conclusion G,L ⊢ λ1
xW.T

1
↠h ⋆k (i.e., λ1

xW.T is typed
by the same sort). The situation is explained by observing that λ1

xW.T types with
λ0
xW.⋆k which υ-reduces to ⋆k, and suggests that λ1 corresponds to Π in CC.
This digression yields with no surprise that λ2 must stand for λ in CC.
Stepping up the λe-hierarchy, we meet λ3, which is typed by λ2 as in the systems

of the Aut-4 family [dB94c], as well as the abstractions advocated in [KBN99].
As to λ0, since it types Π, we agree to term it hyper Π, which literally means

beyond Π. Its role in Aut-QE is that of constructing some quasi-expressions.
In principle, υ-contraction can include big universes into small ones, so, eventu-

ally, restrictions might apply to the term W of Figure 5(υ) in order to prove strong
normalization and to avoid inconsistency. These restrictions will influence the λe-
abstractions with 0 ≤ e < ∞, while the λ∞-abstractions will not be influenced. In
fact, we see that layer 0 cannot be reached by iterated typing from layer ∞.

Thus, λδ version 3 accounts for the distinction between instantiation and ab-
straction [dB91] by which block openers correspond to λ∞-abstractions, whereas
functional abstractions correspond to λe-abstractions with 0 < e <∞.

However, in order to validate the QE-GdA in CC, block openers must be repre-
sented in layer 1 and 2. We will discuss the consequences of this issue in Section 5.

The restriction of λδ version 3 to layer ∞ is essentially the calculus we presented
in [Gui15]. Remarkably, the calculus we present in this article is a minimal-impact
extension of that system, which adds just one new rule: υ-contraction.

As of our applicability condition, the extended form stated by Figure 6(A∗),
where n can have any value, is the one of Λ∞: a calculus featuring more than three
degrees of valid terms. However, in the subsystem for representing Aut-QE and
CC, where only three degrees of valid terms are available, taking 1 for n suffices.
Thus, we obtain the restricted applicability condition shown in Figure 8.

In this respect, the calculus we presented in [Gui09b] is essentially λδ version 3
restricted to layer ∞ and equipped just with the restricted applicability condition.

We observe that the author of the QE-GdA relies on extended applicability to
verify the constant ande2"l-r", where a variable for a predicate is unified with its
universal quantification four times. This issue is discussed in Section 3.6.

Looking at the premise G,L ⊢ T
n
↠h λ

e+1W0.U0 of Figure 6(A∗), we see that W0

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

104 ⋅ Ferruccio Guidi

term n = 0 n > 0 n restricted mode
d = 1 d > 1 d extended mode

01r ⋆h stop →s dec.

01x stop

02r ©U.T →ε →e dec.

02x →ε as is

03r λeW.T before up. as is →x as is to after up.

03x as is d ∧ e

04 λeW.T after up. with empty stack stop as is restarts with →ξ

05 λe+1W.T after up. with @V on stack →β as is also if e + 1 is φ

06 λ0W.T after up. with @V on stack error invalid application

07 δxV.T →σ as is push δxV on env.

08 @V.T →ν as is push @V on stack

09 dangling $x or #x error invalid reference

10 $u with δuV on env. stop as is restarts with →δ$

11 #x with δxV on env. →δ# as is

12 $u with λuW on env. stop →l$ dec.

13 #x with λe+1x W on env. stop →l# dec. also if e + 1 is φ

14 #x with λ0xW on env. error →l# dec. failure of υ

(1) →s is: ⋆k → ⋆h(k)

(2) →x is: λeW.T → λe−nW.T for 0 < n

(3) →ξ is: push λexW on env.

(4) column n and d: value after step (dec.: decrement if positive, ∧: minimum)

(5) single line: same operation in both modes

Fig. 9. Operational semantics of the RTM.

(i.e., the expected type of the application argument) may depend on n. However,
several side conditions can be set if we desire to avoid this dependence.

Our choice to exclude υ-contractions when deriving the premise, is implied by
the use of sort inclusion in [Zan94] and has some advantages. On the one hand, υ-
contraction remains fully general. On the other hand, there is no need to check the
side condition of υ-contractions during the mechanical derivation of the premise.

3.2 An Overview of the Reduction and Type Machine

Mechanical validation in the λδ family is based on the Reduction and Type Machine
(RTM). This is an abstract machine of the K family [Kri07], defined first in [Gui10],
that computes the weak head normal forms by rt-reduction according to Figure 5.

The RTM is a controlled machine, in that it can stop before global δ-expansions
and υ-contractions, and then it can be restarted by the calling controller. In fact,
these reductions are better managed on the controller’s side (see Section 3.3).

Our verification procedure involves the RTM to test the next conditions:

(1) convertibility for type annotation: premises 3 and 4 of Figure 6(T);

(2) convertibility for application: premise 3 of Figure 6(A∗) and of Figure 8(A1);

(3) restricted applicability: premise 4 of Figure 8(A1).

(4) extended applicability: premise 4 of Figure 6(A∗);

In the last case the computation’s height n is not known in advance. In the other
cases, instead, this height is set to 0 or 1. Thus, the RTM runs in two modes.

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

Landau’s “Grundlagen” in the Calculus of Constructions ⋅ 105

—When the the caller specifies a value for n, the RTM runs in the restricted mode,
suitable for cases (1) to (3). In this mode the e-step (when applicable) is preferred
to ε-step. This means that, in case of type inference, we use expected types if we
know them. The reader should note the type annotation in Figure 5(β).
Operating on a valid term, the RTM detects an error just upon failure of the side
condition for the υ-step, which the machine checks with a lazy policy.

—When the caller does not specify a value for n, the RTM needs an upper bound
d for it (∞ is allowed) and runs in the extended mode, suitable for case (4).
In this mode, targeted at extended applicability, the RTM looks for a λe+1-
abstraction by repeatedly increasing the height n of the computation, or else it
stops as soon as such an abstraction cannot be found in the range 0 ≤ n < d.
We remark that, on valid terms, this problem is decidable even for d =∞.
The RTM increases n just when forced by an l-step, so s-steps, e-steps and x-steps
are disabled. Anyway, care is taken to ensure the side condition for →β.
Suppose the RTM finds the β-redex @V.λexW.T0 and computes it. If the height
of this computation is increased by n because of following l-steps, the redex
eventually becomes @V.λe−nx W.Tn and remains valid only if n < e. The RTM
ensures this condition by updating its height’s upper bound to at most e on
encountering a λe-abstraction. Thus, we explain the need for the upper bound.

The raw QE-GdA coming from the static analyzer, is verified under the restricted
applicability condition and contains abstractions with layer variables. Thus, the
RTM is instructed to deal with these variables in the restricted mode.

In particular, when a decision must be made on λφxW whether to consider φ > 0
or φ = 0 for an unknown φ, the first alternative is chosen being the safest. In fact,
choosing φ = 0 may lead the RTM to an error condition (either invalid application, or
failure of υ-step). It follows that on λφxW.T , the β-step is taken whenever possible,
in accordance with the original verification algorithm for Aut-QE [Zan94].

Figure 9 displays, informally but precisely, the operational semantics of the RTM
updated for λδ version 3. The extended mode is included for completeness.

We stress that being a machine of the K family, the RTM avoids ζ-contractions,
which are known as delifting steps following a well-established terminology.

3.3 An Overview of the Controllers

The RTM’s are operated by two controllers: the comparator and the applicator.
The comparator asserts the convertibility between an expected type U and the

inferred type of a term V . To this end, it starts a machine on U with n = 0, and a
machine on V with n = 1. So, both machines run in the restricted mode.

The conversion test occurs by levels, i.e., by repeated comparison of weak head
normal forms. The comparison policy follows [Gui10] and is given next.

(1) Two sorts are compared by their index. The arguments stacked by the two
machines are not considered since the RTM’s run on valid terms.

(2) Two references to local abstractions are compared by their level, i.e., not by
their depth, thus these references are not relocated. Information on the level of
each reference is provided by the respective RTM. In case of match, we assert
the convertibility of the arguments stacked by the two machines.

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

106 ⋅ Ferruccio Guidi

(3) Two references to global declarations are compared by URI. In case of match,
we assert the convertibility of the arguments stacked by the two machines.

(4) Two references to global definitions are compared by URI. In case of match,
we test the convertibility of the arguments stacked by the two machines and, if
this test fails, we δ-expand both definitions. In case of mismatch, we δ-expand
the older definition according to an age system we shall explain.

(5) A reference to a global definition compared to any other term, is δ-expanded.

(6) An abstraction in layer 0 is υ-contracted by restarting its machine.

(7) Two abstractions are compared by their layer and, in case of match, we assert
the convertibility of their arguments. Variable layers are accepted.

(8) A variable layer abstraction compared to any other term is υ-contracted.
The earlier definition of this controller [Gui10] was asymmetric in this clause.
Following [Zan94] too closely, we contracted just an abstraction coming from
the term V compared with a sort coming from U . Moreover, we disabled this
clause when leaving the spine of V to avoid an evident inconsistency [Gui09a],
which disappears by restricting υ-contraction to abstractions in layer 0.

It is a known fact that the QE-GdA is validated faster if we limit δ-expansions
during convertibility tests. To this end, the comparator implements age-controlled
δ-expansions [Zan94]. In particular, a progressively increasing integer �u is assigned
to each constant u after its static analysis. Thus, constants become totally ordered.

The lines of the QE-GdA appear in order of dependence, so a constant u1 pro-
cessed before a constant u2, i.e., satisfying �u1 < �u2, cannot depend on u2. So,
when we compare a reference to u1 with a reference to u2, it is safe to δ-expand
just the reference to u2. In this respect, u2 is the older constant of the two.

The second controller, the applicator, tests the applicability of a term T by
starting a machine on T with n = 1 or with d =∞ depending on the mode desired
by the user. The test succeeds if the machine stops on λe+1

x W0.U0 where the layer
may be a variable. In particular, the controller operates thus:

(1) On an abstraction, its layer is tested for positivity.

(2) On a reference to a definition, the machine is restarted, so a δ-expansion occurs.

(3) in the other cases the test fails.

The machine is not restarted on λ0-abstractions, thus υ-contractions are avoided
as the side condition for applicability specifies. See Figure 6(A∗) and Figure 8(A1).

3.4 An Overview of the Validator

Indeed, the validator is the simpler component of our verification system. To some
extent, it follows [Gui10] but, remarkably, we replace the canonical type synthesizer
with a procedure to assert the validity relation ⊢ G ! h of Figure 6.

As a result, the overall validation of the λδ-GdA becomes 1% faster on average
(the type synthesizer is still available, thus we can compare the two approaches).

Our point is that computing the canonical type of a term, is more expensive
than just asserting its existence. Contrary to the rules of canonical typing, the
rules of validity are relocation-free, i.e., they do not involve lifting, following a
well-established terminology. Thus, in the end, we achieve the long awaited fully
relocation-free verification process we advocated in [Gui09a].

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

Landau’s “Grundlagen” in the Calculus of Constructions ⋅ 107

Looking at Figure 6(A∗) and Figure 8(A1), the validator asserts the applicability
of T to V by calling the applicator on T , which provides a RTM, say M , ready
on λe+1W0.U0. Secondly, it calls the comparator on W0 and on V , using M in its
current state for W0. On the contrary, the RTM for V has an initial state.

3.5 Dynamic Disambiguation of Unified Binders

When layer variables are allowed, the discussed validation procedure produces a set
of constraints on such variables. These constraints are of four kinds.

(1) The constraint φ − n = ψ is generated by the RTM on an x-step from the
abstraction λφW.T to the abstraction λψW.T . See line 03r of Figure 9.

(2) The constraint φ = ψ is generated by the comparator matching two abstractions
λφW1.T1 and λψW2.T2 See Clause (7) of the comparator in Section 3.3.

(3) The constraint φ = 0 is generated by the comparator υ-reducing the abstraction
λφW.T . See Clause (8) of the comparator in Section 3.3.

(4) The constraint φ > 0 is generated by the RTM when it β-reduces λφW.T .
Moreover, it is generated when asserting the applicability of a term with func-
tional structure λφW0.U0 See Clause (1) of the applicator in Section 3.3.

Whenever a constraint is issued, the system of known constraints is reduced by
repeated substitution. Thus, inconsistencies are discovered as soon as possible.

Notably, a consequence of static disambiguation (see Section 2.5), is that the
unified binders of the λδ-GdA can be disambiguated constant by constant. In fact,
all layer variables remaining in a constant u after static analysis are determined
after u is validated, i.e., without checking the subsequent references to u.

This means that layer variables can be reused after each constant is validated,
and that the system of constraints can be kept small during validation.

We would like to stress that both static disambiguation strategies must be used
in order to achieve this result, i.e., they disambiguate distinct sets of binders.

3.6 A Posteriori Static Corrections

As is stands originally, the QE-GdA fails to validate both in the λδ family and in
CC, since two constants require formal η-reduction on Π (i.e., an inferred type
λ1
xW.(@x.T) must reduce to an expected type T). They are t2"l-some" and

th2"l-r-imp". Nevertheless, these reductions can be avoided by following a sugges-
tion due to van Daalen and reported in [vB77], by which we apply a ∀-introduction
to a predicate symbol in two constants: all"l" and imp"l-r" (see Figure 10).

With these corrections, our dynamic analysis of the QE-GdA reports 20 incon-
sistencies in its layer constraint system. Four of these are located in the constant
ande2"l-r" and state that sort inclusion is required on Π (i.e., υ-contraction is
required in λ1) four times. We highlight the problem in [Gui09a], noting that
ande2"l-r" requires the pure type inference rule for function application [dB91],
corresponding to the extended applicability condition. See Figure 6(A∗).

In [Gui15] we note that, sometimes, extended (i.e., Λ∞-like) applicability reduces
to restricted (i.e., CC-like) applicability by applying λe+1-introductions.

In the case of the QE-GdA, we invoke imp"l-r" to apply a ∀-introduction to a
predicate b passed as a type and occurring four times (see Figure 10).

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

108 ⋅ Ferruccio Guidi

all"l"

−all:=p:’prop’

+all:=[x:sigma]<x>p:’prop’

imp"l-r"

−imp:=b:’prop’

+imp:=[x:a]<x>b:’prop’

ande2"l-r"

−b@[a1:and(a,b)]

−ande2:=<ande1(a,b,a1)>ande2"l"(a,b,a1):<ande1(a,b,a1)>b

+b@[a1:and(a,imp(a,b))]

+ande2:=<ande1(a,imp(a,b),a1)>ande2"l"(a,imp(a,b),a1):<ande1(a,imp(a,b),a1)>b

some"l"

−some:=not(non(p)):’prop’

+none:=all(sigma,non(p)):’prop’

+some:=not(none(p)):’prop’

∓non replaced by none in 5 “block openers” and in the constants:
th1"l-some", th3"l-some" (two times), th5"l-some", empty"l-e-st", t5"l-e-st-isset"

(two times), t13"l-e-st-eq-landau-n-327", and t38"l-e-st-eq-landau-n-327"

Marks: − (old text), + (new text), ∓ (multiple replacement)

Fig. 10. Static corrections to the QE-GdA.

name: x ∶∶= identifier Barendegt’s convention is assumed

term: M ,N ∶∶= Type,Prop sorts
∣ x reference to name x

∣ ΠxN.M dependent function space from N to M

∣ λxN.M abstraction of (x ∶N) in M
∣ (M N) applicative term

∣ (M ∶N) type-annotated term

environment: Γ ∶∶= ε empty environment
∣ Γ.(x ∶=M) definition of x after Γ

∣ Γ.(x ∶N) declaration of x after Γ

Fig. 11. The abstract syntax of the refined Calculus of Constructions.

After the correction, just 12 inconsistencies remain. The first one is located in
the constant some"l", where the predicate non(p) is passed as a proposition.

We cannot apply a ∀-introduction to non(p) in its definition since some con-
stants use it a predicate indeed (they are: somei"l", t1"l-some", t2"l-some",
th1"l-some", t3"l-some", t4"l-some", and th2"l-some"). So, we introduce a
new constant none for the ∀-quantified non(p) and we replace non with none where
required (see Figure 10). Note that none is indeed the counterpart of some.

This correction solves all inconsistencies. In the end, we add 21 ∀-introductions
to the original QE-GdA to obtain the CC-GdA. This result agrees with [Bro11]
stating that the QE-GdA validates in CC just by formal η-expansion.

In this respect, we stress that Brown solves these inconsistencies with a poorly
documented automated procedure that adds more ∀-introductions to the original
text than we do by manual operation (i.e., 25 ∀-introductions rather than 21).

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

Landau’s “Grundlagen” in the Calculus of Constructions ⋅ 109

Aut-QE λδ version 3 Refined CC

Terms (M , N) ’type’ ’prop’ ⋆0 ⋆1 Type Prop
x #x or $x x

<N>M @N.M (M N)

[x:N]M λφxN.M λ1xN.M ΠxN.M

λ2xN.M λxN.M

Block openers (in list C) [x:N] λφxN λ1xN ΠxN

λ2xN λxN
Alternative translation λ∞x N Not supported

Statements C@x:=’prim’:N λx(C.N) (x ∶C.N)
C@x:=M:N δx(C.©N.M) (x ∶=C.(M ∶N))

Note: the contents of metavariables M , N , C are translated recursively.

Fig. 12. The translation scheme for the QE-GdA.

QE-GdA CC-GdA

+l

@[a:’prop’][b:’prop’]

imp:=[x:a]b:’prop’ (l imp ∶= λaProp.λbProp.(Πxa.b ∶Prop))

Fig. 13. The first three lines of the QE-GdA translated in the refined CC.

4. TRANSLATION OF THE “GRUNDLAGEN”

In this section we want to discuss how the QE-GdA is mapped in λδ version 3 and
then in CC. The present translation aims at respecting the distinction between
declared constants and defined constants. Moreover, and contrary to [Gui09a], it
aims at preserving the shared structure of block openers in defined constants (i.e.,
block openers are not replicated in the expected type of constants).

For this purpose, it is convenient to equip the original CC with context entries
for definitions, of the form (x ∶=N), and with type-annotated terms, of the form
(M ∶N), as we show in Figure 11. We stress that these extensions do not alter the
expressive power of CC, and are accepted by Coq 8.4.3 without modifications.

In particular, the reader can derive the rules for the refined CC from [Coq15].
The translation of an Aut-QE text into the refined CC through λδ version 3 is

straightforward as we see in Figure 12, given that the three systems have many
common constructions. An example from the QE-GdA is in Figure 13.

The proper translation of Aut-QE block openers would involve λ∞-abstractions,
but the refined CC does not support them. This means that the constant imp"l"

would be better translated into λδ version 3 as: δl imp(λ
∞

a ⋆1.λ∞b ⋆1.©⋆1.λ1
xa.b).

It is important to stress that in translating λδ version 3 into the refined CC, we
assume that only λ1-abstractions and λ2-abstractions occur. That is to say that
we assume that the text to be translated actually comes from Aut-QE.

The question remains open if and how a Pure Type System can approximate λδ
version 3. We would approach this problem by looking for a suitable generalization
of the Systems approximating Aut-4 and Aut-QE (see for instance [KN94, Bar93]).

We validate the λδ-GdA setting the parameter h of Definition 3 to h(k) ∶= k + 2.
This choice ensures that the sorts ⋆0 (Type) and ⋆1 (Prop) do not have a common
upper bound in the sort hierarchy. In our opinion, this situation is implied in CC.

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

110 ⋅ Ferruccio Guidi

Strategy First effective use

Validation-based imp"l"

Position-based (on openers) imp"l"

Position-based (on constants) t5"l-some"

Degree-based t9"l-e-st-eq-landau-n-rt-rp-r-c-v9"

Fig. 14. Effective use of disambiguation strategies.

Step Amount

β-contraction 907865

δ-expansion (on variables) 451799

δ-expansion (on constants) 418357

Fig. 15. Main reduction steps of the RTM.

Input System Execution (secs) Task

QE-GdA Helena 0.8.2 01.02 to 01.05 disambiguation, validation in λδ-3

CC-GdA Coq 8.4.3 (no VM) 23.99 to 24.18 type checking in the refined CC
Coq 8.4.3 (with VM) run was halted after 60 minutes

All systems are implemented in the Objective Caml programming language

Fig. 16. Time of one run (min. and max. on 31 runs).

Given the absence of a theoretical study, we can just conjecture that our trans-
lation of Aut-QE into λδ version 3, and in turn, into the refined CC preserves
correctness. The fact that Coq 8.4.3 validates the CC-GdA, supports this idea.

5. CONCLUSION AND FUTURE WORK

In [Gui09a] we describe the λδ-GdA: a presentation of the QE-GdA into the formal
system λδ version 2, experimentally equipped with sort inclusion to this end.

In this paper we take a step further by describing the CC-GdA: a presentation
of the λδ-GdA in CC. The point at issue is assigning a layer to Automath’s unified
binders, i.e., separating λ-abstractions and Π-abstractions. For this purpose, we
replace λδ version 2, a calculus having a single binder, with λδ version 3 first
introduced in Section 3.1: a system featuring infinite (actually, ω + 1) binders,
properly managing sort inclusion through υ-contraction.

In Section 2.5 and Section 3.5 we discuss the three strategies we implemented
for assigning such layers to binders. The reader should note that each strategy is
effective, in that it considers binders ignored by the other strategies. We show in
Figure 14 the first constant of the QE-GdA on which each strategy is effective.

Our analysis reveals that some unified binders correspond to λ-abstractions and
to Π-abstractions at the same time. Brown has an ad hoc automated procedure
[Bro11] to solve this situation by formally η-expanding these inconsistent binders.

On the contrary, our approach is to apply these expansions (∀-introductions,
from the logical standpoint) by hand on the QE-GdA as we show in Section 3.6.

Helena 0.8.2, our processor for λδ version 3 implemented in the Caml program-
ming language, verifies the QE-GdA by operating the amount of β-contractions and
of δ-expansions shown in Figure 15. The δ-expansions on variables come from the

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

Landau’s “Grundlagen” in the Calculus of Constructions ⋅ 111

Original presentation in the QE-GdA (Aut-QE concrete syntax)

+l

@[a:’prop’][b:’prop’]

imp:=[x:a]b:’prop’

[a1:a][i:imp(a,b)]

mp:=<a1>i:b

a@refimp:=[x:a]x:imp(a,a)

b@[c:’prop’][i:imp(a,b)][j:imp(b,c)]

trimp:=[x:a]<<x>i>j:imp(a,c)

@con:=’prim’:’prop’

a@not:=imp(con):’prop’

wel:=not(not(a)):’prop’

[a1:a]

weli:=[x:not(a)]<a1>x:wel(a)

a@[w:wel(a)]

et:=’prim’:a

a@[c1:con]

cone:=et([x:not(a)]c1):a

Corresponding presentation in the CC-GdA (Coq concrete syntax)

Definition l_imp := (fun (a:Prop) => (fun (b:Prop) =>

((forall (x:a), b) : Prop))).

Definition l_mp := (fun (a:Prop) => (fun (b:Prop) =>

(fun (a1:a) => (fun (i:l_imp a b) =>

(i a1 : b))))).

Definition l_refimp := (fun (a:Prop) =>

((fun (x:a) => x) : l_imp a a)).

Definition l_trimp := (fun (a:Prop) => (fun (b:Prop) => (fun (c:Prop) =>

(fun (i:l_imp a b) => (fun (j:l_imp b c) =>

((fun (x:a) => j (i x)) : l_imp a c)))))).

Axiom l_con : Prop.

Definition l_not := (fun (a:Prop) =>

(l_imp a l_con : Prop)).

Definition l_wel := (fun (a:Prop) =>

(l_not (l_not a) : Prop)).

Definition l_weli := (fun (a:Prop) => (fun (a1:a) =>

((fun (x:l_not a) => x a1) : l_wel a))).

Axiom l_et : (forall (a:Prop), (forall (w:l_wel a), a)).

Definition l_cone := (fun (a:Prop) => (fun (c1:l_con) =>

(l_et a (fun (x:l_not a) => c1) : a))).

Fig. 17. First ten constants of the Grundlagen.

β-reductum of Figure 5(β). As a separate task, Helena 0.8.2 outputs the λδ-GdA in
several formats including the CC-GdA for Coq 8.4.3 and, more recently, a λProlog
representation. The authors of [DGST15] report that an implementation in the

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

112 ⋅ Ferruccio Guidi

abstraction λC CC

unrestricted (◻,◻) (◻T ,◻T) (◻T ,◻P) (◻P ,◻T) (◻P ,◻P)
(◻,⋆) (◻T ,Type) (◻T ,Prop) (◻P ,Type) (◻P ,Prop)

(⋆,◻) (Type,◻T) (Type,◻P) (Prop,◻T) (Prop,◻P)

(⋆,⋆) (Type,Type) (Type,Prop) (Prop,Type) (Prop,Prop)

restricted (⋆,◻) (Type,◻P) (Prop,◻P)

(⋆,⋆) (Type,Type) (Type,Prop) (Prop,Type) (Prop,Prop)

Note: we assume (Type ∶ ◻T) and (Prop ∶ ◻P).

Fig. 18. The categories of abstractions in the CC-GdA.

λProlog programming language of the discussed validation procedure for λδ ver-
sion 3, processes this representation of the λδ-GdA without errors or warnings.

The whole source code of Helena 0.8.2 amounts to 350 KiB including comments.
The λProlog implementation of the mere validation procedure is 50 clauses long.
On our hardware, a 3 GHz Intel processor (1.3 MHz bus, 12 MB cache) with 10K

rpm (3 Gb/s SATA) hard drives, we measured the execution times of Figure 16
concerning Helena (processing the QE-GdA), and Coq (processing the CC-GdA).

We stress that the CC-GdA is a faithful presentation of the corrected QE-GdA in
that the QE-GdA is αδη-equivalent to the CC-GdA, once abstractions and function
types are replaced by the corresponding unified binding constructions.

Automath η-equivalence solves the incompatibilities between Aut-QE and CC,
δ-equivalence is introduced for convenience, and α-equivalence is necessary because
of different naming conventions in the QE-GdA and in Coq.

Figure 17 shows the first ten constants of the Grundlagen as they appear in the
QE-GdA and in the CC-GdA. The reader sees both definitions and axioms.

Our work shows that CC is an upper-bound system for validating the CC-GdA,
but we may ask whether a subsystem can be used as well. The mechanical inspection
of the abstractions occurring in the λδ-GdA shows the situation of Figure 18, from
which we argue that validation really needs the full power of CC, including the
impredicative Π’s of category (◻,⋆) according to the classification in [Bar93].

On the other hand, if we follow Automath’s perspective and we present block
openers as λ∞-abstractions, we see that the λδ-GdA is valid in Λ∞ + λP .

This system only allows predicative constructions [Gui09b], and is located in the
middle of the diagonal connecting λP and λC in the λ-Cube [KLN01]. That is,
in the center of its right face. In particular, we note that the λ∞-abstractions of
category (◻,⋆) are much less expressive than the corresponding Π-abstractions.

Our translation of the QE-GdA into CC and the one of [Bro11] are similar in con-
cept. Both need dynamic analysis to disambiguate some unified binders occurring
in the text, and rely on verifying the text in a suitable type theory for this task.
However, we see some important differences. Firstly, Brown’s automated procedure
for solving type inconsistencies applies 25 ∀-introductions to the text, whereas we
apply just 21 ∀-introductions by hand. In this respect, our translated text is more
faithful to the original than Brown’s one. Secondly, Brown relies on Contextual
Pure Type Systems, whose verification algorithm is based on type checking. On
the contrary we rely on λδ version 3, whose verification algorithm is theoretically
faster being based on validation. Unfortunately we cannot compare the two ver-
ification algorithms at the moment because our verifier is written in Caml while

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

Landau’s “Grundlagen” in the Calculus of Constructions ⋅ 113

Brown’s one is written in Lisp. As a minor remark, we note that Brown translates
Automath definitions to Coq by duplicating their context on their type and body.
On the contrary, we avoid this duplication by using type-annotated terms. Thus,
our translated text is even more faithful to the original than Brown’s one.

On the other hand, Brown removes the (many) unnecessary context items from
the translated text, while we leave this optimization for the future. Thus, Coq 8.4.3
verifies his translated text 18% faster than ours on our hardware.

As of now, the CC-GdA is a user-level script consisting of a flat sequence of lines,
each declaring or defining a constant of the QE-GdA in the syntax of CC.

In order to be usable as a background for formalized mathematics, this script
must be improved by making the original structure of the Grundlagen explicit.

In particular, we would like to see definitions and propositions typeset with
domain-specific mathematical notation. Proofs should appear in a domain-specific
language as well, and the whole matter should be organized in different files re-
specting the system of chapters and sections that we see in [Lan65].

Such a step will require to operate manually of the λδ-GdA with the help of a
dedicated technology supervising crucial aspects of the work. For instance, defining
and inserting notations, or applying semantics-preserving changes.

The QE-GdA, the λδ-GdA and the CC-GdA, as well as Helena 0.8.2, are available
at λδ Web site: <http://lambdadelta.info/implementation.html#v2>.

ACKNOWLEDGMENTS

I wish to thank the anonymous referees for valuable suggestions that helped me to
improve this text and to achieve a clearer understanding of λδ version 3.

I wish to dedicate this work to K. Barr for having patiently awaited my e-mail
replies while I was working on the systems of the λδ family over the years.

References

[AP10] A. Abel and B. Pientka. Explicit Substitutions for Contextual Type The-
ory. In K. Crary and M. Miculan, editors, Proceedings 5th International
Workshop on Logical Frameworks and Meta-languages: Theory and Prac-
tice (LFMTP 2010), volume 34 of EPTCS, pages 5–20, September 2010.

[Bar93] H.P. Barendregt. Lambda Calculi with Types. Osborne Handbooks of
Logic in Computer Science, 2:117–309, 1993.

[BKN96] R. Bloo, F. Kamareddine, and R. Nederpelt. The Barendregt Cube
with definitions and generalised reduction. Information and Computa-
tion, 126(2):123–143, 1996.

[Bro11] C.E. Brown. Faithful Reproductions of the Automath Landau Formaliza-
tion. Technical Report, 2011.

[CH88] T. Coquand and G. Huet. The Calculus of Constructions. Information
and Computation, 76(2-3):95–120, March 1988.

[CH00] P.L. Curien and H. Herbelin. The duality of computation. In 5th ACM
SIGPLAN int. conf. on Functional programming (ICFP ‘00), volume 35/9
of ACM SIGPLAN Notices, pages 233–243, New York, USA, Sept 2000.
ACM Press.

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

http://lambdadelta.info/implementation.html#v2

114 ⋅ Ferruccio Guidi

[Chu41] A. Church. The calculi of lambda-conversion, volume 6 of Annals of Math-
ematics Studies. Princeton University Press, Princeton, USA, 1941.

[Coq15] Coq development team. The Coq Proof Assistant Reference Manual: re-
lease 8.4pl6. INRIA, Orsay, France, April 2015.

[Cos96] Y. Coscoy. A Natural Language Explanation for Formal Proofs. In C. Re-
toré, editor, Int. Conf. on Logical Aspects of Computational Linguistics
(LACL), volume 1328 of Lecture Notes in Artificial Intelligence, pages
149–167, Berlin, Germany, Sept 1996. Springer.

[dB78] N.G. de Bruijn. A namefree lambda calculus with facilities for internal
definition of expressions and segments. TH-report 78-WSK-03, Depart-
ment of Mathematics, Eindhoven University of Technology, Eindhoven,
The Netherlands, August 1978.

[dB91] N.G. de Bruijn. A plea for weaker frameworks. In Logical Frameworks,
pages 40–67. Cambridge University Press, Cambridge, UK, 1991.

[dB93] N.G. de Bruijn. Algorithmic definition of lambda-typed lambda calcu-
lus. In Logical Environments, pages 131–145. Cambridge University Press,
Cambridge, UK, 1993.

[dB94a] N.G. de Bruijn. Generalizing Automath by Means of a Lambda-Typed
Lambda Calculus. In Selected Papers on Automath [NGdV94], pages 313–
337. North-Holland Pub. Co., Amsterdam, The Netherlands, 1994.

[dB94b] N.G. de Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-
Rosser theorem. In Selected Papers on Automath [NGdV94], pages 375–
388. North-Holland Pub. Co., Amsterdam, The Netherlands, 1994.

[dB94c] N.G. de Bruijn. Some extensions of AUTOMATH: the AUT-4 family. In
Selected Papers on Automath [NGdV94], pages 283–288. North-Holland
Pub. Co., Amsterdam, The Netherlands, 1994.

[dG91] P. de Groote. Nederpelt’s calculus extended with a notion of context
as a logical framework. In Logical Frameworks, pages 69–86. Cambridge
University Press, Cambridge, UK, 1991.

[dG93] P. de Groote. Defining λ-Typed λ-Calculi by Axiomatising the Typing
Relation. In 10th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’93), volume 665 of Lecture Notes in Computer Science,
pages 712–723, Berlin, Germany, 1993. Springer.

[DGST15] C. Dunchev, F. Guidi, C. Sacerdoti Coen, and E. Tassi. ELPI: fast,
Embeddable, λProlog Interpreter. In M. Davis, A. Fehnker, A. McIver,
and A. Voronkov, editors, Proceedings of 20th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-
20), volume 9450 of Lecture Notes in Computer Science, pages 460–468,
Berlin, Germany, December 2015. Springer.

[dV94] R.C. de Vrijer. Big trees in a λ-calculus with λ-expressions as types. In
Selected Papers on Automath [NGdV94], pages 469–492. North-Holland
Pub. Co., Amsterdam, The Netherlands, 1994.

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

Landau’s “Grundlagen” in the Calculus of Constructions ⋅ 115

[Gui09a] F. Guidi. Landau’s “Grundlagen der Analysis” from Automath to
lambda-delta. Technical Report UBLCS 2009-16, University of Bologna,
Bologna, Italy, September 2009.

[Gui09b] F. Guidi. The Formal System λδ. Transactions on Computational Logic,
11(1):5:1–5:37, online appendix 1–11, November 2009.

[Gui10] F. Guidi. An Efficient Validation Procedure for the Formal System λδ.
In F. Ferreira, H. Guerra, E. Mayordomo, and J. Rasga, editors, Local
Proceedings of 6th Conference on Computability in Europe (CiE 2010),
pages 204–213. Centre for Applied Mathematics and Information Tech-
nology, Department of Mathematics, University of Azores, Ponta Delgada,
Portugal, July 2010.

[Gui15] F. Guidi. Extending the Applicability Condition in the Formal System
λδ. Technical Report AMS Acta 4411, University of Bologna, Bologna,
Italy, December 2015.

[KBN99] F. Kamareddine, R. Bloo, and R.P. Nederpelt. On π-conversion in the λ-
cube and the combination with abbreviations. Annals of Pure and Applied
Logic, 97(1-3):27–45, 1999.

[KLN01] F. Kamareddine, T. Laan, and R. Nederpelt. Refining the Barendregt
Cube using Parameters. In H. Kuchen and K. Ueda, editors, Functional
and Logic Programming, 5th International Symposium (FLOPS 2001),
volume 2024 of Lecture Notes in Computer Science, pages 375–389, Berlin,
Germany, March 2001. Springer.

[KLN03] F. Kamareddine, T. Laan, and R. Nederpelt. De Bruijn’s Automath
and Pure Type Systems. In F. Kamareddine, editor, Thirty Five Years of
Automating Mathematics, volume 28 of Kluwer Applied Logic series, pages
71–123. Kluwer Academic Publishers, Hingham, MA, USA, November
2003.

[KN94] F. Kamareddine and R. Nederpelt. A unified approach to Type Theory
Through a refined λ-calculus. Theoretical Computer Science, 136(1):183–
216, 1994. Selected papers of the Meeting on the Mathematical Founda-
tions of Programming Semantics (MFPS ‘92), Part II (Oxford, 1992).

[KN96] F. Kamareddine and R.P. Nederpelt. A useful λ-notation. Theoretical
Computer Science, 155(1):85–109, 1996.

[Kri07] J.-L. Krivine. A call-by-name lambda-calculus machine. Higher-Order
and Symbolic Computation, 20(3):199–207, September 2007.

[Lan65] E.G.H.Y. Landau. Grundlagen der Analysis. Chelsea Pub. Co., New
York, NY, USA, 1965.

[Luo90] Z. Luo. An Extended Calculus of Constructions. PhD thesis, University
of Edinburgh, 1990.

[Ned79] R.P. Nederpelt. A system of lambda calculus possessing facilities for
typing and abbreviating. Part I: Informal introduction. Memorandum
1979-02, Department of Mathematics, Eindhoven University of Technol-
ogy, Eindhoven, The Netherlands, March 1979.

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

116 ⋅ Ferruccio Guidi

[Ned80] R.P. Nederpelt. A system of lambda calculus possessing facilities for
typing and abbreviating. Part II: Formal description. Memorandum 1980-
11, Department of Mathematics, Eindhoven University of Technology,
Eindhoven, The Netherlands, June 1980.

[NG14] R. Nederpelt and H. Geuvers. Type Theory and Formal Proof. Cambridge
University Press, Cambridge, UK, November 2014.

[NGdV94] R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected
Papers on Automath, volume 133 of Studies in Logic and the Foundations
of Mathematics, Amsterdam, The Netherlands, 1994. North-Holland Pub.
Co.

[RP04] S. Ronchi Della Rocca and L. Paolini. The Parametric Lambda Calcu-
lus. Texts in Theoretical Computer Science, An EATCS Series. Springer,
Berlin, Germany, November 2004.

[RS94] N.J. Rehof and M.H. Sørensen. The λ∆-calculus. In M. Hagiya and J.C.
Mitchell, editors, Theoretical Aspects of Computer Software, volume 789
of Lecture Notes in Computer Science, pages 516–542. Springer, Berlin,
Germany, 1994.

[vB77] L.S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the AU-
TOMATH System. Ph.D. thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, 1977.

[vB79] L.S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the Au-
tomath system, volume 83 of Mathematical Centre Tracts. Mathematisch
Centrum, Amsterdam, The Netherlands, 1979.

[vB94a] L.S. van Benthem Jutting. Description of AUT-68. In Selected Papers on
Automath [NGdV94], pages 251–273. North-Holland Pub. Co., Amster-
dam, The Netherlands, 1994.

[vB94b] L.S. van Benthem Jutting. The language theory of λ∞, a typed λ-calculus
where terms are types. In Selected Papers on Automath [NGdV94], pages
655–683. North-Holland Pub. Co., Amsterdam, The Netherlands, 1994.

[vD94a] D.T. van Daalen. A Description of Automath and Some Aspects of its
Language Theory. In Selected Papers on Automath [NGdV94], pages 101–
126. North-Holland Pub. Co., Amsterdam, The Netherlands, 1994.

[vD94b] D.T. van Daalen. The language theory of Automath. In Selected Papers
on Automath [NGdV94], pages 163–200 and 303–312 and 493–653. North-
Holland Pub. Co., Amsterdam, The Netherlands, 1994.

[Wie99] F. Wiedijk. A Nice and Accurate Checker for the Mathematical Language
Automath. Documentation of the AUT checker, version 4.1, 1999.

[Wie02] F. Wiedijk. A new implementation of Automath. Journal of Automated
Reasoning, 29(3-4):365–387, 2002.

[Zan94] I. Zandleven. A Verifying Program for Automath. In Selected Papers on
Automath [NGdV94], pages 783–804. North-Holland Pub. Co., Amster-
dam, The Netherlands, 1994.

Journal of Formalized Reasoning Vol. 8, No. 1, 2015.

