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In this thesis we give an algebraic characterization of the syntax and semantics of simply-typed
languages. More precisely, we characterize simply—typed binding syntaz equipped with reduction
rules via a universal property, namely as the initial object of some category.

We specify a language by a 2-signature (2, A), that is, a signature on two levels: the syntactic
level X specifies the sorts and terms of the language, and associates a sort to each term. The
semantic level A specifies, through inequations, reduction rules on the terms of the language. To
any given 2-signature (X, A) we associate a category of “models” of (3, A). We prove that this
category has an initial object, which integrates the terms freely generated by ¥ and the reduction
relation — on those terms — generated by A. We call this object the programming language
generated by (3, A).

Initiality provides an iteration principle which allows to specify translations on the syntax,
possibly to a language over different sorts. Furthermore, translations specified via the iteration
principle are by construction type—safe and faithful with respect to reduction.

To illustrate our results, we consider two examples extensively: firstly, we specify a double
negation translation from classical to intuitionistic propositional logic via the category-theoretic
iteration principle. Secondly, we specify a translation from PCF to the untyped lambda calculus
which is faithful with respect to reduction in the source and target languages.

In a second part, we formalize some of our initiality theorems in the proof assistant Coq. The
implementation yields a machinery which, when given a 2-signature, returns an implementation
of its associated abstract syntax together with certified substitution operation, iteration operator
and a reduction relation generated by the specified reduction rules.
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Initiality for Typed Syntax and Semantics . 9

1. INTRODUCTION

In this thesis we give a characterization, via a universal property, of the syntax
and semantics of simply—typed languages with variable binding. More precisely, we
characterize the terms and sorts associated to a signature, equipped with reduction
rules, as the initial object in some category. Via the iteration principle stemming
from initiality, translations between languages, possibly over different sets of sorts,
can be specified in a convenient and economic way. Furthermore, translations thus
specified are ensured to be faithful with respect to reduction in the source and
target languages, as well as compatible in a suitable sense with substitution on
either side.

1.1 Motivation: Translations from PCF to ULC

As an introductory example, consider translations from the programming language
PCF, introduced by Plotkin [Plo77], to the untyped lambda calculus ULC, invented
by Church [Chu36]. A detailed account of both languages is given in Appx. A.
These two languages are paradigmatic in the sense that PCF may be considered
a rather high-level language, equipped with a type system, whereas the untyped
lambda calculus represents a low—level, untyped language. We specify a map f
from the set of PCF terms to the set of lambda terms as in Fig. 1 (cf. [Pho93]),
with a suitable function g from the set of constants of PCF to lambda terms, e.g.,

Fig. 1. Translation from PCF to ULC

g(T) := Azy.z, and suitable constants of the lambda calculus, e.g.,

0 := (Az.Ay.(y(zzy))) (Az.Ay.(y(zzy)))  (Turing fixed point combinator) and
Q= Az.ax)Azr.azx) .

Of course, different such translations exist; for instance, one may choose to translate
Fix to a different fixed point combinator or one chooses a different representation
g’ for the constants of PCF in the lambda calculus, yielding a different translation
f': PCF — ULC.

In this thesis we present a category—theoretic framework to specify such transla-
tions of a language to another. The challenges are

—the varying sets of sorts in source and target languages' and

—to capture compatibility of such translations with structure — such as substitu-
tion and reduction — in the source and target languages.

1Here we consider untyped languages to be single-sorted.
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We construct a category in which “languages such as PCF and ULC are objects”,
and in which the above translation f : PCF — ULC is a morphism. As it turns out,
the preceding sentence is imprecise and needs to be refined: more precisely, in the
category we construct the translation f is an initial morphism f : PCF — ULC,
that is, its source PCF is the initial object. Now, as we have seen, there are several
possible translations from PCF to the lambda calculus, and the above translation
f : PCF — ULC cannot be an initial morphism in a category where objects are “just”
languages — otherwise we would have f = f’ for any translation f’: PCF — ULC.
Thus the objects in the category we construct are not just languages, but languages
with additional structure, allowing us to distinguish different initial morphisms
/[ PCF — ULC,

;L (ULCy)
(PCF, )

7 uLe, ).

In this category, initiality of (PCF, ¢) yields the following iteration principle: spec-
ifying an iterative translation f : PCF — ULC is equivalent to specifying the “extra
structure” 1 of the lambda calculus ULC. We do not yet explain what this addi-
tional structure, here denoted ¢, ¢ and v, looks like, but refer instead to Sect. 1.2.1
for an instructive example.

A natural question then is whether — or better, in what sense — the translation
f specified in Fig. 1 is compatible with the respective reductions in the source and
target languages. Phoa [Pho93] gives an answer to this question; in particular, the
translation f is faithful in the sense that

t »pcr ' implies f(t) »5 f(t) .

In this thesis we provide a category—theoretic framework which allows to specify,
via a universal property, such faithful translations between languages with variable
binding over different sets of sorts.

1.2 Initial Semantics

Initial Semantics characterizes the terms of a language associated to a signature S
as the initial object in some category — whose objects we call Semantics of S —,
yielding a concise, high—level, definition of the abstract syntax associated to S. In
more detail, the following “ingredients” are used:

Signature. A signature specifies abstractly and concisely the syntax and seman-
tics of a language.

Category of Representations. To any signature S we associate a category of “mod-
els” of that signature, the objects of which we call representations of S.

Initiality. In this category of representations of S we exhibit the initial object,
the language generated by S.
The motivation for Initial Semantics are twofold: firstly, Initial Semantics provides
a category—theoretic definition — via a universal property — of the syntax and

Journal of Formalized Reasoning Vol. 8, No. 2, 2015.



Initiality for Typed Syntax and Semantics . 11

semantics freely generated by a signature. Secondly, initiality yields an iteration
operator which allows for an economic and convenient specification of morphisms
— translations — from the initial object to other languages.

Depending on the “richness” of the language we want to define, we need a suit-
able notion of signature and, accordingly, of representation of that signature. The
language features we consider in this thesis are the following:

Variable binding. We consider binding constructors on the term level, such as
lambda abstraction.

Typing. We consider simple type systems, such as the simply—typed lambda cal-
culus and, via the Curry—Howard isomorphism, propositional logic (cf. Sect. 3.4).

Reduction. We consider semantics in form of reduction rules on terms, such as
beta reduction,

Ar.M(N)~ Mz := N]| .

For the integration of each of the features above, the notions of signature and repre-
sentation have to be adapted to accommodate the increasing amount of information
which must be given to uniquely specify a language.

One of our goals is to use Initial Semantics in order to treat the last question of
the preceding section: we would like to translate from one language into another
— possibly over different sets of sorts —, using a universal, category—theoretic
construction. This construction should take into account as much “structure”’ as
possible. By this we mean that the translations under consideration should by
construction be compatible, for instance, with typing and reduction in the source
and target language. A more in—depth description of those structures is given in
Sects. 1.2.3, 1.2.4, 1.2.5 and 1.2.6.

In Sect. 1.2.1 we explain the notion of signature and representation for a simple
inductive data type, the natural numbers. The following sections sketch the changes
that have to be made in order to integrate variable binding, substitution, typing
and reduction rules, respectively. In Sect. 1.3 we summarize the contributions of
this thesis, whereas in Sect. 1.4 we give a section—wise overview of its contents.

1.2.1 Ezample: Peano Azioms. We introduce the notion of signature and repre-
sentation using the example of the natural numbers; in line with the triple structure
mentioned at the beginning of Sect. 1.2, our goal is to give a signature for the natu-
ral numbers and to associate to it a category of representations whose initial object
is given by the natural numbers.

As a suitable signature, consider the following map from a two elements set to
natural numbers:

Ni={z—0, s—1}.

Intuitively, it says that the natural numbers are built from two constructors, namely
a O-ary operator (i.e. a constant), say, z, — the zero constant — and a unary
operator, say, s — the successor function.

A representation of the signature A is given by a triple (X, Z,S) of a set X
together with a constant Z € X and a unary operation S : X — X. A morphism
to another such triple (Xo, Zo, So) is a map f : X — X such that

f(Z2)=2y and foS=S8yof. (1.1)

Journal of Formalized Reasoning Vol. 8, No. 2, 2015.



12 . B. Ahrens

This category has an initial object (N, Zero, Succ) given by the natural numbers N
equipped with the constant Zero = 0 and the successor function Succ : N — N.

Initiality of N gives a way to specify iterative functions [Ven00] from N to any
set X by equipping X with a constant Z € X and a unary map S : X — X, i.e.
making the set X the carrier of an object (X,Z,5) € N. A different choice of
7' € X and S’ : X — X yields a different iterative map N — X.

Put differently, reading Disp. (1.1) dynamically rather than statically, i.e. as a
reduction from left to right rather than as equations, shows that functions on the
initial object N can be defined by pattern matching, where the right—-hand side of
the matching must obey a particular form.

Remark 1.1 (Digression on Natural Numbers Object). The very same definition
is also used to define a natural numbers object in any category C with a terminal
object 1; just replace Z € X and S : X — X by morphisms z : 1 — X and
s: X — X in C. More precisely, we call natural numbers object the triple (N :
C,Zero : 1 — N, Succ : N — N) if] for any triple (X, z,s) of an object X € C and
morphisms z and s as above, there exists a unique morphism f : N — X such that
the following diagrams commute:

1 Zero N N Succ N
> s ! ‘f
X X———X

For details we refer to Mac Lane and Moerdijk’s book [MLM92].

1.2.2 Initial Algebras. The term “Initial Algebra” is best explained using an-
other viewpoint, where a signature is given by a signature functor ¥ : Set — Set.
The category in question then is the category X—Alg of algebras of the functor
3, that is, the category whose objects are pairs (X, f) of a set X and a map
f XX — X. A morphism to another such algebra (Y,g) is given by a map
h: X — Y such that

X 2y
b
X ——Y

commutes. The example of Sect. 1.2.1 is equivalently given by the signature functor
N : X — 1+ X, with initial algebra

14+ N [Zero,Succ] N

Another example is that of lists (of finite length) of a given type A: let F(X) :=
14+ A x X. The initial F-algebra is given by the set [A] of lists over A,

[nil,cons]

1+ A x [4] A .

Journal of Formalized Reasoning Vol. 8, No. 2, 2015.



Initiality for Typed Syntax and Semantics . 13

1.2.3 Adding Variable Binding. When passing to syntax with variable binding,
the question of how to model binding arises. The following representations of
binding are among the most frequently used:

—Nominal syntax using named abstraction (A being a set of atoms), e.g.,
MN:[A]T - T
—Higher—Order Abstract Syntax (HOAS), e.g.,
AN (T—-T)—=T
and its weak variant, e.g.,
AMi(A—=>T)—>T
—Nested Data Types as presented in [BM98], e.g.,
AMT(X+1) - T(X)

Note that the encoding via nested data types differs conceptually from the others
in that here the set T' of terms is parametrized explicitly by a context, i.e. a set X
of variables possibly appearing freely in the terms of T(X). Thus T'(X) denotes
the set of terms of the language T with free variables in the set X. The set X + 1
corresponds to an extended context with one additional free variable, which is bound
in the abstracted term. It is usually implemented through an inductive data type
(option in OCAML or the Maybe monad in HASKELL) — whence the term “ Nested”.
It is also known under the name “Heterogenous data type” [AR99].

Ezxample 1.2. We represent the untyped lambda calculus as a nested data type
as done, e.g., by Bird and Paterson [BP99]: consider the following inductive type
ULC : Set — Set of terms of the untyped lambda calculus?:

Inductive ULC (V : Type) : Type :=
| Var : V —> ULC V
| Abs : ULC (option V) —> ULC V
| App : ULCV —> ULCV —> ULC V.

For syntax with binding, arities need to carry information about the binding be-
haviour of their associated constructor. One way to define such arities is using lists
of natural numbers. The length of a list then indicates the number of arguments
of the constructor, and the i-th entry denotes the number of variables that the
constructor binds in the i-th argument. Continuing Ex. 1.2, the signature A of ULC
is given by
A:={app:[0,0] , abs:[1]} .

The map V +— ULC(V) is in fact functorial: given a map f : V — W, the map
ULC(f) : ULC(V) — ULC(W) renames any free variable v € V in a term by f(v),
yielding a term with free variables in W. Accordingly, the signature A should be
represented in functors F' : Set — Set instead of in sets, and natural transformations
take the place of maps.

2We use “Set” synonymously to “T'ype”. Note however, that types behave differently from sets in
some aspects. In particular, given two (propositionally) equal types A = B and a : A, we do not
have a : B.
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14 . B. Ahrens

1.2.4  Adding Substitution. As mentioned at the beginning of Sect. 1.2, we would
like to integrate as much structure as possible into our category of “models”. One
such structure is (capture—avoiding) substitution of free variables. To account for
substitution, we consider not plain functors F' : Set — Set as in the preceding
paragraph, but instead monads on the category Set of sets. Monads are functors
equipped with some extra structure, which we explain by the example of the un-
typed lambda calculus. The map V +— ULC(V) comes with a (capture-avoiding)
simultaneous substitution operation: let V and W be two sets (of variables) and f
be amap f: V — ULC(W). Given a lambda term ¢ € ULC(V'), we can replace each
free variable v € V in t by its image under f, yielding a term ¢’ € ULC(WW). Fur-
thermore we consider the constructor Vary as a “variable-as—term” map, indexed
by a set of variables V|

Vary : V — ULC(V) .

Altenkirch and Reus [AR99] observed that the well-known algebraic structure
of monad captures those two operations and their properties: substitution and
variable-as—term map turn ULC into a monad (Def. 2.65) on the category of sets.

The monad structure of ULC should be compatible in a suitable sense with the
constructors Abs and App of ULC: substitution distributes over constructors. To
capture this distributivity, Hirschowitz and Maggesi [HMO07a] consider modules over
a monad (ct. Def. 2.43) — which generalize monadic substitution —, and morphisms
of modules — which are natural transformations that are compatible with the
module substitution in a suitable sense. Indeed, the maps

ULC:V — ULC(V) ,
ULC': V = ULC(V +1) and
ULC x ULC : V = ULC(V) x ULC(V)

are the underlying maps of such modules (cf. Exs. 2.45, 2.46), and the constructors
Abs and App are morphisms of modules (cf. Exs. 2.47, 2.74).

1.2.5 Adding Types. Type systems exist with varying features, ranging from
simply—typed syntax to syntax with dependent types, kinds, polymorphism, etc.
By simply—typed syntax we mean a non—polymorphic syntax where the set of types
is independent from the set of terms, i.e. type constructors only take types as
arguments. In more sophisticated type systems, types may depend on terms, leading
to more complex definitions of arities and signatures. The present work is only
concerned with simply—typed languages, such as the simply—typed A—calculus and
PCF. We refer to the underlying set of types of a language as object types or sorts.

The goal of typing is to classify terms according to some criteria. As an example,
one may ask whether a term is of function type, that is, whether it would make
sense to apply it to another term. Once such a classification of terms is achieved,
one can use typing information to filter terms according to their types, in order to
pick out only those terms that have the desired type. The classification of terms
through typing thus has a semantic flavour. However, we still subsume typing under
the syntactic aspect, since it has an impact on the set of terms of the language.

One way to add types would be to make them part of the terms, as in “Ax : N.x +
4”. However, for simple type systems it is possible to separate the worlds of types
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Initiality for Typed Syntax and Semantics . 15

and terms and consider typing as a map from terms to types, thus giving a simple
mathematical structure to typing. How can we be sure that our terms are well-
typed? Despite the separation of types and terms we still want typing to be tightly
integrated into the process of building terms, in order to avoid constructing ill-typed
terms. Separation of terms and types seems to contradict this goal. The answer
lies in considering not one set of terms with a “typing map” to the set, say, T, of
types, but a family of sets, indexed by the set T of object types. Term constructors
then can be “picky” about what terms they take as arguments, accepting only those
terms that have the suitable type. We also consider free variables to be equipped
with an object type. Put differently, we do not consider terms over one set of
variables, but over a family of sets of variables, indexed by the set of object types.
In other words, we consider a context to be given by a family (V;);cr of sets of
variables, where V; := V (t) is the set of variables of object type ¢t. We illustrate our
point of view by means of the example of the simply—-typed lambda calculus TLC:

Ezample 1.3. Let
Tric = * | Tric~ Tric

be the set of types of the simply—typed lambda calculus. The set family of simply—
typed lambda terms with free variables in V is given by the following inductive
family:

Inductive TLC (V : T —> Type) : T —> Type :=
| Var : forall t, Vt —> TLC V t
| Abs : forall st TLC (V +s)t —> TLC V (s ~> t)
| App : forall st, TLCV (s ~>t) —> TLCV s —> TLC V t.

where V + s := V + {xs} denotes context extension by a variable of type s € T ¢
— the variable which is bound by the constructor Abs(s,t). The variables s and ¢
range over the set T c of types. The signature describing the simply—typed lambda
calculus is given in Exs. 3.23 and 3.47. The preceding paragraph about monads
and modules applies to the simply—typed lambda calculus when replacing sets by
families of sets indexed by T c: the simply—typed lambda calculus can be given
the structure of a monad (cf. Ex. 2.37)

TLC : Set”™¢ — Set’me |
The constructors of TLC are morphisms of modules (cf. Exs. 2.61, 2.56, 2.60).

This method of defining exactly the well-typed terms by organizing them into a
family of sets parametrized by object types is called intrinsic typing [BHKMI11] —
as opposed to the extrinsic typing, where first a set of reaw terms is defined, which
is then filtered via a typing predicate. Intrinsic typing delegates object level typing
to the meta language type system, such as the Coq type system in Ex. 1.3. In this
way, the meta level type checker (e.g. Coq) sorts out ill-typed terms automatically:
writing such a term yields a type error on the meta level.

Furthermore, the intrinsic encoding comes with a much more convenient recursion
principle; a map to any other type system can simply be defined by specifying its
image on the well-typed terms. When using extrinsic typing, a map on terms would
either have to be defined on the set of raw terms, including ill-typed ones, or on just
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the well-typed terms by specifying an additional propositional argument expressing
the welltypedness of the term argument. Benton et al. give detailed explanation
about intrinsic typing in a recently published paper [BHKM11].

1.2.6 Adding Reductions. The semantics of a programming language describes
how programmes of that language evaluate. For functional programming languages
as considered in this thesis, evaluation — or computation — is done by reduction.
As an example, the evaluation of the term 7 4+ 5 of a hypothetical arithmetic pro-
gramming language to its “value” 12 is done by a series of reductions, whose precise
form depends on the semantics of the language in question. Typical rules, which
specify how terms reduce, are given in Sect. A.2 for the example languages of the
lambda calculus and PCF.

Given a set A of such reduction rules, one may consider the relation generated
by these rules. More precisely, following Barendregt and Barendsen [BB94|, we
consider several closures of those rules:

Propagation into subterms. A relation R is called compatible if it is closed under
propagation into subterms, that is, if for any constructor f of arity n and any i < n,

M’\/?RNif(xl,...7.’)L‘i17M71‘i+17...,.’)3n) ~R f(.%‘l,...,CEZ‘I,N,.’)SiJrh...,xn) .

Reduction. A relation R is a reduction relation if it is compatible, reflexive and
transitive.

Equivalence. A relation R is a congruence if it is a compatible equivalence rela-
tion.

To the set A of rules we associate three relations generated by A, which are the
smallest relations that contain A and are a compatible relation, a reduction relation
and a congruence, respectively. We denote these relations, in this order, by — 4,
— 4 and =4, respectively.

Remark 1.4 (Digression on Reduction Strategies). Suppose we have a term in
which reduction rules are applicable in several places, such as in the term

((Az.M)N)((Ay.M")N')

which is f—reducible in the operator and in the operand. Here the natural question
arises where one should reduce at first, in the operator or in the operand (or both in
parallel) — the question about the reduction strategy. More precisely, one considers
the following two properties of rewrite systems:

Termination. Are there infinite — non—terminating — chains of reductions?

Confluence. Suppose a term t reduces both to t' as well as to t” via two different
reductions. Is there a term ¢’ such that both ¢’ and " reduce to t""'?

Termination and confluence together yield (strong) normalization, an important
property of rewriting systems: in a strongly normalizing rewriting system, any
reduction strategy yields the same value for a given term — in particular, any
reduction strategy arrives at a value, i.e. at a term without any more reducible
subterms. To illustrate the concept of termination, we give an example of a lambda
term such that one reduction strategy terminates whereas another one does not;
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consider the term (Az.y)(2Q) with Q@ = (Azx.zz) and a free variable y. Reducing
the outermost beta redex results in an irreducible term y in one step, whereas
the strategy of reducing at first the operand (22) leads to an infinite chain of
reductions.

In this thesis we are interested in the reduction relation generated by a set of
rules. It differs from the congruence by the absence of a symmetry rule, which,
while adequate for mathematical reasoning, yields a relation that is too coarse
from a point of view of computation. In the words of Girard [GTL89], while the
congruence generated by A emphasizes the static point of view of mathematics,
the reduction relation associated to A emphasizes the dynamic point of view of
computation.

To account for reductions, we consider functors and monads whose codomain
is not the category of (families of) sets, but of (families of) preordered sets. The
definition of monad requires the underlying functor to be an endofunctor, but we
do not want to consider preordered contexts — what would be the meaning of this
preorder? The restriction to endofunctors was lifted by Altenkirch et al. [ACU10]
through the introduction of relative monads. A relative monad is given by a functor
— not necessarily endo — together with two operations very similar to monadic
variables—as—terms and substitution. We thus consider, e.g., the lambda calculus,
as a relative monad associating to any set X of variables a preordered set of lambda
terms (ULC(X),—p), where the preorder on ULC(X) is given by the reduction
relation — 3 generated by the beta rule of Disp. (A.1), cf. Ex. 2.85.

1.3 Contributions

In this thesis we give, via a universal property, an algebraic characterization of
simply—typed syntax equipped with semantics in form of reduction rules. More
precisely, given a pair of a signature — specifying the types and terms of a lan-
guage — and inequations over this signature — specifying reduction rules —, we
characterize the terms of the language associated to this signature, equipped with
reduction rules according to the given inequations, as the initial object of a category
of “models”.

Our starting point is work on initiality for untyped syntax done by Hirschowitz
and Maggesi [HMO0T7a], and on its generalization to simply—typed syntax by Zsid6
[Zsil0]. In a first step we extend Zsido’s theorem [Zsil0, Chap. 6] to account
for varying sorts, cf. Sect. 1.3.1. Afterwards, we integrate reduction rules into
Hirschowitz and Maggesi’s [HMO07a] purely syntactic initiality result, cf. Sect. 1.3.2.
Finally we obtain our main theorem, which accounts for varying object types as
well as reduction rules, by combining the aforementioned two results, cf. Sect. 1.3.3.

Furthermore, for the untyped case (cf. Sect. 1.3.2), we provide a formalized proof
in the proof assistant Coq of our result, yielding a machinery which, when fed
with a signature for terms and a set of inequations, produces the abstract syntax
associated to the signature, together with the reduction relation generated by the
given inequations. For the simply—typed case, we formalize the instantiation of
our main result (cf. Sect. 1.3.3) to the signature of the programming language
PCF [P1o77].

We now explain our contributions and approaches in more detail:
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1.3.1 Extended Initiality for Varying Sorts. In her PhD thesis [Zsi10, Chap. 6],
Zsid6 proves an initiality theorem for the abstract syntax associated to a simply—
typed signature. However, the “models” (or representations) she considers, among
which the abstract syntax is the initial one, are all models over the same set of
sorts. In this way, the iteration principle obtained by initiality does not allow the
specification of a translation to a term language over a different set of sorts. We
adapt Zsido’s theorem by introducing typed signatures. A typed signature (S, X)
specifies a set of sorts via an algebraic signature S, as well as a set of simply—typed
terms over these sorts via a term signature ¥ over S. A representation R of such
a typed signature is then given by a representation of its signature S for sorts in
some set T' = Tg as well as a representation of ¥ in a monad — also called R
— over the category Set”. A morphism of representations P — R consists of a
morphism f of the underlying representations of S, together with a morphism of
representations of X, that is compatible in a suitable sense with the “translation of
sorts” f. We show that the category of representations of (S, X) thus defined has an
initial object, which integrates the sorts freely generated by S and the terms freely
generated by X, typed over the sorts of S. Our definition of morphisms ensures that,
for any translation specified via the iteration principle, the translation of terms is
compatible with the translation of sorts with respect to the typing in the source
and target languages.

To summarize, compared to Zsido’s theorem [Zsil0, Chap. 6] we consider repre-
sentations of a signature for terms over wvarying sets of sorts. However, since we
specify the set of sorts via a signature S and thus implement the variation of sorts
through morphisms of representations of .S, our “initial set of sorts” necessarily has
inductive structure.

1.3.2 Integrating Reduction Rules. In order to integrate reduction rules into our
initiality results, we define a notion of 2-signature. A 2—signature (X, A) is given by
a (1-)signature ¥ which specifies the terms of a language, and a set A of inequations
over X.. Intuitively, each inequation specifies a reduction rule, for instance the beta
rule.

The models — or representations — of such a 2—signature are built from relative
monads and modules over relative monads: given a l-signature X, we define a
representation of 3 to be given by a relative monad on the appropriate functor
A : Set — Pre (cf. Def. 2.13) together with a suitable morphism of modules (over
relative monads) for each arity of 3. Given a set A of inequations over X, we define
a satisfaction predicate for the models of 3; we call representation of (X, A) each
representation of ¥ that satisfies each inequation of A. This predicate specifies a
full subcategory of the category of representations of . We call this subcategory
the category of representations of (X, A). We prove that this category has an initial
object, which is built by equipping the initial representation of 3 — given by the
terms freely generated by ¥ — with a suitable reduction relation generated by the
inequations of A.

With this initiality theorem for (3, A) we obtain a new iteration principle, and
any translation specified via this principle is, by construction, compatible with the
reduction relation in the source and target languages.
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1.3.3 Main Theorem: Initiality for Simply—Typed Syntax with Reduction. Fi-
nally, we combine the above two theorems in order to obtain an initiality result
which accounts for the motivating example of Sect. 1.1. More precisely, we define
a 2-signature to be given by a typed signature (S,3) as in Sect. 1.3.1 together a
set A of (S, X)-inequations analogous to Sect. 1.3.2, specifying reduction rules.

We define a category of representations of ((.S,X), A) and prove that this category
has an initial object. This initial representation integrates the types and terms
freely generated by (S,%), the terms being equipped with the reduction relation
generated by the inequations of A.

1.3.4 A Computer Implementation for Specifying Syntax and Semantics. Above
theorems are really meant to be implemented in a proof assistant. Such an imple-
mentation allows the specification of syntax and reduction rules via 2—signatures,
yielding a highly automated mechanism to produce syntax together with certified
substitution and iteration principle.

We prove the initiality theorem described in Sect. 1.3.2 in the proof assistant Coq
[Coql0]. As an illustration we describe how to obtain the untyped lambda calculus
with beta reduction via initiality.

Furthermore we formalize an instance of the theorem explained in Sect. 1.3.3,
also in Coq. More precisely, we define the category of representations of the typed
signature of PCF with inequations and prove that this category has an initial object.
Afterwards, we give a representation of this signature in the relative monad ULCg
of the untyped lambda calculus with beta reduction, yielding a translation from
PCF to ULC. Instructions on how to obtain the complete source code of our Coq
library are available on

https://github.com/benediktahrens/monads/tree/thesis.

1.4 Synopsis

This thesis consists of two parts: Section 1.5.4 (Sects. 2 to 5) describes and proves
informally the theorems which constitute this thesis, whereas Exs. 5.4 (Sects. 6 to 9)
describes their implementation and verification in the proof assistant Coq [Coq10].

Section 2: Category—Theoretic Constructions. We recall the notions of monad
and module over a monad, together with some important constructions of mod-
ules.

Afterwards we state equivalent definitions of monads, modules and their mor-
phisms in the style of Manes, emphasizing their substitution structure.

Then we recall Altenkirch et al.’s definition of relative monads and define suitable
morphisms for such monads.

Finally we define modules over relative monads and show that the constructions
of modules over monads carry over to modules over relative monads.

Section 3: Simple Type Systems. We present two initiality theorems for simple
type systems:

In Sect. 3.2 we present Zsido’s initiality theorem [Zsil0, Chap. 6]: it characterizes
the syntax associated to a simply—typed signature S over a set T' of object types
as the initial object in a category of representations of .S.
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In Sect. 3.3 we prove a variant of Zsid6’s theorem which allows for representations
of a term signature over varying sets of sorts. We introduce the notion of typed
signature in order to account for translations of sorts. A typed signature (5,3) is
a pair consisting of a first—order algebraic signature S for sorts, and a higher—order
signature X for terms over those sorts. A representation of a typed signature (S, X)
is again a pair given by a representation of the sort signature S in a set 7" and a
representation of the term signature 3 in a monad P over the category Set”. We
show that the category of representations of a typed signature has an initial object.

Finally, as an example, we use the iteration principle stemming from initiality in
order to specify a double negation translation from classical to intuitionistic propo-
sitional logic, viewing propositions as types via the Curry—Howard isomorphism.

Section 4: Reductions for Untyped Syntax. We prove an initiality theorem for
untyped languages with variable binding, equipped with reduction rules.

For the specification of such languages, we define a notion of 2-signature, i.e. a
signature consisting of two levels: a syntactic level — called 1—signature —, which
specifies the terms of the language, and a semantic level, which specifies reduction
rules for those terms through inequations. A representation of such a 2-signature
(X, A) is any representation of the underlying 1-signature ¥ which satisfies each
inequation of A.

We define the category of representations of (X, A) as the full subcategory of
representations of 3 whose objects satisfy the inequations of A. We prove that this
subcategory has an initial object, integrating the terms generated by ¥ and the
reduction relation generated by the rules of A.

As a running example we consider the 2—signature of the untyped lambda calculus
with beta reduction.

The implementation of the theorem in Coq is explained in Sect. 8.

Section 5: Simple Type Systems with Reductions. We prove the main result of
this thesis: we generalize the initiality result from the preceding Sect. 4 to simply—
typed syntax with reduction rules, in a way that allows for change of object types
as in Sect. 3.3.

More precisely, we generalize the definition of 2-signature to allow for the un-
derlying 1-signature to specify a simple type system as in Sect. 3.3. Accordingly,
the definition of inequation is extended to allow for the specification of reduction
rules on such simple type systems. The main theorem of this chapter states that
the category of representations of such a 2 signature has an initial object. This
initial representation integrates the types and terms specified by the underlying 1-
signature, and is equipped with the reduction relation generated by the inequations
of the 2—signature.

Section 6: Formalizing Category Theory in Coq. This chapter serves as an intro-
duction to the proof assistant Coq in general and our library of category theory used
in the following chapters in particular. We describe the formalization of basic con-
cepts such as categories, (relative) monads and modules over (relative) monads. In
the course of the chapter we also describe some of the features of Coq that we use,
such as implicit arguments, the Program framework and coercions.

Section 7: Formalization of Zsidd’s theorem. Building upon the library presented
in Sect. 6, we describe the formalization of Zsidd’s initiality theorem from Sect. 3.2
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in Coq. At first we define a Coq data type of simply—typed signatures over a given
object type T. Afterwards we associate a category of representations to any such
signature and prove that this category has an initial object.

Section 8: Initiality for Untyped 2—-Signatures, Formalized. We describe the im-
plementation in Coq of the theorem proved informally in Sect. 4: the category of
representations of a 2—signature has an initial object. The formal proof follows the
informal proof very closely; the only noteworthy difference is that the initial ob-
ject of the underlying 1-signature is constructed directly rather than through the
adjunction proved in Sect. 4.

Finally we demonstrate how to specify the untyped lambda calculus with beta
reduction through a 2-signature in our implementation.

Section 9: A Faithful Translation of PCF to ULC. We formalize in Coq an instan-
ce of the main theorem of the thesis (cf. Sect. 5), for the 2-signature of PCF,
equipped with reduction rules as presented in Fig. 7. In particular, we explain
where we encounter difficulties when using intrinsic typing in an intensional type
system.

By representing the signature of PCF in the monad of the untyped lambda cal-
culus, we obtain a translation from PCF to ULC that is compatible with reductions
in the source and target languages.

1.5 Related Work

In this section we review related work, in particular in the field of Initial Semantics
(cf. Sect. 1.5.2), i.e. algebraic characterization of syntax (and their semantics) and
in the field of formalization of syntax in proof assistants, cf. Sect. 1.5.3.

1.5.1 Translations from PCF. Our main example is given by the programming
language PCF, introduced by Plotkin [Plo77]. This language and its various se-
mantics have been studied extensively. The following work is not concerned with
algebraic characterization of programming languages, and thus not directly related
to this thesis; it rather answers questions that we do not (yet) consider in our
categorical setting:

Phoa [Pho93] studies the semantic aspect of a specific translation of PCF to the
untyped lambda calculus, i.e. the behaviour of this translation and its compatibility
with respect to reduction in the source and target language. The translation he
considers is also the one we specify via initiality in Sect. 9. The main result of
this work is that this translation is adequate in the sense that a PCF programme
reduces to a natural number constant n of PCF if and only if its translation into
the lambda calculus reduces to the corresponding church numeral c,,.

Riecke [Rie93] studies translations from PCF into itself, where source and target
are equipped with different reduction strategies (cf. Rem. 1.4). We do not consider
reduction strategies in this thesis.

1.5.2  Initial Semantics. We classify work in Initial Semantics according to the
features it covers. We are interested, in no particular order, in the following features:

—Typing
—Variable binding
—Semantics through (in)equations
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Initial Semantics for untyped syntax without variable binding is a result by Birkhoff
[Bir35]. Goguen et al. [GTWW77] give an overview of the literature about initial
algebra and spell out explicitly the connection between initial algebras and abstract
syntax. In fact, Goguen et al. also treat the example of a programming language
with variable binding, which they call “Simple Applicative Language” (SAL). How-
ever, they circumvent the algebraic treatment of variable binding by modelling
binding through a family of unary constructors abs, : exp — exp where x varies
over a fixed set of variables.

1.5.2.1 Variable binding. When looking for an algebraic treatment of variable
binding, the question of how to model binding arises. Some possible encodings have
already been mentioned in Sect. 1.2.3, we repeat the list — in no particular order
— for reasons of convenience:

(1) Nominal syntax using atom abstraction:
A [AIT - T
(2) Higher—Order Abstract Syntax (HOAS):
AN(T—-T)=>T
and its weak variant:
AM(A—=>T)—>T
(3) Nested Data Types:
M T(X+1) - T(X)

In the following, the numbers in parentheses indicate the technique used for mod-
elling variable binding in the respective work, according to the list given above.
Initial Semantics for untyped syntax was presented by Gabbay and Pitts [GP99,
(1)], Hofmann [Hof99, (2)], Fiore et al. [FPT99, (3)] and Hirschowitz and Maggesi
[HMO7a, (3)].

While Gabbay and Pitts work in a set theory enriched with atoms — which serve
as object level variables —, Hofmann, Fiore et al. and Hirschowitz and Maggesi use
category—theoretic notions to formalize syntax. The nominal approach initiated by
Gabbay and Pitts is the only one among those mentioned that allows for a study
of alpha conversion. For all others the notion of alpha convertibility and syntactic
equality coincide.

Fiore et al.’s approach is based on the notion of signature functor and >—monoid,
where the central concept of substitution is expressed in terms of strengths. Hir-
schowitz and Maggesi model substitution through monads, following Altenkirch
and Reus’ (cf. [AR99]) characterization of the untyped lambda calculus as a monad
on the category of sets. The connection between those two approaches is made
precise in Zsidd’s PhD thesis [Zsi10] in form of adjunctions between the respective
categories of models.

Later Gabbay and Hofmann [GHO8] exhibit the relation between nominal tech-
niques and presheaves, showing that through the nominal approach one considers
in fact presheaves F' that preserve pullbacks of monomorphisms, i.e. presheaves
that are stable under intersection, F(X NY)=FXNFY.
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Fiore et al.’s approach was extended by Fiore [Fio02] to the simply—-typed lambda
calculus, and for general simply-typed syntax by Miculan and Scagnetto [MS03,
(2)]. Both use an encoding of binding via nested data types. The relation to Higher—
Order Abstract Syntax — as “terms with holes” — is made precise in the latter
work [MS03, Proposition 1]. Hirschowitz and Maggesi’s approach was generalized
to simply—typed syntax in Zsidd’s thesis [Zsil0]. It was also generalized to account
for more general term formers such as explicit flattening p: T o T — T [HM12].

Some of the mentioned lines of work have been extended to integrate semantic
aspects in form of reduction relations on terms into initiality results:

1.5.2.2  Incorporating Semantics. Ghani and Liith [GLO3] present rewriting for
algebraic theories without variable binding; they characterize equational theories
(with a symmetry rule) resp. rewrite systems (with reflezivity and transitivity rule,
but without symmetry) as coequalizers resp. coinserters in a category of monads
on the categories Set resp. Pre.

Fiore and Hur [FHO7] have extended Fiore’s work to “second—order universal
algebras”, thus integrating semantic aspects in form of equations into initiality
results. In particular, Hur’s thesis [Hurl0] is dedicated to equational systems for
syntax with variable binding. In a “Further research” section [Hurl0, Chap. 9.3],
Hur suggests the use of preorders, or more generally, arbitrary relations to model
inequational systems.

Hirschowitz and Maggesi [HMO07a] prove initiality of the set of lambda terms
modulo beta and eta conversion in a category of exponential monads. In an un-
published paper [HMO7b] they introduce the notion of half-equation and equation
— as a pair of parallel half-equations — that we adopt in this thesis. However,
we reinterpret a pair of parallel half-equations as an inequation rather than as an
equation. Accordingly, we use preorders to model semantic aspects of syntax. This
emphasizes the dynamic viewpoint of reductions as directed equalities — or rewrite
rules — rather than the static, mathematical viewpoint one obtains by considering
symmetric relations.

However, we consider not (traditional) monads but instead relative monads — on
the appropriate functor A : Set — Pre (cf. Def. 2.13) — as defined by Altenkirch
et al. [ACU10], that is, monads with different source and target categories: we
consider variables as elements of unstructured sets, whereas the set of terms of a
language carries structure in form of a reduction relation. In our approach variables
and terms thus live in different categories, which is realized mathematically through
the use of relative monads instead of regular monads.

T. Hirschowitz [Hir] defines a category Sig of 2-signatures for simply—typed syntax
with reductions, and constructs an adjunction between Sig and the category 2CCCat
of small cartesian closed 2—categories. He thus associates, to any 2-signature, a 2—
category of types and terms satisfying a universal property. His approach differs
from ours in the way in which variable binding is modelled: Hirschowitz encodes
binding in a Higher—Order Abstract Syntax (HOAS) style through exponentials.
Reduction relations are expressed by the existence of 2—cells.

1.5.3 Formalization of Syntaz. The implementation and formalization of syntax
has been studied by a variety of people. The POPLMARK challenge [ABFT05] is a
benchmark which aims to evaluate readability and provability when using different
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techniques of variable binding. However, the benchmark only concerns one specific
language, not arbitrary syntax specified by a signature. The technique we use,
called Nested Abstract Syntaz, is used in a partial solution by Hirschowitz and
Maggesi [HM10b], but was proposed earlier by others, see e.g. [BM98, AR99]. The
use of intrinsic typing by dependent types of the meta—language was advertised in
[BHKM11].

During our work we became aware of Capretta and Felty’s framework for rea-
soning about programming languages [CF09]. They implement a tool — also in
the Coq proof assistant — which, given a signature, provides the associated ab-
stract syntax as a data type dependent on the object types, hence intrinsically
typed as well. Their data type of terms does not, however, depend on the set of
free variables of those terms. Variables are encoded with de Bruijn indices. There
are two different constructors for free and bound variables which serve to control
the binding behaviour of object level constructors. In our theorem, there is only
one counstructor for (free) variables, and binding a variable is done by removing it
from the set of free variables. Capretta and Felty then add a layer to translate
those terms into syntax using named abstraction, and provide suitable induction
and recursion principles. However, they do not consider semantic aspects, such as
reduction rules, in their work.

The tool Ott [SNO " 10] allows the specification of syntax and reduction rules, even
for polymorphic type systems, in a system—independent ASCII file with subsequent
translation into several different formal systems, including Coq, Isabelle [Pau88] and
others. However, no algebraic characterization of the produced syntax is given.

1.5.4 Published Work. This thesis is partly based on the following articles:

Initial Semantics for higher—order typed syntaz in Coq (with J. Zsidd) [AZ11].
The content of this article corresponds to the contents of Sect. 3.2 and Sect. 7.
Extended Initiality for Typed Abstract Syntax [Ahr12].
The content of this article corresponds to the contents of Sect. 3.3 and Sect. 3.4.

Modules over relative monads for syntazx and semantics [Ahr11].
The content of this article corresponds to the contents of Sect. 4 and Sect. 8.

2. CATEGORY-THEORETIC CONSTRUCTIONS

In this chapter, we first present some basic category—theoretic definitions (Sect. 2.1).
Afterwards, we review two different definitions of monads and modules over monads
(cf. Sects. 2.2 and 2.3). Finally, we present relative monads and define colax mor-
phisms of relative monads as well as modules over relative monads (cf. Sect. 2.4).

2.1 Categories, Functors & Transformations

In order to fix notations, we state some basic definitions of category theory, in
particular those of category, functor and natural transformation. The examples we
give in this section are used in later chapters. The reader might want to skip this
section — throughout the thesis we link back to the definitions and examples where
necessary.

The present section is not meant to constitute an introduction to category theory,
nor does it define all of the concepts we use in the course of this work. For both an
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introduction to category theory as well as a reference for notions whose definitions
are not given in this thesis, we refer to Mac Lane’s book [ML98].

2.1.1 Two Definitions of Categories
Definition 2.1 (Category, Code 6.3). A category C is given by

—a class — which we will also call C — of objects,

—for any two objects ¢ and d of C, a class of morphisms, written C(c, d),
—for any object ¢ of C, a morphism id. € C(c,c) and

—for any three objects ¢, d, e of C, a composition operation

(_o Jede :C(d,e) x C(e,d) — Clc,e)

such that the composition is associative and the morphisms of the form id. for
suitable objects c are left and right neutral with respect to this composition?:

Yabed:C,Vf:C(a,b),g:C(b,c),h:C(d,e), (hog)of=ho(gof)
Ved:C,Vf:C(e,d), idgof=fand foid. = f .
We also write f : ¢ — d for a morphism f € C(c,d).

Remark 2.2. We omit a fifth condition stating that the classes of morphisms are
pointwise disjoint. This condition is automatically satisfied when implementing the
morphisms of a category as a dependent type of an intensional type theory, which
we do in Sect. 6.

Remark 2.3 ((Equivalent Def. of Category)). Equivalently to Def. 2.1, a category
C is given by

—a class Cy of objects and a class C; of morphisms,
—two maps denoting the source and target object of any morphism,
src,tgt : C; — Cp
—a partially defined composition function
(Lo ):CixCi—C,

such that g o f is defined only for composable morphisms f and g, i.e. for mor-
phisms f and g such that tgt(f) = src(g) — in which case we require that

sre(g o f) = sre(f) and tgt(g o f) = tgt(g) —
—an identity morphism for each object, i.e. a map
id: Cy — Cq s

such that sre(id(c)) = tgt(id(c)) = ¢ and
—properties analogous to those of the preceding definition. The associative law,
e.g., reads as

Vfgh:C, tgt(f) = sre(g) = tet(g) = sre(f) = (hog)o f=ho(gof) .

3We omit the “object” parameters from the composition operation, since those are deducible from
the morphisms we compose. This omission is done in our library as well, via implicit arguments
(cf. Sect. 6.2).
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While the two definitions of categories of Def. 2.1 and of Rem. 2.3 are equivalent,
they both have some advantages and inconveniences when implementing them in a
dependent type theory such as Coq. We expand on these differences in Sect. 6.3.1.

Definition 2.4. The category Set has sets as objects. Morphisms from a set A
to a set B are the total maps from A to B, together with the usual composition of
maps.

Given a category C, a morphism f : ¢ — d from object ¢ to object d is called
invertible, if there exists a left— and right—inverse g : d — ¢, that is, a morphism
g :d— csuch that go f = id. and f o g = idy. In this case the objects ¢ and d are
called isomorphic.

The following universal property plays a central role in this thesis:

Definition 2.5. Let C be a category. The object ¢ of C is called initial if there
exists precisely one morphism iy : ¢ — d in C to any object d of C.

Any two initial objects of a category C are canonically isomorphic. We usually
do not distinguish canonically isomorphic objects of a category, which explains the
(standard) use of the definite article. Whenever it exists, we also write O¢ — or
simply 0, when the category in question can be deduced from the context — for
the initial object of C. The dual concept is that of a terminal object:

Definition 2.6. Let C be a category. The object d of C is called terminal if there
exists precisely one morphism ¢, : ¢ — d in C from any object ¢ of C.

Ezxample 2.7. The empty set is initial in the category Set of sets. The singleton
set is terminal in Set.

Later we also use the following categories:

Definition 2.8. The category Pre of preorders has, as objects, sets equipped with
a preorder, and, as morphisms between any two preorders A and B, the monotone
functions from A to B.

Definition 2.9. The category wPre has, as objects, sets equipped with a preorder,
and, as morphisms between any two preordered sets A and B, all set—theoretic maps
from A to B, not necessarily monotone.

Example 2.10. Any set T can be regarded as a discrete category, with objects
the elements of T', and just identity morphisms.

Notation 2.11 (Product, Coproduct). We refer to Mac Lane’s book [ML98] for
the definition of product and coproduct. Whenever they exist, we write a x b for
the product of objects a and b of C, and a + b for the coproduct. Notation for
arrows is informally explained in the following diagrams:

a*>a+b<n—b a+b

(f.9) f‘ f,h] fJ‘rk
\ i \ / i

O e xd—d cxd c+d
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2.1.2  Functors & Natural Transformations. Given two categories C and D, a
functor F' : C — D maps objects of C to objects of D, and morphisms of C to
morphisms of D, while preserving source and target as well as composition and
identity:

Definition 2.12. A functor F from C to D is given by
—a map F : C — D on the objects of the categories involved and
—for any pair of objects (¢, d) of C, a map
Fie,q) : C(c,d) = D(Fe, Fd) ,
such that
—Ve: C, F(id.) = idp. and
—Vede:CVf:c—dNg:d—e, F(gof)=FgoFf.

Here we use the same notation for the map on objects and that on morphisms. For
the latter we also omit the subscript “(c, d)” as implicit arguments.

Definition 2.18 (Functor A : Set — Pre and Forgetful Functor). We call A :
Set — Pre the functor from sets to preordered sets which associates to each set X
the set itself together with the smallest preorder, i.e. the diagonal of X,

A(X) = (X, 5x).

In other words, for any xz,y € X we have xdxy if and only if x = y. The functor
A : Set — Pre is a full embedding, i.e. it is fully faithful and injective on objects.

In the other direction we have a forgetful functor U : Pre — Set which maps any
preordered set (X, <) to the set X. We have U o A = Idget.

Definition 2.14 (Natural Transformation). Given two functors F,G : C — D, a
natural transformation v : F' — G (also written v : F' = @) is given by a family of
morphisms

Ye : D(Fe¢,Ge)

indexed by objects of C such that, for any morphism f : ¢ — d in C, the following
diagram commutes:

Fe—2 3 Ge

al o

Fd——Gd

Definition 2.15 (Adjunction). Let C and D be categories. An adjunction from
C to D is given by
—a functor F' : C — D,
—a functor G : D — C,
—a natural transformation 7 : Ide — G o F', called unit, and
—a natural transformation € : F'o G — Idp, called counit,
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such that the transformations
G¢"% aqra %5 aq, P par L F

both are the identity transformation. We write F' 4 G for such an adjunction,
leaving the unit and counit implicit.

Remark 2.16. The functors F and G as above are adjoint if and only there is a
family of bijections
o= ((pc)d : D(Fe,d) =2 C(c, Gd))
indexed by objects ¢,d € C, which is natural in both ¢ and d.
Definition 2.17 (Coreflection). Let F' : C — D be an embedding, that is, a

faithful functor which is injective on objects — e.g., the inclusion of a subcategory.
Then F'is a coreflection if it has a right adjoint.

The following lemma gives an example of a coreflection:

LEMMA 2.18: The forgetful functor U : Pre — Set is right adjoint to the diago-
nal functor A : Set — Pre:

Set 1 Pre |,
U
that is, the embedding A : Set — Pre is a coreflection. We denote by o the family
of isomorphisms
exy : Pre(AX,Y) = Set(X,UY) .

We omit the indices of p whenever they can be deduced from the context.

Proof. The unit is given by a family of identity maps nx := idx : Set(X,UAX).
The counit is given by a family of maps ey : Pre(AUY,Y) whose carrier map on
UY is the identity map on UY. O

We later use the following result about left adjoints:

LeEmMA 2.19 (Left adjoints are cocontinuous): Left adjoints are cocontinuous,
i.e. commute with colimits. In particular, the image of an initial object under a left
adjoint is initial.

For the proof we refer to Mac Lane’s book [ML98, V.5.Thm.1].

2.1.3 More Exzamples, Notations. The following categories and functors will ap-
pear in different places throughout the thesis. Again, the reader may skip these
examples for the moment; we will point to the definitions from the place where they
are used.

Definition 2.20 (Category of Families). Let C be a category and T be a set, i.e.
a discrete category (cf. Ex. 2.10). We denote by CT the functor category, an object
of which is a T—-indexed family of objects of C. Given two families V and W, a
morphism f:V — W is a family of morphisms in C,

Fotes f() V() = W(D) .
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We write V; := V(t) for objects and morphisms. Given another category D and a
functor F : C — D, we denote by FT the functor defined on objects and morphisms
as

FT.ct DT, fw (t— F(f) .

Remark 2.21. Given a set T, the adjunction of Lem. 2.18 induces an adjunction
AT
/\
Set” 1 P
\_/

UT

reT

Definition 2.22 (Retyping Functor). Let T and 7’ be sets and g : T — T” be a
map. Let C be a cocomplete category. The map ¢ induces a functor

g:CT =CcT, WwWog .
The retyping functor associated to g : T — T,
g:cT —cm |

is defined as the left Kan extension operation along g, that is, we have an adjunction
cr 1 cr. (2.1)

Remark 2.28 (Retyping Functor Explicitly, Code 6.6). In the context of Def. 2.22,
we define the functor
g:ch=c, X=tX, = §X)=t~ J] x .
{t | g(t)=t'}
In particular, for any V € CT — considered as a functor — we have a natural
transformation
V=gVog:T—C

given pointwise by the morphism V; — H{s|g(s):g(t)} Vs in the category C. Put
differently, the map ¢ : T'— T" induces an endofunctor g on C” with object map

g(V):=g(V)oyg
and we have a natural transformation ctype—the unit of the adjunction of Disp. (2.1),
ctype:Id=g:cT - cT .

Remark 2.24. One can interpret the map g : T — T’ as a translation of object
sorts and the functor g as a “retyping functor” which changes the sorts of contexts
and terms (or more generally, models of terms) according to the translation of
sorts. The monads we are interested in are monads over some category Set’ and
our monad morphisms are over retyping functors. In Sect. 3 we interpret the syntax
of a language P over a set of types T as a monad P over the category Set”. Given
another language @ over a set of types U, we consider a translation from P to Q)
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to be a translation of object types g : T'— U and a colax monad morphism P — @
over the retyping functor §: Set” — Set? (cf. Def. 2.38).

Remark 2.25 (about maps on coproducts and pattern matching). In the proof
assistant Coq we implement retyping (cf. Rem. 2.23) via an inductive family, cf.
Code 6.6. In this context, passing from the left to the right in the adjunction
isomorphism

CT (V. W) = O (V. g" W)
is done by precomposing with pattern matching on the constructor ctype, cf. Sect. 9.6.

Definition 2.26 (Pointed index sets). Given a category C, a set T' and a natural
number n, we denote by C" the category with, as objects, diagrams of the form

ns1r%e ,
written (V,t1,...,t,) with ¢; := t(¢). A morphism A to another such (W,t) with
the same pointing map t is given by a morphism h : V — W in CT. Note
that there is are no morphisms between families with different points, that is,
CT ((V,t),(V',t)) = 0 if t # t'. Any functor F : CT — DT extends to F, : CI —
DT via
Fn(V,tl,...,tn) = (FV,tl,...,tn) .

Remark 2.27. The category CL consists of T" copies of C*, which do not in-
teract. Due to the “markers” (¢1,...,t¢,) we can act differently on each copy, cf.,
e.g., Defs. 2.57 and 2.59. The reason why we consider categories of this form is
explained at the beginning of Sect. 3.3 and in Rem. 3.37.

Retyping functors generalize to categories with pointed indexing sets; when
changing types according to a map of types g : T — U, the markers must be
adapted as well:

Definition 2.28. Given a map of sets g : T'— U, by postcomposing the pointing
map with g, the retyping functor generalizes to the functor

gn):Ch = C o (Vit) = (V. 94(1))
where g.(t) :=got:n—U.
Finally there is also a category where families of objects of C over different in-
dexing sets are mixed together:

Definition 2.29. Given a category C, we denote by TC the category where an
object is a pair (T, V) of a set T and a family V € CT of objects of C indexed by
T. A morphism (g, h) to another such (77,W) is given by amap ¢ : T'— T” and a
morphism h : V — Wogin C7, that is, a family of morphisms in C, indexed by T,

hy: Vi — Wg(t) .
Suppose C has an initial object, denoted by Oc. Given n € N, we call i = (n, k —
Oc) the object of TC that associates to any 1 < k < n the initial object of C. We

call TC,, the slice category n | TC. An object of this category consists of an object
(T, V) € TC whose indexing set “of types” T is pointed n times, written (T,V,t),
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where t is a vector of elements of T of length n. A morphism (g,h) : (T,V,t) —
(T",V',t') is a morphism (g, h) : (T,V) — (IT",V’) as above, such that t' =t og.

We call TU, : TC, — Set the forgetful functor associating to any pointed family
(T,V,ty,...,t,) the indexing set T. Note that for a fixed set T, the category CL
(cf. Def. 2.26) is the fibre over T of this functor.

Remark 2.30 (Picking out Sorts). Let 1:7C, — Set denote the constant func-
tor which maps objects to the terminal object of the category Set. A natural
transformation 7 : 1 — TU, associates to any object (T,V,t) of the category
TC,, an element of T. Naturality imposes that 7(T", V', t') = g (7(T,V,t)) for any
(g, h) : (T, V,t) = (T", V' t').

Notation 2.31. Given a natural transformation 7 : 1 — 7U, as in Rem. 2.30,
we write

(T V,t) :=7(T,V,t)(x) € T,
i.e. we omit the argument * € 1s. of the singleton set.

Example 2.32. For 1 < k < n, we denote by k : 1 = TU, : TC, — Set the
natural transformation such that k(T,V,t) := t(k).

2.2 Monads & Modules

We state the widely known definition of monad and the less known definition of
module over a monad, together with their respective morphisms. Modules have
been used in the context of Initial Semantics by Hirschowitz and Maggesi [HMO07a,
HM10a] and Zsid6 [Zsil0]. The monad morphisms we are interested in are, more
precisely, colaz monad morphisms, see, e.g., Leinster’s book [Lei04].

2.2.1 Definitions
Definition 2.83 (Monad). A monad T over a category C is given by

—a functor T': C — C (which we denote by the same name as the monad),
—a natural transformation 7 : Id¢ — T and
—a natural transformation p: ToT — T

such that the following diagrams commute:

r— 2 N
\ P / e J J“
T T2 — T.
Ezample 2.34 (List Monad). The functor [ ] : Set — Set which to any set X

associates the set of finite lists over X, is equipped with a structure as monad by
defining 1 and p as “singleton list” and flattening, respectively:

nx(x):=[z] and
/'[/X (I:[xl,la ceey xl,m1]7 ceey [l‘n,]n L] 7mn,m"]]) = [:I:l,la L] 7x1,m17- cey xn,la ceey mn,m”]
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Remark 2.35 (Kleisli Operation (Monadic Bind)). Given a monad (7,7, 1) on
the category C, the Kleisli operation ¢ is defined, for any a,b € C and f € C(a,Tb),
by setting

Oap: Cla,Tb) = C(Ta,Th) ,
fouoTf .
Indeed, a monad (T, 7, ) can equivalently be defined as a triple (7,7, 0) with an
adapted set of axioms, see Def. 2.65. We often leave the object arguments a and b
implicit, i.e. we write o(f) := gab(f)-

Ezample 2.36 (Monadic Syntax, untyped). Syntax as a monad (in form of a
Kleisli triple) was presented by Altenkirch and Reus [AR99]: consider the syntax of
the untyped lambda calculus ULC as given in Ex. 1.2 in Sect. 1.2.1. As mentioned
there, the map V +— ULC(V) is functorial, its map on morphisms is given by
renaming of free variables. This functor is equipped with a monad structure by
defining 7 as variable—as—term operation

nv (v) := Var(v) € ULC(V)

and the multiplication p : ULC o ULC — ULC as flattening which, given a term of
ULC with terms of ULC(V) as variables, returns a term of ULC(V') by removing
a layer of intermediate Var constructors. These definitions turn (ULC,n, ) into
a monad on the category Set. The Kleisli operation associated to this monad
corresponds to simultaneous substitution [AR99].

Ezample 2.37 (Monadic Syntax, typed). Consider the syntax of the simply—
typed lambda calculus as defined in Ex. 1.3. The map

TLC : Set’™c — Set™™ Vs TLC(V) ,

associating to any set family V' the family of lambda terms with free variables in
V', is the object map of a functor. Similarly to the untyped lambda calculus (cf.
Ex. 2.36), the natural transformations n : Id — TLC and p: TLCo TLC — TLC are
defined as variable—as—term operation and flattening, respectively. These definitions
turn (TLC, 7, 1) into a monad on the category Set”™c.

Our definition of colax monad morphisms and their transformations is taken from
Leinster’s book [Lei04]:

Definition 2.38 (Colax Monad Morphism). Let (7,7, 1) be a monad on the
category C and (T”,n/, ') be a monad on the category D. A colaz morphism of
monads (C,T) — (D,T") is given by

—a functor F: C — D and
—a natural transformation v : FT — T'F as in

T
C——¢C

Fh /,Y J(F
D 4>T/
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such that the following diagrams commute:

T T FT T ja
| I
Fpu w'F Fn
FT : T'F, FT ——T'F.

From now on we simply say “monad morphism over F” when speaking about a
colax monad morphism with underlying functor F.

Definition 2.39 (Composition of Monad Morphisms). Suppose given a monad
morphism as in Def. 2.38. Given a third monad (T"”,7", u”) on category £ and a
monad morphism (F',~") : (T", 7', /) — (T",n", "), we define the composition of
(F,~) and (F’,~') to be the monad morphism given by the pair consisting of the
functor F'F and the transformation

FET -2 e 2 e

The verification of the necessary commutativity properties is done — for the equiva-
lent definition given in Def. 2.69 — in the Coq library, cf. colax _Monad Hom comp

Definition 2.40 (Transformation). Given two morphisms of monads
(F,v),(F',v"):(,T)— (D,T")

a transformation (F,~) — (F',~') is given by a natural transformation 8 : F = F’
such that the following diagram commutes:

FT— 2 L T'F
BT T'B
F'T———TF.

vy

A 2-category is a category with “morphisms between morphisms”. We refer to
Mac Lane’s book [ML98] for the definition.

Definition 2.41 (2-Category of Monads, [Lei04]). We call Mndcoax the 2—
category an object of which is a pair (C,T) of a category C and a monad T on
C. A morphism to another object (D,T”) is a colax monad morphism (F,~) :
(C, T)— (D, T"). A 2—cell (F,y)= (F',7) is a transformation.

Notation 2.42. For any category C, we write Id¢ for the object (C,Id) of Mndeolax

We are interested in modules over monads. These are particular monad mor-
phisms whose codomain is the identity monad on some category*. Modules and,

4The characterization of modules over monads as particular colax monad morphisms is due to an
anonymous referee, whom I hereby thank for his helpful comments.
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more specifically, their morphisms, capture the distributivity of substitution over
the constructors of a language, cf. Ex. 2.47 and Ex. 2.74.

Definition 2.43 (Module over a Monad). Given categories C and D and a monad
T on C, a module over T with codomain D (or T—module towards D) is a colax
monad morphism (M,~) : (C,T) — (D,Idp) from T to the identity monad on D.
Given parallel T-modules M and N, a morphism of modules from M to N is a
transformation from M to N as in Def. 2.40. We denote the category of T-modules
towards D by

Mod(T, D) := Mndcolax((QT), (D,Id)) .
Before giving some examples of modules over monads, we state a more explicit

definition of modules:

Remark 2.44 ((Modules and their Morphisms, explicitly [HMO07a])). By unfold-
ing the preceding definition and simplifying, we obtain that a T—module towards
D is a functor M : C — D together with a natural transformation o : MT — M
such that the following diagrams commute:

MTT X MT M
ol e N
MT —— M, MT —— M.

Such a module can hence be regarded as a kind of generalized monad over a functor
that is not necessarily an endofunctor; indeed, this is our intuition behind mod-
ules. In particular, every monad gives rise to a module over itself, the tautological
module (cf. Def. 2.48). Furthermore, the category of modules Mod(T, D) allows for
products, provided the target category D is equipped with a product.

A morphism of T-modules from (M, o) to (M’,c’) then is given by a natural
transformation 8 : M = M’ such that the following diagram commutes:

M1 2 e

Ul J/o"
M T M.
We anticipate the constructions of the next section by giving some examples of

modules:

Ezample 2.45 (Tautological Module, Ex. 2.36 cont.). Any monad T on a cat-
egory C can be considered as a module over itself, the tautological module (cf.
Def. 2.48). In particular, the monad of the untyped lambda calculus ULC (cf.
Ex. 2.36) is a ULC—module with codomain Set.

Ezample 2.46. The map
ULC": V = ULC(V")

with V/ := V + 1, inherits the structure of a ULC—module from the tautological
module ULC — we obtain the derived module (cf. § 2.2.3.1) of the module ULC.
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Also, the map

ULC x ULC: V — ULC(V) x ULC(V)
inherits a ULC—module structure, cf. Def. 2.53.

The constructors of our example languages are, accordingly, morphisms of mod-
ules:

Ezample 2.47 (Ex. 2.46 cont.). The map
V +— Appy : ULC(V) x ULC(V) — ULC(V)

satisfies the diagram of Rem. 2.44 and is hence a morphism of ULC-modules from
ULC x ULC to ULC. The map

V — Absy : ULC(V') = ULC(V)

is a morphism of ULC-modules from ULC’ to ULC. Later we consider this example
using an alternative definition of module morphism (cf. Def. 2.73) and explain in
detail the meaning of its commutative diagrams for the constructors App and Abs,
cf. Ex. 2.74.

2.2.2  Constructions on Monads and Modules. We present some constructions
of modules which will be used in the next section. They were previously defined in
Zsido’s thesis [Zsi10] and works of Hirschowitz and Maggesi [HMO07a, HM10a].

Definition 2.48 (Tautological Module). Given a monad (C,T'), we call (T, ur)
(or simply T') the tautological module (T, pr) : (C,T) — (C,1d).
Definition 2.49 (Constant and Terminal Module). Given a monad (C,T) and a

category D with an object d € D, the constant functor F; : C — D mapping any
object of C to d € D and any morphism to the identity on d yields a module

(Fy,id) : (C,T) — (D,1d) .

In particular, if D has a terminal object 1p, then the constant module (Fy,,id) is
terminal in Mod(T, D).

Remark 2.50. Given a monad (C,T), a T-module (M, o) with codomain cate-
gory D and a functor F' : D — &, then the pair (F o M, Fo) is a T-module with
codomain category £. For (M,o) := (T,pur) and F := F, for some e € £ one
obtains the constant module as above.

Definition 2.51 (Pullback Module). Let (C,T) and (D,T”) be monads over C and
D, respectively. Given a morphism of monads (F,v) : (C,T) — (D,T’) and a T"-
module (M, o) with codomain &, we call pullback of M along (F,~) the T-module
(F,7)" (M, 0) := (M, 0) o (F,7).

Definition 2.52 (Module Morphism induced by a Monad Morphism). With the
same notation as in the previous example, the monad morphism (F,~) induces a
morphism of T-modules — which we call v as well —

v (Fid) o T = (F,v)"(T", ur)
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as in

(&
ZIN

T)
(C,1d) = (D,T)

(F,id\/l %T’)

(D,1d) .
Note that the above diagram can be read as a structure—enriched version of the

square diagram specifying the type of v in Def. 2.38.

Definition 2.58 (Product Module). Suppose the category D is equipped with
a product. Given any monad (C,T), the product of D lifts to a product on the
category Mod(T, D) of T-modules with codomain D.

2.2.3 Monads on Set Families. We are particularly interested in monads over
families of sets and monad morphisms over retyping functors.

2.2.3.1 Derivation. Roughly speaking, a binding constructor makes free vari-
ables disappear. Its inputs are hence terms “with (one or more) additional free
variables” compared to the output, i.e. terms in an extended context. Context ex-
tension is captured mathematically by derivation: let T be a set and v € T an
element of T. We define D(u) to be the object of Set” such that

D(u)(u) = {*} and D(u)(t)=0fort#u .
We enrich the object V of Set” with respect to u by setting
V.=V +D(u) ,
that is, we add a fresh variable of type u. This yields a monad (_)** on Set”.

Definition 2.54 (Derivation Monad Morphism). Given any monad P on Set”
we define a monad endomorphism on P over the functor V — V**. On a set family
V e Set” its natural transformation + is defined as the coproduct map

yv = [P(inl),n o inr] : (PV)*™ — P(V*") , (2.2)
where [inl,inr] =id : V** — V*%,

Definition 2.55. Given a monad P over Set’ and a P-module M, we call M
the module obtained as the composition M o (_)**.

Ezample 2.56. We consider TLC (cf. Ex. 2.37) as the tautological module over
itself. Given any element s € Tt ¢, the derived module with respect to s,

TLC® : V s TLC(V*) |

assigns to any type family V' — the context — the type family of terms of TLC over
V enriched with one additional variable of sort s.

More generally, given a natural transformation as in Rem. 2.30,

7:1=TU, : TSet, — Set ,
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we can derive, with respect to 7, any module defined on a category of the form
Set! for any set T

Definition 2.57 (Derived Module). Let 7 : 1 — TU, be a natural transfor-
mation. Given a set T and a monad P on Set’, the functor (_)*" : (T,V,t)
(T, V*7(TV:) t) is given the structure of a morphism of monads as in Disp. (2.2).

Given any P-module M, we call derivation of M with respect to T the module
M™:=Mo( ).

Remark 2.58. In the preceding definition the natural transformation 7 : 1 —
TU, supplies more data than necessary, since we only evaluate it on families of sets
indexed by the fixed set T. However, in Sect. 3.3 we derive different modules —
each defined on a category Setg with varying sets T' — with respect to one and the
same natural transformation 7.

2.2.3.2 Fibres. Given a typed language over a nonempty set of types T, we
occasionally want to pick terms of a specific type u € T. Let D be a category —
think of D as the category Set — and V € DT a T-indexed family, e.g., of terms
of said language. Then picking “terms of type u € T” corresponds to projecting to
the fibre V'(u).

Given a monad P on a category C and a P-module M towards DT, we define the
fibre module of M with respect to u € T to be the module which associates the fibre
M (c)(u) to any object ¢ € C. This construction is expressed via postcomposition
with a particular module: we define the fibre with respect to u € T to be the monad
morphism

(()(w),id) : (D, 1d) — (D, 1)
over the functor V' — V'(u). Postcomposition of the module M with this module

then precisely yields the fibre module [M],, of M with respect to u € T'. Analogously
to derivation we define the fibre with respect to a natural transformation:

Definition 2.59 (Fibre Module). Let 7 be a natural transformation as in Def. 2.57.
We call fibre with respect to T the monad morphism

()r: V= Viry): (DI1d) = (D,1d)

over the functor V — V,(y. Given a module M towards D (over some monad
P), we call the fibre module of M with respect to T the module [M], :=(_), o M.

Example 2.60. We consider TLC as the tautological module over itself. Given
any element ¢ € T, the fibre module with respect to ¢, denotes the set of terms of
TLC of type ¢ in context V:

[TLC), : V = TLC(V), .

Ezample 2.61. Consider the monad TLC : Set’™¢ — Set’™¢ of Ex. 2.37. The
two operations of derivation (cf. Ex. 2.56) and fibre (cf. Ex. 2.60) can be combined,
yielding a module over TLC with carrier

Vs TLC (V) = TLC(V**), .

This module is actually the domain module of the abstraction constructor, cf.
Ex. 2.62. The product of modules yields our final example: for any s,¢ € Tt ¢, the
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domain of the application App(s,t) of simply—typed lambda calculus is a module
over TLC,

[TLC]swt X [TLC]s : V = TLC(V ) st X TLC(V); .
Ezample 2.62 (Ex. 2.61 cont.). Given s,t € Tt c, the map
App(s,t) : V= Appy(s,t) : TLC(V) st X TLC(V)s — TLC(V):

satisfies the diagram of the preceding definition and is hence a morphism of modules.
In the same way the constructor Abs(s,t) is a morphism of modules; we have

App(s,t) : [TLC]swt x [TLC]s — [TLC];
Abs(s,t) : [TLC®]y = [TLClsut -

The pullback operation commutes with products, derivations and fibres:

Remark 2.63. Let (C,P) and (D, @) be monads, and let p : P — @ be a monad
morphism. Let M be a Q—module with codomain £. Suppose T is a set, and let
u € T be an element of T

(1) More specifically, let @ be a monad on Set”. Then
§ (M) = (" M)" .
(2) More specifically, let £ = CT. Then
p* My = [p" Ml .

(3) Let N be another Q—module with codomain £ and suppose & is equipped with
a product. Then the pullback functor is cartesian:

p*(M x N)=p"M x p*N .

The first two properties are just instances of associativity of composition of monad
morphisms.

Remark 2.64. In Coq the equality of modules is not as trivial as in informal
mathematics, since there are two different notions of equality: definitional equality,
also called convertibility, and propositional equality. While the latter is to be proved
by the user, the former is computed by the system and thus cannot be influenced
by the user.

While the above equalities of Rem. 2.63 hold propositionally (using appropri-
ate axioms, such as proof irrelevance), they do not hold definitionally. The conse-
quences of this lack of definitional equality are discussed in Sect. 7.1.2. In summary,
in our formalization, monads, modules and module morphisms behave more like in
a bicategory rather than in a strict 2—category.

2.3 Alternative Definitions for Monads & Modules

Monads can be defined in terms of the Kleisli operation (cf. Rem. 2.35) instead of
the natural transformation p of Def. 2.33. A similar alternative definition exists
for modules. In this section we state those alternative definitions in full detail,
for several reasons: firstly, the alternative definition of monad is well-known for
its prominent use in the HASKELL programming language. Secondly, it is also the
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definition we chose to implement in the proof assistant Coq. Furthermore, it is also
this alternative definition which generalizes to relative monads (cf. Def. 2.75), that
is, monads that are not necessarily endofunctors.

Definition 2.65 (Alt. Def. for Monad (Def. 2.33), Code 6.10). A monad T over
a category C (in Kleisli form) is given by

—a map T: C — C on the objects of C, carrying the same name as the monad,
—for each object ¢ of C, a morphism 7. € C(¢,Tc) and
—for all objects ¢ and d of C, a Kleisli map

0cd: Cle,Td) — C(Te,Td)

such that the following diagrams commute for all suitable morphisms f and g:

c—" 3 Te Tc Tc4>Td
a(ne)
f oW a(a(g)x

Tc

3

We also refer to the Kleisli map as “substitution map”: when C is instantiated, for
example, by the category of sets and T'X is a set of terms with free variables in
the set X, then simultaneous substitution as Kleisli map turns 7T into a monad.
In this case the diagrams express the well-known substitution properties [AR99.
More precisely, the first diagram determines the value of substitution on variables,
the second diagram states that substituting each variable by itself in a term does
not change the term, and the third diagram shows how two consecutive substitu-
tions can be expressed by just one substitution. Inspired by HASKELL syntax, we
frequently use the infixed symbol >= to denote simultaneous substitution (or
more generally, Kleisli maps): given a term M € TX with free variables in X and
f: X = TY, then

M>=f = o(f)(M)

denotes the term obtained by replacing any free variable x € X occurring in M by
its image f(z) € TY, yielding a term in TY'.

The following remarks recover the definition of monad given in Def. 2.33 from
the definition of Def. 2.65.

Remark 2.66 (Functoriality for Monads in Kleisli Form, Code 6.11). Given a
monad T over C as in Def. 2.65 and a morphism f : ¢ — d in C, we equip 7" with a
functorial structure by setting

T(f) :=liftr(f) =0 (nao f) .

Remark 2.67 (Naturality of n and Multiplication for Monads in Kleisli form).
Given a monad in Kleisli form 7', the family of morphisms n = (9. : C(¢,T¢))cec is
natural with respect to the functorial structure defined in Rem. 2.66. A multipli-
cation p : T? — T can be defined as substitution with identity:

te :=o(idpe) : TTe — Tc .
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Naturality of p is a consequence of the axioms for monads in Kleisli form. Finally,
the monad multiplication g thus defined is compatible with the unit 7 in the sense
of Def. 2.33.

Remark 2.68 (Naturality of Substitution). Given a monad in Kleisli form T" over
C, then its substitution ¢ is natural in ¢ and d. For naturality in ¢ we check that
the diagram

¢ Cle,Td) — " ¢(Te,Td)
| T
c C(C’, Td) ‘74%1> C(Tc', Td)

commutes, where f*(h) := ho f. Given g € C(¢/, Td), we have
o(g)eTf =o(g)oa(neof)

= o(olg) one o f)
=a(gof)

where the numbers correspond to the diagrams of Def. 2.65 used to rewrite in the
respective step. Similarly we check naturality in d. Writing h.(g) := h o g, the
diagram

d  Cle,Td) — = ¢(Te, Td)

hl (Th)*l J(Th)*

d C(C/, Td) Ugld) C(TCI, Td)

commutes: given g € C(c, Td), we have
Thooa(g) =0c(na oh)oo(g)
=o(o(naoh)og)
=0(Thog) .

Definition 2.69 (Morphism of Monads, Alt. to Def. 2.38, Code 6.12). Let (C,T)
and (D, T') be two monads. A colax morphism of monads 7 : T — T’ is given by

—a functor F': C — D and
—for any ¢ € C, a morphism 7. : FTc — T'Fc
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such that the following diagrams commute for all suitable morphisms f:

F(oT FnT
FTe— D) prg Fe—"" L PTe
Te Td , Te
Nhe
T'Fe— 5 T'Fd | T'Fe .
oT (taoF f)

Remark 2.70. Naturality of the family (7.)cec of a colax morphism of monads
as in the preceding definition is provable from the other axioms, yielding a natural
transformation

7. FT —-T'F .

Here we use Rem. 2.66 by considering 7' and T” as functors. The naturality of 7 is
proved in Lemma colax_Monad Hom _NatTrans in the Coq library.

Definition 2.71 (Module, Alt. to Rem. 2.44, Code 6.14). Let D be a category.
A module M over T with codomain D is given by

—a map M: C — D on the objects of the categories involved and
—for all objects ¢, d of C, a map

Sed: Cle, Td) — D(Me, Md)

such that the following diagrams commute for all suitable morphisms f and g:

Me— s va Me
C(ﬂc)
s(a(g)of) <)
id
Me, Mec.

Remark 2.72. Functoriality for such a module M is defined similarly to that for
monads: for any morphism f: ¢ — d in C we set

M(f) := mliftp (f) :=s(n” o f) .

A module morphism is a family of morphisms that is compatible with module
substitution:

Definition 2.73 (Module Morphism, Alt. to Rem. 2.44, Code 6.15). Let M and
N be two modules over T' with codomain D. A morphism of T—modules from M to
N is given by a family of morphisms p. € D(M¢, Nc¢) such that for all morphisms
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f € C(c, Td) the following diagram commutes:

M
Me——9 rra

Pec Pd

N¢ — Nd.
SN

A module morphism M — N also constitutes a natural transformation between
the functors M and N induced by the modules, cf. Module Hom NatTrans.

Ezample 2.7/ (Ex. 2.47 cont.). We consider Ex. 2.47 under the alternative def-
inition of module morphism. The map

V = Appy : ULC(V) x ULC(V) — ULC(V)

satisfies the diagram of the preceding definition and is hence a morphism of ULC-
modules from ULC x ULC to ULC. The property of being a module morphism
expresses distributivity of substitution for any substitution map f: X — ULC(Y):

App(M,N)>=f = App(M >=f,N>=f) .
Similarly, the map
V i Absy : ULC(V’) — ULC(V)

is a morphism of ULC-modules from ULC’ to ULC. For f : X — ULC(Y) as before,
the commutative diagram here expresses the equation

Abs(M) = f = Abs(M >=f') ,

where f/ : X’ — ULC(Y”) is obtained by shifting the map f to account for the
extended context under the binder Abs.

Modules on P with codomain D and morphisms between them form a category
called Mod(P, D) (in the library: MOD P D), similar to the category of monads.

2.4 Relative Monads and Modules

The functors underlying the monads presented in the preceding section all are endo-
functors. This is enforced by the type of monadic multiplication and substitution.
Relative monads were defined by Altenkirch et al. [ACU10] to overcome this re-
striction. One of their motivations was to consider the untyped lambda calculus
over finite contexts as a monad-like structure — similar to the monad structure
on the lambda calculus over arbitrary contexts exhibited by Altenkirch and Reus
[AR99].

We review the definition of relative monads and define suitable colaz morphisms
of relative monads. Afterwards we define modules over relative monads and port
the constructions on modules over monads (cf. Sects. 2.2.2 and 2.2.3) to modules
over relative monads.
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2.4.1 Definitions. We review the definition of relative monad as given by Al-
tenkirch et al. [ACU10] and define suitable morphisms for them. As an example
we consider the lambda calculus as a relative monad from sets to preorders, on
the functor A (cf. Def. 2.13). Afterwards we define modules over relative monads
and carry over the constructions on modules over regular monads of the preceding
section to modules over relative monads.

The definition of relative monads is analogous to that of monads in Kleisli form
(cf. Def. 2.65), except that the underlying map of objects is between different cat-
egories. Thus, for the operations to remain well-typed, one needs an additional
“mediating” functor, in the following usually called F, which is inserted wherever
necessary:

Definition 2.75 (Relative Monad, [ACU10], Code 6.16). Given categories C and

D and a functor F' : C — D, a relative monad P : C L D on Fis given by the
following data:

—a map P: C — D on the objects of C,
—for each object ¢ of C, a morphism 7. € D(Fe¢, Pc) and
—for each two objects ¢, d of C, a substitution map

0c,d: D(Fe, Pd) — D(Pc, Pd)

such that the following diagrams commute for all suitable morphisms f and g:

Fe—" . pc Pe pe—9" . pg
U(’?c)
; i) o (o (9)of) 7 ()
id
Pd Pc , Pe .

Ezample 2.76 (Lambda Calculus over Finite Contexts, [ACU10]). Altenkirch
et al. [ACU10] consider the untyped lambda calculus as a relative monad on the
functor J : Fingge) — Set. Here the category Finge is the category of finite cardinals,
i.e. the skeleton of the category Fin of finite sets and maps between finite sets.

Remark 2.77. Relative monads on the identity functor Id : C — C precisely
correspond to monads as presented in Def. 2.65.

Notation 2.78. For this section we reserve the term “monad” for monads as
defined in Def. 2.65, and explicitly state the “relative” when talking about relative
monads. In later sections we sometimes omit the attribute “relative” and instead
refer to traditional monads (i.e. with F' = 1d) as regular or plain monads.

Remark 2.79 (Restricting a Monad yields a Relative Monad, [ACU10]). Given
amonad T on D and a functor F' : C — D, then the monad T restricts to a relative
monad T° : C 5 D by precomposing with F'.

Remark 2.80 (Relative Monads are functorial, Code 6.17). Given a monad P
over F': C — D and a morphism f : ¢ — d in C, a functorial structure (rlift) for P
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is defined by setting
P(f) :=liftp(f):=0(no Ff) .

The functor axioms are easily proved from the monadic axioms.

Remark 2.81 (Relative Monads as Monoids in a Functor Category, [ACU10]). A
monad (T, n, 1) over a category C is the same as a monoid object in the functor
category [C,C], where the monoidal structure is given by functor composition. Al-
tenkirch et al. [ACU10] recover a similar characterization for relative monads on a
functor F': C — D, provided that the left Kan extension along F',

Lanp : [C,D] — [D,D] ,
exists: they define a lax monoidal structure on [C, D] by
(Fy:[c, D) x [¢, D] — [C, D]
(H,G) = H-¥G:=Lanp Ho G .
They then show that relative monads on F' correspond precisely to lax monoid ob-
jects in ([C,D],-I). Besides, they show that under some coherence conditions, this
result can be sharpened to obtain a strict monoidal structure, where relative mon-
ads correspond to proper monoids with respect to this structure. Under the same
assumptions, a relative monad P on F' : C — D can be extended to a traditional

monad P* on D, yielding an adjunction (_)# -4 (_)°. This adjunction furthermore
is a coreflection.

Remark 2.82 (Naturality of Substitution). Analogously to Rem. 2.68, the sub-
stitution o = (0.,q4) of a relative monad P on a functor F' : C — D is binatural.

We are interested in monads on the category Set of sets and relative monads on
A : Set — Pre as well as their relationship:

LEMMA 2.83 (Relative Monads on A and Monads on Set): Let P be a relative
monad on A : Set — Pre (c¢f. Def. 2.13). By postcomposing with the forgetful
functor U : Pre — Set we obtain a monad

UP : Set — Set .
The substitution is defined, for m : X — UPY by setting
Uo:mw—U (U (g@*lm)) ,

as indicated by the diagram

Set(X,UPY) o Set(UPX,UPY)
- &
Pre(AX, PY) ~ Pre(PX, PY)

making use of the adjunction ¢ of Lem. 2.18.
Conversely, to any monad T over Set, given as a Kleisli triple, we associate
a relative monad over A by postcomposing with A. The substitution map Ao is
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defined, for m : AX — ATY , as the following composition:

Pre(AX,ATY) 29 Pre(ATX,ATY)
| [+
Set(X,TY) _ Set(TX,TY)

The maps thus defined are object functions of an adjunction between monads on
sets and relative monads on A, cf. Lem. 4.5.

The above construction actually is an instance of a more general construction:

LEMMA 2.84 (Monads from Relative Monads and conversely): Let F:C =D :
G be an adjunction with a family of isomorphisms

oxy DFX,Y)=C(X,GY): oxly .

(1) Given a relative monad P : C L D with unit n and substitution o, we define a
monad P on C by setting
—P*(c) := GPe,
—nt == (n.) : C(¢, GPc) and
—ollD) =G (e ()).
(2) Let furthermore GF = 1d be the identity on C. Given a monad (P,n,0) on C,

we define a relative monad P~ : C 5D by setting
—P~(¢) := FPc,
— = F(n.) and
Opq = e 1 (o(Gf)).
Proof. We check the commutativity of the corresponding diagrams:

(1) for the data (P*,n*,o™"):
—ot(f)one=Glo(p™ ) o) =¢la(e™ flon) =pp~ ' f=f
—at(nF) = Glo(p™ (¢(n)))) = Glo(n.)) = Gid = id

T(g)oaT(g) = Gw‘lgoGw‘lf
G(o(e'g)oa(e™)))
G(o(a(p g o' f))
G(o(p (G ( (¢™'g9)) o 1))
+(U+(9) o f)

g

(2) for the data (P~,n~,07):
—o (f)on; = Ho(Gf)) o Fne = a(Gf)one) =0 HGf) = f
7?(&772)_; ¢ ' (0(Gn;)) = erpc © F(o(GFne)) = eppe © F(o(1e)) = €ppe o
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o (07 go )= (o(Glo" g0 1))
-1 (U(Gafg o Gf))

Ho(0GgoGY))
oGy oaGY)

=ep o F(ocGgooGf)
=epoFoGgo FoGf
=epoFoGgoepo FoGf
=¢ loGgop loGf

=0 goo™ f

O

This construction is functorial, and yields an adjunction between a category of
monads on C and relative monads on F'. Details will be reported elsewhere.

Ezample 2.85 (Lambda Calculus as Relative Monad on A). Consider the set of
all lambda terms indexed by their set of free variables as defined in Ex. 1.2. We
write AM and M N for Abs M and App M N, respectively. We equip each ULC(V)
with a preorder taken as the reflexive—transitive closure of the relation generated
by the rule

(AM)N < M][x:= N]

and its propagation into subterms. This defines a monad ULCBETA from sets to
preorders over the functor A,

ULCgp : Set A Pre.
The family Y€ is given by the constructor Var, and the substitution map
ox,y - Pre(A(X), ULCB(Y)) — Pre(ULcﬁ(X), ULCB(Y))

is given by capture-avoiding simultaneous substitution. Via the adjunction of
Lem. 2.18 the substitution can also be read as

ox,y : Set(X,ULC(Y)) — Pre(ULCg(X),ULC4(Y)) .
Remark 2.86 (about Substitution). The substitution in Ex. 2.85 is compatible

with the order on terms in the following sense:

(1) M < N implies M[* := A] < N[x:= A] and

(2) A< B implies M[x:= A] < M[*:= B].

The first implication is a general fact for any relative monad P on A: it is a special

case of ox y(f) being a morphism in the category Pre for any f € Pre(AV, PW).
The second monotony property, however, is false in general. As an example, con-
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sider the monad given by
F(V):= Var:V — F(V)
| L:F(V)
| (=):F(V)xF(V)— F(V)

equipped with a preorder which is contravariant in the first argument of the arrow
constructor =. Substituting in this position, the first argument of (=), does in
fact reverse the order on terms, i.e. we obtain (using = infixed)

A< B implies (x = M)[x:=B] < (x = M)[x:= 4] .

A different definition of monad which would enforce the second implication to hold
— and hence not include the example F' — can be given easily by considering Pre
as a 2—category enriched over itself: given morphisms f, g € Pre(X,Y") we say that
there is precisely one 2—cell

f=g iff f<g iff Va:X, f(z)<g(x).

A monad P would then have to be equipped with a substitution action that is
given, for any two sets V and W, by a functor (of preorders)

ov.w : Pre(AV, PW) — Pre(PV,PW) .

Definition 2.110 explains one of the consequences of our monadic substitution lack-
ing “higher—order monotonicity”.

We generalize the definition of colax monad morphisms to relative monads:

Definition 2.87 (Colax Morphism of Relative Monads, Code 6.18). Let P:C 5

Dand Q : C’ E; D’ be two relative monads. A colax morphism of relative monads
from P to Q is given by a quadruple (G, G’, N, 7) consisting of a functor G: C — C’
and a functor G’ : D — D’ as well as a natural transformation N : F'G — G'F as
in

c—L D
al 7 el
c’ T) D'.
and a natural transformation 7: G’ o P — Q o G as in
P
C——D
G 7 el

C'—7D,
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such that the following diagrams commute for all suitable morphisms f:

G'aP(f) G'nP

G'Pe &' Pd FlGge—Ne s pe—"" L a'Pec

Te Td Te
ne.

QGe —— 5 QGd OGe.

o (TdoG'foNc)

Remark 2.88. Naturality of 7 in the preceding definition is actually a conse-
quence of the commutative diagrams of Def. 2.87.

Remark 2.89. In Sect. 5 we are going to use the following instance of the pre-
ceding definition: the categories C and C' are instantiated by Set” and Set’ | re-
spectively, for sets T and 7”. The functor G is the retyping functor (cf. Rem. 2.23)
associated to some translation of types g : T'— T”. Similarly, the categories D and
D’ are instantiated by Pre” and Pre” , and the functor F' by

F:=AT:Set?” — prel |
and similar for F”:

T
Set? — 2 pre”

il q

T

Set ﬁ PreT .

A

Given a monad P on F' : C — D, the notion of module over P generalizes the notion
of monadic substitution:

Definition 2.90 (Module over a Relative Monad, Code 6.19). Let P: C 5 Dbe
a relative monad and let £ be a category. A module M over P with codomain & is
given by

—a map M : C — & on the objects of the categories involved and
—for all objects ¢,d of C, a map

Se.d : D(Fe,Pd) — E(Mc, Md)

such that the following diagrams commute for all suitable morphisms f and g:

Me—Y" s rva Me
<(nc)
s(o(g)0f) <)
id
Me Me.

Journal of Formalized Reasoning Vol. 8, No. 2, 2015.



Initiality for Typed Syntax and Semantics . 49

A functoriality (rmlift) for such a module M is then defined similarly to that for
monads: for any morphism f: ¢ — d in C we set

M(f) :== rmliftp (f) :=s(no Ff) .

The following examples of modules are instances of constructions explained in the
next section:

Ezample 2.91 (Ex. 2.85 cont.). The map ULCg : V +— ULCg(V) yields a module
over the relative monad ULCg, the tautological module ULCg.

Ezample 2.92. Recall that V' := V + 1. The map ULCj : V — ULCs(V)
inherits the structure of an ULCsg—module from the tautological module ULCg (cf.
Ex. 2.91). We call ULCj the derived module of the module ULCg; cf. also Sect. 2.4.2.

Ezample 2.93. The map V — ULCg(V) x ULCg(V) inherits a structure of an
ULCg-module from the tautological module ULCg.

A module morphism is a family of morphisms that is compatible with module
substitution in the source and target modules:

Definition 2.94 (Morphism of Relative Modules, Code 6.20). Let M and N be

two relative modules over P: C 5 D with codomain €. A morphism of relative
P-modules from M to N is given by a collection of morphisms p. € £(Me¢, Nc¢)
such that for all morphisms f € D(F¢, Pd) the following diagram commutes:

M
Me——D rra

Pec Pd

Nec— Nd.
SN ()

The modules over P with codomain £ and morphisms between them form a category
called RMod(P, ) (in the digital library: RMOD P E). Composition and identity
morphisms of modules are defined by pointwise composition and identity, similarly
to the category of monads.

Ezample 2.95 (Ex. 2.91, 2.92, Ex. 2.93 cont.). Abstraction and application are
morphisms of ULCg—modules:

Abs : ULC% — ULCg ,
App : ULCg x ULCg — ULCg .

2.4.2  Constructions on Relative Monads and Modules. The following construc-
tions are analogous to those of Sect. 2.2.2.

Definition 2.96 (Tautological Module). Every monad P on F': C — D yields a
module (P,of) — also denoted by P — over itself, i.e. an object in the category
RMod(P, D).

Definition 2.97 (Constant and Terminal Module). Let P be a monad on F :
C — D. For any object e € £ the constant map T.: C — &, c— e for all ¢ € C, is
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equipped with the structure of a P-module by setting ¢, 4(f) = ide. In particular,
if £ has a terminal object 1g, then the constant module 73, : ¢ — 1g is terminal in
RMod(P, €).

Definition 2.98 (Postcomposition with a functor). Let P be a monad on F :
C — D, and let M be a P-module with codomain £. Let G : £ — X be a functor.
Then the object map G o M : C — X defined by ¢ — G(M(c)) is equipped with a
P-module structure by setting, for ¢,d € C and f € D(Fc, Pd),

CM(f) = GM(S) -

For M := P and G a constant functor mapping to an object x € X and its identity
morphism id,, we obtain the constant module (7}, id) as in the preceding definition.

Definition 2.99 (Pullback Module). Suppose given two relative monads P and
@ and a morphism 7 : P — ) as in Def. 2.87. Let IV a ()-module with codomain
E. We define a P-module h*M to £ with object map

¢ — M(Gc)
by defining the substitution map, for f: Fc — Pd, as
M(f) = M(hgoG'fo N,) .

The module thus defined is called the pullback module of N along h. The pullback
extends to module morphisms and is functorial.

Definition 2.100 (Induced Module Morphism). With the same notation as be-
fore, the monad morphism h induces a morphism of P-modules h : G'P — h*Q.
Note that the domain module is the module obtained by postcomposing P with
G’, whereas for (plain) monads the module was just the tautological module of the
domain monad.

Definition 2.101 (Product). Suppose the category £ is equipped with a product.
Let M and N be P-modules with codomain £. Then the map

MxN:C—€&, c— McxNc

is canonically equipped with a substitution and thus constitutes a module called
the product of M and N. This construction extends to a product on RMod(P, £).

2.4.3 Derivation & Fibre. We are particularly interested in monads on the func-
tor AT : Set” — Prel for some set T, and modules over such monads. The con-
structions on modules over monads of Sect. 2.2.3, derivation (cf. § 2.2.3.1) and fibre
modules (cf. § 2.2.3.2), carry over to modules over monads on A7,

Definition 2.102. Given a monad P over AT and a P-module M with codomain
&, we define the derived module of M with respect to u € T' by setting

M*“(V) = MV*) .
The module substitution is defined, for f € PreT(ATV, PW), by
M) = M)
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Here the “shifted” map
of € Pre" (AT (V*), P(W*Y))
is the adjunct under the adjunction of Rem. 2.21 of the coproduct map
¢(uf) = [P(inl) o f,n(inr(x))] : VF* = UP(W™)

where [inl,inr] = id : W** — W*%. Derivation is an endofunctor on the category
of P-modules with codomain £.

Notation 2.103. In case the set T of types is T = {x} the singleton set of types,
i.e. when talking about untyped syntax, we denote by M’ the derived module of
M. Given a natural number n, we denote by M" the module obtained by deriving
n times the module M.

Analogously to Sect. 2.2.3, we derive more generally with respect to a natural
transformation 7 : 1 — T U, as in Def. 2.57:

Definition 2.104 (Derived Module). Let 7 : 1 — TU, be a natural trans-
formation. Let T be a set and P be a relative monad on AL. Given any P-

module M, we call derivation of M with respect to 7 the module with object map
M™(V) =M (VT).

Definition 2.105. Let P be a relative monad over F, and M a P-module with
codomain &7 for some category €. The fibre module [M]; of M with respect to
t € T has object map

c— M(c)(t) = M(e):
and substitution map

My = (M(f)), -

This definition generalizes to fibres with respect to a natural transformation as in
Def. 2.104.
The pullback operation commutes with products, derivations and fibres :

LEMMA 2.106: Let C and D be categories and £ be a category with products.
Let P:C — D and Q: C — D be monads over F: C — D and F' : C' — D', resp.,
and p: P — @Q a monad morphism. Let M and N be P-modules with codomain E.
The pullback functor is cartesian:

p(M X N)Xp"M X p*N .

LEMMA 2.107: Consider the setting as in the preceding lemma, with F = AT,
andt € T. Then we have

o (M) = (p* M) .
LEMMA 2.108: Suppose N is a Q-module with codomain ET, andt € T. Then
pr[M]e = [p"M], .

Definition 2.109. Recall that the category wPre is the category of preordered
sets and set-theoretic maps (not necessarily monotone) between them (Def. 2.9).
Given a relative monad P on some functor F' and a P-module M with codomain
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Pre, we can consider M as a P-module with codomain wPre. We denote this module
by M. In other words, we have a functor

” : RMod(P, Pre) — RMod(P, wPre)
obtained by postcomposition with the forgetful functor from Pre to wPre.

Definition 2.110 (Substitution of one Variable). Let P be a monad over A. For
any set X, we define a binary substitution operation

subst(X) : P(X*) x P(X) — P(X),
(y,2) = y[* := 2] := o (default(nx, 2)) (v) ,
where “default” is a coproduct map; for f: A — B and z € B,
default(f,2) :=[f,a—z2]: A+ {«} > B .
This defines a morphism of P—-modules with codomain wPre,
subst” : P'x P — P .

The reason why we have to consider the category wPre with all set—theoretic maps
instead of just monotone maps is that subst” is not necessarily monotone in its
second argument, cf. Rem. 2.86.

The untyped substitution of Def. 2.110 actually is a special case of the following
typed substitution:

Definition 2.111 (Substitution of one Variable, typed). Let T be a (nonempty)
set and let P be a monad over A”. For any s,t € T and X € Set’ we define a
binary substitution operation

subst,¢(X) : P(X*); x P(X), — P(X)y,
(y,2) = y[* := 2] := o (default(nx, 2)) (v) .

For any pair (s,t) € T2, we thus obtain a morphism of P-modules

subst?, : [P*]y x [P]s — [P]; .

3. SIMPLE TYPE SYSTEMS

In this chapter we present two generalizations to simple type systems of Hirschowitz
and Maggesi’s initiality theorem for untyped syntax [HMO07a]:

—in Sect. 3.2 we review Zsidd’s theorem [Zsi10, Chapt. 6].

—In Sect. 3.3 we prove a variant of Zsidé’s theorem which accounts for translations
between languages over different sets of object types.

We explain the difference between the two abovementioned theorems in more detail:

in Zsid6’s theorem, the underlying set of types of a signature — and thus of the
term language the signature specifies — is given as a fixed parameter. In particular,
all the models — representations — of the signature have the same underlying set
of types. Furthermore, this set does not necessarily have inductive structure, as
opposed to the sets of types we characterize via initiality in Sect. 3.1 — the content
of Sect. 3.2 is independent of that of Sect. 3.1.
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In our variant of Zsid6’s theorem we prove in Sect. 3.3, a language is specified by
a pair (S,%) of signatures, a signature S for types as presented in Sect. 3.1, and a
signature X for terms over the signature S. A representation of such a signature is
given by a pair of a representation of S and a representation of ¥. In particular,
we consider models of (S,3) whose underlying set of types is different from the
set freely generated by the signature S. The initiality result of Sect. 3.3 thus
characterizes both the types and terms freely generated by a signature as initial
object in a category of representations.

As running examples, we consider the simply—typed lambda calculus and Plotkin’s
PCF [P1o77]. In Sect. 3.4 we present a logic translation from classical to intuition-
istic propositional logic as an instance of our theorem of Sect. 3.3. Before focusing
on term signatures, however, we review, in Sect. 3.1, algebraic signatures as treated
by Birkhoff [Bir35]. Algebraic signatures are used in Sect. 3.3 for the specification
of the set of types of a language.

3.1 Signatures for Types

We present algebraic signatures, which later are used to specify the object types
of the languages we consider. Algebraic signatures and their models were first
considered by Birkhoff [Bir35].

Definition 3.1 (Algebraic Signature). An algebraic signature S is a family of
natural numbers, i.e. a set Jg and a map (carrying the same name as the signature)
S:Js = N. For j € Jg and n € N, we also write j : n instead of j — n. An
element of J resp. its image under S is called an arity of S.

Ezample 3.2 (Algebraic Signature of Ex. 1.3). The algebraic signature of the
types of the simply—typed lambda calculus is given by

Stic:={x:0, (~):2}.

To any algebraic signature we associate a category of representations. We call
representation of S any set U equipped with operations according to the signature
S. A morphism of representations is a map between the underlying sets that is
compatible with the operations on either side in a suitable sense. Representations
and their morphisms form a category. We give the formal definitions:

Definition 3.3 (Representation of an Algebraic Signature S, S—Algebra). A rep-
resentation R of an algebraic signature S — also known as S—algebra — is given
by

—a set X and
—for each j € Jg, an operation j7 : XS0 — X,
In the following, given a representation R, we write R also for its underlying set.

Ezample 3.4. The language PCF [Plo77, HOO00] (see also Sect. A.1) is a simply—
typed lambda calculus with a fixed point operator and arithmetic constants. Let
J :={t,0,(=)}. The signature of the types of PCF is given by the arities

Spcr:={t:0, 0:0, (=):2}.
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A representation T' of Spcp is given by a set T' and three operations,
JTor o, T, 2N TxT =T .

A morphism of representations is given by a map between the underlying sets that
is compatible with the representation structure:

Definition 8.5 (Morphisms of Representations). Given two representations T'
and U of the algebraic signature S, a morphism from T to U is amap f: T — U
such that, for any arity n = S(j) of S, we have

fojl =390 (fx...xf).
n times

Ezample 3.6 (Ex. 3.4 continued). Given two representations 7" and U of Spcf, a
morphism from 7" to U is a map f : T — U between the underlying sets such that,
for any s,t € T,

Feh)y =,
fory=0Y and
fls="1)=f(s) =Y f(t) .
Representations of an algebraic signature S and their morphisms form a category.

LEMMA 3.7:  Let (J,S) (or S for short) be an algebraic signature. The category
of representations of S has an initial object S.

Proof. We cut the proof into small steps:

—In a type-theoretic setting the set — also called S — which underlies the initial
representation S is defined as an inductive set with a family of constructors
indexed by Jg:

S = C:VjeJ, S50 5 §
That is, for each arity j € J, we have a constructor C} : §5G) - 8.
—For each arity j € J, we must specify an operation jg :§50) 5 5. We set
jS‘ = C] : SS(]) _>S' R

that is, the representation jg of an arity n = S(j) is given precisely by its
corresponding constructor.

—Given any representation R of S, we specify a map ip : S — R between the
underlying sets by structural recursion:

in:S =R, ir(Cjla) =5 ((ir)*"(a)) ,

for a € §5@) . That is, the image of a constructor function C; maps recursively
on the image of the corresponding representation j% of R.

—We must prove that iz is a morphism of representations, that is, that for any
j € J with S(j) = n,

iROjS:jRO(’L'R)n .
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Replacing j° by its definition yields that this equation is precisely the specifica-
tion of iR, see above.

—It is the diagram of Def. 3.5 which ensures uniqueness of ig; since any morphism
of representations i’ : S — R must make it commute, one can show by structural
induction that ¢ = ig. More precisely:

. . . i'(ax)=ir(ar)
i'(Cj(a)) =7(Cjlar,...,as())) = j" ) =

(i’(al), . ,i/(as(j)

O

Ezample 3.8 (Ex. 3.4 continued). The set Tpcr underlying the initial represen-
tation of the algebraic signature Spcr is given by

Teck == ¢ | o | Tpcr = TpcF -

For any other representation R of Spcr the initial morphism iy : Tpcp — R is given
by the clauses

iR(L) = LR
ir(o) = oft
iR(S = t) = iR(S) éR iR(t) .

3.2 Zsidé's Theorem Reviewed

We present Zsidd’s initiality theorem [Zsil0, Chapt. 6] (cf. Thm. 3.28) for simply—
typed abstract syntax. Its formalization in the proof assistant Coq is explained
in Sect. 7. Throughout this section the number given in the name of each def-
inition points to the implementation of this definition in Coq. For instance, the
implementation of Simple Monad Morphisms (Def. 3.12) is given in Code 6.13.

Our presentation follows the pattern outlined at the beginning of Sect. 1.2: in
Sect. 3.2.1 we present classic signatures in two different ways. Afterwards, in
Sect. 3.2.2, we give the definition of representations of such signatures. Finally,
in Sect. 3.2.3, we state the main theorem, proved by Zsid6 [Zsi10].

3.2.1 Signatures for Terms. In § 3.2.1.1 we give a purely syntactical definition
of classic arities. Afterwards, in § 3.2.1.2 we give a definition of arities as pairs
of functors on suitable categories, and identify a subclass of arities which are in
one—to—one correspondence with classic arities. We thus call arities of this subclass
classic as well. In the following we fix a set T of object types.

3.2.1.1 Arities, syntactically. Syntactically, a classic arity consists of an element
of to € T which specifies the output type of a constructor, as well as a list of pairs
([tia,---stim,)s ti), where t; i, t; € T. Each such pair represents an argument of the
corresponding constructor: the element ¢; denotes the object type of the argument,
whereas the list [t;1,...,%;m,] specifies the types of the variables that are bound
by the constructor in this argument.

Definition 3.9 (Classic T—Arity, T-Signature). A classic arity is of the form

[([t1,17 e atl,m1]7t1)7 L) ([tn,17 e atn,m"]ytn)] — tO )
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where ¢; ;, and t; are elements of 7. We use an arrow to separate the data specifying
input data and output data, respectively. A signature is a family of arities. For a
formalized definition, see the Coq code snippets Code 7.1 and Code 7.2.

Ezample 3.10 (Signature of TLC). The signature of the simply-typed lambda
calculus (cf. Ex. 1.3) is given by

{abssyt : [([S]’t)} — (8 ~ t) )y  aPPgy [([]7 s~ t)v (Ha S)] - t}s,tGTTLc .
See the code snippet Code 7.3 for a Coq implementation of this example.

3.2.1.2 Arities, semantically. In this section we give a definition of arities as
pairs of functors between suitable categories. The source category (cf. Def. 3.13) is
a category of monads and morphisms of monads, whereas the target category (cf.
Def. 3.15) mixes modules over different such monads.

At first, in Rem. 3.11, we present an alternative characterization of algebraic
arities. This alternative point of view is then adapted to allow for the specification
of arities for terms.

Remark 3.11 (Algebraic Arities viewed differently). An algebraic arity j : n
as presented in Sect. 3.1 associates, to any set X, the set dom(j, X) := X", the
domain set. A representation R of this arity j in a set X then is given by a map
% X™ — X. More formally, the domain set is given via a functor dom(j) : Set —
Set which associates to any set X the set X™. Similarly, we might also speak of
a codomain functor for any arity, which — for algebraic arities — is given by the
identity functor. A representation R of j in a set X then is given by a morphism

e dom(5)(X) — cod(j)(X) .

We take the perspective of Rem. 3.11 in order to define arities and signatures for
terms: given a set T of object types, an arity « for terms typed over T is a pair of
functors (dom(a),cod(«)) associating two P—-modules dom(«)(P) and cod(a)(P),
to any suitable monad P. A suitable monad here is a monad P on the category
Set”. A representation R of « in a such a monad P is a module morphism

af : dom(a)(P) — cod(a)(P) .

We consider monads as in Def. 2.33 (also: Def. 2.65) over a category of the form
Set” for some fixed set 7. Throughout this section, morphisms between two such
monads over the same category are given by colax monad morphisms over the
identity functor, i.e. those morphisms of Def. 2.38 (alt. Def. 2.69) with F' = Idggr.
For convenience, and as a reference for the implementation in Coq, we explicitly
state the definition of these “simple” monad morphisms, using the definition through
Kleisli operation (cf. Def. 2.69) of monads and morphisms:

Definition 3.12 (Simple Monad Morphism, Code 6.13). Let P and @ be two
monads over a category C. A simple morphism of monads 7 from P to @Q is given
by a collection of morphisms 7. € C(Pc,Qc) such that the following diagrams
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commute for all suitable morphisms f:

" (f) nf
Pc—— Pd c—— Pec
Tc Td Tc

ng
Qc—— Qd, Qc.
o9 (rq0f)

Definition 3.138 (Category Mon(C) of Monads on C). Given a category C, we
define the category Mon(C) to be the category whose objects are monads over C. A
morphism from P to @ in this category is a monad morphism as in Def. 3.12. We
denote by I¢ : Mon(C) — Mndcax the inclusion functor.

We define a category in which modules over different monads — but with the
same codomain category — are mixed together. This category can be defined as a
particular colaz comma category. However, we also give an explicit description of
the objects and morphisms of this category.

Definition 3.14 (Colax Comma Category). Let C be a 2—category, and ¢ € C be
an object of C. Let A be a category and let F': A — C be a functor. An object of
the colax comma category (F | c) is given by a pair (a, f : Fa — ¢) of an object
a € A and a morphism f : a — ¢. A morphism to another such (b,g : F'b — ¢) is
given by a pair (h: a — b, «) as in the diagram

!

Fa /Ea\" c
e Fb—7
While the above definition is not the most general definition possible for a colax
comma category, it is sufficient for our needs:

Definition 3.15 (Large Category LMod(C, D) of Modules). Given two categories
C and D, we define the category LMod(C,D) to be the colax comma category
(I¢ J Idp). An object of this category is a monad P over C together with a P-
module with codomain D (cf. Def. 2.43). A morphism (f, ) to another such (Q, N)
is given by a morphism f : P — @ of monads over the identity functor — i.e., a
morphism in Mon(C) — and a morphism of modules h: M — f*N = N o f:

M

P U ldp

~_ '

Nof

Definition 3.16 (Tautological Module). To any monad R € Mon(C) we associate
the tautological module ©(R) of R,

O(R) :=(R,R) € LMod(C,C) .
This construction extends to a functor © : Mon(C) — LMod(C, C).
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A half-arity associates a P-module towards Set to any monad P over Set”:
Definition 3.17 (Half-Arity). A half-arity over T is a functor
a : Mon(Set”) — LMod (Set”, Set)

from the category of monads over Set” to the large category of modules over such
monads with codomain Set, such that

T oa = idMon(SetT) . (31)

This last condition given in Disp. (3.1) ensures that each monad maps to a mod-
ule over itself. For a monad R € Mon(Set”), we thus sometimes omit the first
component R of the image a(R) and consider a(R) € Mod(R, Set).

Definition 8.18 (Arity, Signature). A T-arity s is a pair (dom(s),cod(s)) of
half-arities over T,
dom(s), cod(s) : Mon(Set”) — LMod (Set”, Set) ,
written dom(s) — cod(s). A T'—signature is a family of T—arities.

We give some important examples of half-arities over the set T. Note that, by
the convention of Def. 3.17, we omit the first component of objects of the large
category of modules LMod (Set”, Set).

Definition 8.19. Let T be a nonempty set, and let t € T be an element of 7.

—The map [O]; : Mon(Set”) — LMod (Set”, Set) with object map R — (R, [R];) is
a half—arity — the fibre with respect to t — over T.
—If M is a half-arity over T, so is M* : Mon(Set”) — LMod(Set”, Set), MT(R) :=
M(R)* (cf. Def. 2.55). By iterating, given t1,...,t, € T, the functor
MEtn) - Ry (L (M(R)!).. )t

is a half-arity.
—If M and N are half-arities over T', then so is the product M x N : Mon(Set”) —
LMod (Set”, Set):

M x N:Rrs M(R)x N(R) .

—The map R +— x, where * : V > lge is the terminal object in Mod(R, Set), is a
half-arity over T'.

An arity is a pair of half-arities. We are only interested in classic arities, whose
domain and codomain functors are of a specific form:

Definition 8.20 (Classic T—Arity, T—Signature (II)). We call classic T—arity any
T—arity s of the form

s =[O L x (O]t Ly (@], (3.2)
for t; j,t; € T. A classic T—signature is a collection of such classic arities.

To an operator that binds my, variables of types ¢y 1,..., tk,m, in its k-th argu-
ment of type tx, and which yields a term of type tg, we associate the arity given in
Disp. (3.2).
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Remark 3.21. The classic T—arities and T-signatures of Def. 3.20 and of Def. 3.9
are in bijection, respectively. We can thus specify T—signatures by simply giving a
term of the simple data type defined in Def. 3.9. In the Coq formalization, arities
and signatures are defined via such data types, cf. Code 7.1 and Code 7.2.

Remark 3.22. 1In Def. 3.20 we can have n = 0, yielding an arity for constants
of, say, object type tg € T,

s=%—[O], .

Such an arity then is given by an empty list of arguments according to Def. 3.9.
An example of a constant arity is given in Ex. 3.48.

As an example we discuss the classic signature of the simply typed lambda cal-
culus:

Ezample 8.23 (Signature of TLC, Code 7.3). Counsider the example of the simply—
typed lambda calculus (cf. Exs. 1.3, 2.37). Its signature is given syntactically in
Ex. 3.10. Equivalently, it is given by the signature

Y1ic = {absst, app; 4 }s,teTric
with
abss ¢ 1= [O]] = [O]swt  and
appg; = [O]swt X [0]s = [O]; .

Remark 3.24. Note that in Ex. 3.23 we do not need to explicitly specify an arity
for the Var term constructor in order to obtain the simply—typed lambda calculus
as presented in Ex. 1.3. Indeed, by building models from monads (cf. Def. 3.25)
every model is by definition equipped with a corresponding operation — the unit
of the underlying monad.

3.2.2  Representations. A representation of an arity s in a monad P is given by
a morphism of P-modules whose domain and codomain are determined by s:

Definition 3.25 (Representation of a T—Signature, Code 7.4). A representation
R of a T—signature X is given by

—a monad P on the category Set” and
—for any arity s € ¥, a morphism of modules in LMod(Set”, Set),

st - dom(s, P) — cod(s, P) ,
such that 7 (sf) = idp.
Given a representation R, we denote by R also the underlying monad.

Morphisms of representations are monad morphisms that are compatible with
the representation module morphisms:

Definition 8.26 (Morphism of Representations). Let P and @ be representations
of a T—signature 3. A morphism of representations f : P — @ is a morphism f
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between the underlying monads such that the following diagram commutes for any
arity s of X:

dom(s, P) al cod(s, P) (3.3)
dom(s, f) cod(s, f)
dom(s, Q) 5 cod(s, Q).

The preceding diagram can be seen as a diagram in two different categories, either
in the category LMod (Set”, Set), or in the category Mod(P,Set) of P—modules.

Definition 3.27 (Category of Representations). Morphisms of representations
can be composed: the composition of the underlying monad morphisms again gives
a morphism of representations. Similarly the identity morphism of monads is a
morphism of representations. Two morphisms of representations are said to be
equal if their underlying morphisms of monads are equal. Representations and
their morphisms of a signature ¥ form a category Rep(X).

3.2.3 Initiality. The main theorem states that any T-signature admits an initial
representation:

THEOREM 3.28: Let X be a classic T—signature. Then the category Rep(X) of
representations of ¥ has an initial object.

Remark 3.29. The monad underlying the initial representation associates, to
any context V € Set”, the set of terms of the syntax of ¥ with free variables in V.
The module morphisms of the initial representation are given by the constructors
of this syntax.

A set—theoretic construction of the syntax as well as a proof of the theorem is
given in Zsido’s PhD thesis [Zsi10]. In Sect. 7.2 we explain the implementation of
the main theorem in a type-theoretic setting in the proof assistant Coq.

3.3 Extending Zsid6's Theorem to Varying Types

Zsido’s initiality result of Thm. 3.28 does not account for varying object sorts.
Indeed, given a signature X over a set T of object sorts, any representation of
Y “has” the same set of sorts T, i.e. its underlying monad is a monad on the
category Set”. In this section we give a new definition of signatures and their
representations, and prove that the resulting category of representations has an
initial object. The iteration operator obtained from this initiality result accounts
for translations between languages over different sets of sorts. We define a typed
signature to be a pair (5, Y) consisting of an algebraic signature S for sorts, and a
signature 3 for terms typed over the sorts specified by S. A representation of such
a typed signature consists of a representation of the sort signature .S in some set T’
and a representation of 3 in a monad over the category Set”. Translations of sorts
are given by morphisms of representations of S, that is, by maps of sets that are
compatible with the representations of sorts constructors in the source and target.
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Compared to Zsido, we thus restrict ourselves to sets of sorts that have inductive
structure, whereas for Zsido, the set of sorts is given by an arbitrary parameter.

3.3.1 Signatures for Types & Terms. Before starting with the formal defini-
tions, we informally consider the example of the simply—typed lambda calculus; its
signature for terms was given in the preceding section (cf. Ex. 3.23) as:

{abssyt = [([8}715)] — (s~ 1) apP; ¢ = [(H,S ~ t), ([],8)} — t}syteTTLC - (3.4)

The parameters s and ¢ range over the set TT ¢ of types, the initial representation
of the signature for types from Ex. 3.2. In particular, we have 2 x T% . arities in
this signature.

Our goal is to consider representations of the simply—typed lambda calculus in
monads over categories of the form Set” for any set T — provided that T is
equipped with a representation of the signature St c. Clearly, the above signa-
ture of Disp. (3.4), with its strong dependence on the set T c is not well-suited to
express this. Instead of the above signature, we would like to write

{abs == [([1],2)] = (1~2) , app:= [([,1~2),([.1)] =2} . (3.5)

What is the intended meaning of such a signature? For any representation 1" of
StLc, the variables 1 and 2 range over elements of 7. In this way the number of
abstractions and applications depends on the representation 7" of St c: intuitively,
a representation of the above signature of Disp. (3.5) over a representation T of
Tric has T? abstractions and 72 applications — one for each pair of elements of
T. As an example, for the final representation of St ¢ in the singleton set, one
obtains only one abstraction and one application morphism. We call arities, that
contain object type variables, arities of higher degree, where the degree of such an
arity denotes the number of (distinct) type variables. For instance, the arities abs
and app of Disp. (3.5) are of degree 2.

3.3.1.1 Term Arities, syntactically. In Sect. 3.2, arities over a fixed set of object
types T were defined purely syntactically, namely using pairs and lists, cf. Def. 3.9.
We give a similar syntactic characterization of arities over a fixed algebraic signature
S for types as in Def. 3.1.

Definition 8.30 (Type of Degree n). For n > 1, we call types of S of degree n the
elements of the set S(n) of types associated to the signature S with free variables
in the set {1,...,n}. We set S(0) := S. Formally, the set S(n) may be obtained as
the initial representation of the signature S enriched by n nullary arities.

Types of degree n are used to form classic arities of degree n:

Definition 3.31 (Classic Arity of Degree n). A classic arity for terms over the
signature S for types of degree n is of the form

[([tl,h e ;tl,ml];t1)> RN ([tk,la . 7tk,mk],fk)] — 1t , (36)

where ¢; ;,t; € S(n). More formally, a classic arity of degree n over S is a pair
consisting of an element to € S(n) and a list of pairs. where each pair itself consists
of alist [t; 1,...,%;m,] of elements of S(n) and an element ¢; of S(n).

A classic arity of the form given in Disp. (3.6) denotes a constructor — or a
family of constructors, for n > 1 — whose output type is ¢y, and whose k inputs
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are terms of type t;, respectively, in each of which variables of type according to
the list [t;1,...,%im,;] are bound by the constructor.

Remark 3.32. For an arity as given in Disp. (3.6) we also write

@] s @] 5 (0, (3.7)
Examples of (classic) arities are to be found in Ex. 3.47 and Sect. 3.4.

Remark 3.33 (Implicit Degree). Any arity of degree n € N as in Def. 3.31 can
also be considered as an arity of degree n 4+ 1. We denote by S(w) the set of types
associated to the type signature S with free variables in N. Then any arity of
degree n € N can be considered as an arity built over S(w). Conversely, any arity
built over S(w) only contains a finite set of free variables in N, and can thus be
considered to be an arity of degree n for some n € N. In particular, by suitable
renaming of free variables, there is a minimal degree for any arity built over S(w).
We can thus omit the degree — e.g., the lower inner index n in Disp. (3.7) —, and
specify any arity as an arity over S(w), if we really want to consider this arity to
be of minimal degree. Otherwise we must specify the degree explicitly.

3.3.1.2 Term Arities, semantically. We now attach a meaning to the purely
syntactically defined arities of § 3.3.1.1. More precisely, we define arities as pairs
of functors over suitable categories. Afterwards we restrict ourselves to a specific
class of functors, yielding arities which are in one-to—one correspondence to — and
thus can be compactly specified via — the syntactically defined classic arities of
§ 3.3.1.1. Accordingly, we call the restricted class of arities also classic arities.

Throughout this section, we fix an algebraic signature S for types. An arity
« of degree n for terms over S is a pair of functors (dom(a),cod(e)) associating
two P-modules dom(a, P) and cod(a, P), each of degree n, to any suitable monad
P. A suitable monad here is a monad P on some category Set” where the set T
is equipped with a representation of S. We call such a monad an S-monad. A
representation R of o in an S—monad P is a module morphism

af : dom(a, P) — cod(a, P) .

As we have seen in Ex. 1.3, constructors can in fact be families of constructors
indexed by type variables. For such a constructor indexed n times, we consider
modules of degree n (cf. Rem. 3.37).

We define a family of categories of monads which will play the role of the category
defined in Def. 3.13:

Definition 3.34 (S-Monad). Given an algebraic signature S, the 2-category
S-Mnd of S—monads is defined as the 2—category whose objects are pairs (T, P)
of a representation 7' of S and a monad P : Set’ — Set’. A morphism from
(T, P) to (T",P’) is a pair (g, f) of a morphism of S-representations g : T — T”
and a monad morphism f : P — P’ over the retyping functor g (cf. Rem. 2.23).
Transformations are the transformations of Mndcojayx -

Given n € N, we write S-Mnd,, for the 2—category whose objects are pairs (T, P)
of a representation 7' of S and a monad P over Set’. A morphism from (T, P) to
(T", P’) is a pair (g, f) of a morphism of S—representations g : T'— 7" and a monad
morphism f : P — P’ over the retyping functor g(n) (cf. Def. 2.28).
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We call Ig,, : S-Mnd,, = Mndax the functor which forgets the representation of
S.

We define a “large category of modules” in which modules over different S—monads
are mixed together:

Definition 3.35 (Large Category of Modules). Given a natural number n € N,
an algebraic signature S and a category D, we call LMod,, (S, D) the colax comma
category Is, J (D,Id). An object of this category is a pair (P, M) of a monad
P € S-Mnd,, and a P-module with codomain D. A morphism to another such
(Q,N) is a pair (f,h) of an S—monad morphism f : P — @ in S-Mnd,, and a
transformation h: M — f*N:

A half-arity over S of degree n is given by a functor from the category of monads
to the large category of modules:

Definition 3.36 (Half-Arity over S (of degree n)). Given an algebraic signature
S and n € N, we call half-arity over S of degree n a functor

a : S-Mnd — LMod,, (S, Set)
which is pre-inverse to the forgetful functor.

Taking into account Rem. 3.37, this means that a half-arity of degree n associates
to any S—monad R — with representation of S in a set T'— a family of R—modules
indexed n times by T'.

Remark 3.37 (Module of Higher Degree corresponds to a Family of Modules).
Let C be a category, let T be a set and R be a monad on CT. Suppose n € N, and
let D be a category. Then modules over R,, with codomain D correspond precisely
to families of R—modules indexed by T™ with codomain D by (un)currying. More
precisely, let M be an R,—module. Given t € T", we define an R-module M; by

Mi(c) := M(c,t)
Module substitution for My is given, for f € C* (¢, Rd), by
Me(f) = <M(f)

where we use that we also have f € CL((c,t), (Rd,t)) according to Def. 2.26. Going
the other way round, given a family (My)tern, we define the R,—module M by

M (e, t) := Myg(c) .

Given a morphism f € CI'((c,t), (Rd,t)) — recall that morphisms in CI are only
between families with the same marker t —, we also have f € CT(c, Rd) and define
M(f) = M)

The remark extends to morphisms of modules; indeed, a morphism of modules

a : M — N on categories with pointed index sets corresponds to a family of
morphisms (ot : My — Ni)gern between the associated families of modules.
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As in Sect. 3.2, we restrict our attention to half-arities which correspond, in a
sense made precise below, to the syntactically defined arities of Def. 3.31. The basic
brick is the tautological module of degree n:

Definition 3.38. Given a category C and n € N, any monad R on the category
CT induces a monad R,, on CL with object map (V,t1,...,t,) = (RV,t1,...,t),
as is already indicated for functors in Def. 2.26.

Definition 8.39 (Tautological Module of Degree n). Let n € N be a natural
number. To any S—monad R we associate the tautological module of R,

0,(R) := (Rn, R,) € LMod,, (S, Set”) .
This construction extends to a functor ©,, : S-Mnd — LMod,, (.S, Setz).

Let us consider the signature St ¢ of types of TLC. In the syntactically defined
arities (cf. Disp. (3.5)) we write terms like 1 ~» 2. We now give meaning to such
a term: let T be any representation of Stic, that is, a set T together with a base
type * € T and a binary operation (~): T x T — T. Intuitively, the term 1 ~» 2
should associate, to an object (T,V,t1,t2) with a T—indexed family V' of sets and
t1,to € T, the element t; ~ t5 € T. More formally, such a term is interpreted by
a natural transformation (cf. Def. 3.41) over a specific category, whose objects are
triples of a representation 7' of Stic, a family of sets indexed by (the set) 7" and
“markers” (t1,ts) € T?.

We go back to considering an arbitrary signature S for types. The following are
the corresponding basic categories of interest:

Definition 3.40 (SC,). Given a category C — think of it as the category Set
of sets — we define the category SC, to be the category an object of which is a
triple (T, V,t) where T is a representation of S, the object V' € CT is a T—indexed
family of objects of C and t is a vector of elements of T' of length n. We denote by
SU,, : SC,, — Set the functor mapping an object (T',V,t) to the underlying set T

We have a forgetful functor SC,, — TC, which forgets the representation struc-
ture. On the other hand, any representation 7" of S in a set T gives rise to a functor
CT — SC,,, which “attaches” the representation structure.

The meaning of a term s € S(n) as a natural transformation
s:1= SU, :SC, — Set
is now given by recursion on the structure of s:

Definition 3.41 (Canonical Natural Transformation). Let s € S(n) be a type of
degree n. Then s denotes a natural transformation

s: 1= SU, :S5C, — Set

defined recursively on the structure of s as follows: for s = a(aq,...,a;) the image
of a constructor o € S we set

S(T7 V? t) = a(al(T7 .‘/7t)7 AR ] ak(T7 ‘/;t))
and for s = m with 1 < m < n we define
s(T,V,t) =t(m) .
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We call a natural transformation of the form s € S(n) canonical.

Canonical natural transformations are used to build classic half-arities; they
indicate context extension (derivation) and selection of specific object types (fibre):

Definition 38.42 (Classic Half-Arity over S). The following clauses define an
inductive set of classic half—arities, to which we restrict our attention:

—The constant functor * : R+ 1 is a classic half-arity.

—Given any canonical natural transformation 7 : 1 — SU, (cf. Def. 3.41), the
point-wise fibre module with respect to 7 (cf. Def. 2.59) of the tautological module
O, : R— (Ry, Ry) (cf. Def. 3.39) is a classic half-arity of degree n,

[©,]r : S-Mnd — LMod,,(S,Set) , R+ (R, [Rn];)

—Given any (classic) half-arity M = (M1, Ms) : S-Mnd — LMod,, (S, Set) of degree
n and a canonical natural transformation 7 : 1 — SU,, the point-wise derivation
of M with respect to 7 (cf. Def. 2.57) is a (classic) half-arity of degree n,

M7 : S-Mnd — LMod,,(S,Set) , R~ (M(R))" := (Mi(R), M2(R)")

Here (M (R))T really means derivation of the module, i.e. derivation in the second
component of M(R).

—Given two (classic) half-arities M = (M;, Ms) and N = (Ny, N3) of degree n,
which coincide pointwise on the first component, i.e. such that M; = N;. Then
their product M x N is again a (classic) half-arity of degree n. Here the product
is really the pointwise product in the second component, i.e.

M x N : R~ (M;(R), My(R) x Na(R)) .

Remark 3.43 (Classic Half-Arity, Syntactically). We can represent a classic
half-arity of degree n € N over a signature S for types in a purely syntactic manner:
such a half-arity is determined by a list of the form

[(tl, 81), ceey (tk7 Sk)] y

where t; are vectors of finite length of elements of S(n) and s; € S(n). Such a list
corresponds precisely to the classic half-arity

R [Ru]t x ... x [Ry]t .

S1 Sk
We use weighted sets as indexing sets for families of arities. The weight denotes the
degree of the corresponding arity.

Definition 3.44 (Weighted Set). A weighted set is a set J together with a map
d:J—N.

An arity of degree n € N for terms over an algebraic signature S is a pair of
functors from S-monads to modules in LMod,, (S, Set). The degree n corresponds
to the number of indices of its associated constructor. As an example, the arities
of Abs and App of Ex. 1.3 are of degree 2, cf. Ex. 3.47.

Definition 8.45 (Term—Arity, Signature over S). A classic arity o over S of
degree n is a pair

s = (dom(a), cod(ev))

Journal of Formalized Reasoning Vol. 8, No. 2, 2015.



66 . B. Ahrens

of half-arities over S of degree n such that

—dom(a) is classic and
—cod(a) is of the form [©,], for some natural transformation 7 as in Def. 3.42.

We write dom(a) — cod(«) for the arity «, and
dom(c, R) := dom(«)(R)

(and similarly for the codomain functor cod). Any classic arity is thus of the form
given in Disp. (3.6). Given a weighted set (J,d), a term—signature ¥ over S indexed
by (J,d) is a J-family ¥ of algebraic arities over S, the arity X(j) being of degree
d(y) for any j € J.

Finally, a typed signature is a pair of a signature for types and a signature for
terms over those types:

Definition 3.46 (Typed Signature). A typed signature is a pair (S, X) consisting
of an algebraic signature S and a term-signature ¥ (indexed by some weighted set)
over S.

Ezample 3.47 (TLC, Ex. 1.3 continued). The terms of the simply typed lambda
calculus over the type signature of Ex. 3.2 are given by the arities

abs : [0]3 = [O]iw2 ,
app : [O]iw2 X [B]1 = [O]2

both of which are of degree 2 — we use the convention of Rem. 3.33. The outer
lower index and the exponent are to be interpreted as de Bruijn variables, ranging
over types. They indicate the fibre (cf. Def. 2.59) and derivation (cf. Def. 2.57),
respectively, in the special case where the corresponding natural transformation
is given by a natural number as in Def. 3.41. In particular, contrast that to the
signature for the simply—typed lambda calculus we gave in Sect. 3.2, Ex. 3.23. The
difference is that now “similar” arities which differ only in an object type parameter,
are grouped together, whereas this is not the case in Ex. 3.23.

Those two arities can in fact be considered over any algebraic signature S with
an arrow constructor, in particular over the signature Spcg (cf. Ex. 3.48).

Ezample 3.48 (Ex. 3.8 continued). We continue considering PCF. The signature
Spcr for its types is given in Ex. 3.4. The term-signature of PCF is given in Fig. 2:
it consists of an arity for abstraction and an arity for application, each of degree
2, an arity (of degree 1) for the fixed point operator, and one arity of degree 0 for
each logic and arithmetic constant — some of which we omit:

Our presentation of PCF is inspired by Hyland and Ong’s [HO00], who — simi-
larly to Plotkin [Plo77] — consider, e.g., the successor as a constant of arrow type.
As an alternative, one might consider the successor as a constructor expecting a
term of type ¢ as argument, yielding a term of type ¢. For our purpose, those two
points of view are equivalent.

3.3.2  Representations of Typed Signatures. A representation of a typed signa-
ture (S,X) is given by a representation of S (in a set) and a representation of 3 in
a suitable monad:
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[6]3 = [O]i=2 ,
app : [Bi=2 X [0]1 — [O]2
Fix : [O]iz1 — [O]1 ,
n:x— [0, forneN

abs :

Succ : * — [0],=,
Pred: x — [0],=,
Zero? : x — [O],=0
cond, : * — [Olo= ==,
T,F: % — [0,

Fig. 2. Term Signature of PCF
Definition 3.49 (Representation of a Signature over S). Let (S,%) be a typed
signature. A representation R of (S,X) is given by

—an S—monad P and
—for each arity « of ¥, a morphism (in the large category of modules)

af : dom(a, P) — cod(a, P) ,
such that 7 (a®) = idp.

In the following we also write R for the S—monad underlying the representation R.
Note that the representation of S is “hidden” in the S-monad P.

A morphism of representations accordingly consists of a morphism of represen-
tations of S together with a morphism of representations of ¥, that is, a monad
morphism that is compatible with the term representations:

Definition 8.50 (Morphism of Representations). Given representations P and R
of a typed signature (S, X)), a morphism of representations f : P — R is given by a
morphism of S—monads f : P — R, such that, for any arity « of X, the following
diagram of module morphisms commutes:

dom(a, P) ——" 4 cod(a, P)

dom(a,f)l lCOd(aaf)

dom(a, R) ————— cod(a, R).

Again the morphism of representations of S is “hidden” in the morphism of S—
monads.
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Remark 3.51. Taking a 2-categoric perspective, the above diagram can be read
as an equality of 2-cells

dom(c,P) dom(a,P)
m /—\
P cod(a, P) Idset = £* dom(e, R)— Idser

\U/Cf U/JMOZR

f* cod(a,R) f* cod(a,R)

<

where we write df and cf instead of dom(a, f) and cod(«, f), respectively.

The diagram of Def. 3.50 lives in the category LMod, (S, Set) — where n is the
degree of @ — where objects are pairs (P, M) of a S—monad P of S-Mnd,, and a
module M over P. The above 2—cells are morphisms in the category Mod(FP,, Set),
obtained by taking the second projection of the diagram of Def. 3.50. Note that for
easier reading, we leave out the projection function and thus write dom(«, R) for
the R,—module of dom(«, R), i.e. for its second component, and similar elsewhere.

Representations of (S,%) and their morphisms form a category.

Remark 3.52. We obtain Zsido’s category of representations [Zsi10, Chap. 6] by
restricting ourselves to representations of (S,Y) whose type representation is the
initial one. More, precisely, a signature (S,X) maps to a signature, say, Z(S,X)
over the initial set of sorts S in the sense of Zsid6 (cf. Sect. 3.2 and [Zsi10, Chap. 6]),
obtained by unbundling each arity of higher degree into a family of arities of degree
0. For instance, the signature of Ex. 3.47 maps to the signature given in Ex. 3.23.
Representations of this latter signature in the sense of Sect. 3.2 then are in one—to—
one correspondence to representations in the sense of this section of the signature
of Ex. 3.47 over the initial representation S of sorts, via the equivalence explained
in Rem. 3.37.

3.3.3 Initiality. We have all the ingredients to state and prove an initiality the-
orem for typed signatures:

THEOREM 3.53:  For any typed signature (S,X), the category of representations
of (S,%) has an initial object.

Proof. The proof consists of the following steps:
(1) find the initial representation S of the type signature S;

(2) define the monad > of terms specified by ¥ on the category Set” ;

(3) equip the S-monad S with a representation structure of ¥, yielding a repre-
sentation X of (5, 3);

(4) for any representation R of (S, Y), give a morphism of representations ip : 3 —
R;

(5) prove uniqueness of ig.
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We go through these points:

(1) We have already established (cf. Lem. 3.7) that there is an initial representation
of sorts, which we call S. Its underlying set is called S as well.

(2) The term monad we associate to (5, %) is the same as Zsidd’s [Zsil0, Chap. 6]
in the sense of Rem. 3.52, i.e. it is the term monad associated to Z(S, ). The
construction of this monad in a set—theoretic setting is described in Zsiddé’s
thesis. We will give its definition in a type-theoretic setting.

In the following the natural transformations 7; are in fact vectors of multiple
transformations like those in Rem. 2.30 (see also Def. 2.57), iterated by suc-
cessive composition. Furthermore we make use of the simplified notation as
introduced in Not. 2.31.

We construct the monad which underlies the initial representation of (S, %),

»: Setg — Setg .

It associates to any set family of variables V' € Set® an inductive set of terms
with the following constructors:
—for every classic arity (of degree n)

a=[0,]7 X ... x[0,]]" = [On]s (3.8)
we have a family of constructors indexed n times by t = (t1,...,t,) as well
as by the context V € Set”:

~71(V,t) ~ Tm (V,t)

(V)2 (V)oyvigy X --- X 2 Vo vty = SVove)

—a family of constructors
Var(V) : Vi, — 3(V),

indexed by contexts and the set S of sorts.
The monadic structure is, accordingly, defined in the same way as in [Zsil0],
by variables—as-terms — using the constructor Var — and flattening.

(3) The representation structure on the monad 3 is defined by currying, and corre-
sponds to Zsido’s: given an arity « of degree n in X, we must specify a module
morphism

o dom(a, ) — cod(a, 2) |
where dom(a, ) and dom(a, ) are modules in Mod(%,,, Set). We define
PV )(a) = on(V)(a)

that is, the image under the constructor « from the definition of the monad
3. This yields a morphism of modules « of degree n; note that according to
Rem. 3.37 it would be equivalent to specify a family a3’ of module morphisms
of suitable type, indexed by t, which is actually done by Zsidé.

(4) Given any other representation R over a set of sorts 7', initiality of S gives a
“translation of sorts” g : S — 7.
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The morphism i : 3 — R on terms is defined by structural recursion. Unfolding
the definition of colax monad morphism, we need to define, for any context

Ve Setg, a map of type
iv: Yt eT, GEV))y = RGV)w
Via the adjunction of Def. 2.22 we equivalently define a map ¢ as a family
iv:VteS, S(V) — R(GV)ym

Let a € 3(V); be a term. In case a = Var(V),(v) is the image of a variable
v € V4, we map it to

iv (Var(V)e(v) = 1" (V) (9(1)) (ctype(v)) .

)
Otherwise the term a = (V) (ay,...,ar) € (V)J (v,t) is mapped to
)

iv (V) (ar, . an)) = o Gn)(V,1) (iar),-. . iar)) - (3.9)

This map is well-typed: note that g(n)(V,t) = (gV, g«(t)) by Definition 2.28
and g(n)((V,t)7) = (gV, g«(t))", i.e. context extension and retyping permute.
The axioms of monad morphisms, i.e. compatibility of this map with respect
to variables—as—terms and flattening are easily checked: the former is a direct
consequence of the definition of ¢ on variables, and the latter is proved by
structural induction. This definition yields a morphism of representations;
consider the arity « of X.. For this arity, the commutative diagram of Def. 3.50
informally reads as follows: one starts in the upper—left corner with a tuple
of terms, say, (ay,...,ax) of 3. Taking the upper-right path corresponds to
the translation of the image of this tuple under the map o, i.e. under the
constructor o of 3. The lower—left path corresponds to the image under the
module morphism af of the translated tuple (i(ay),...,i(ax)). The diagram
thus precisely states the equality of Disp. (3.9). We thus establish that ¢ is (the
carrier of) a morphism of representations (g,i) : (S,%) — R.

Uniqueness of the morphism 7 : (S’, f]) — R is proved making use of the com-
mutative diagram of Def. 3.50. Suppose that (¢’,4') : (S', f)) — R is a morphism
of representations. We already know that g = ¢’ by initiality of S.

By structural induction on the terms of 3 we prove that i = i’: using the same
notation as above, for a = ay(V)(aq,...,ar) we have

(@) = o (I'(ar), ..., ' (ar)) "= R (i(ar), ... i(ar)) = i(a) .

In case a = Var(v) is a variable, considered as a term, the fact that both i and
i’ are monad morphisms ensures that i(Var(v)) = ¢/(Var(v)) = n?v(ctype(v)).
Thus we have proved i = 7'.

O

The proof shows that the initial morphism to a representation R depends on the
representation structure on R and not just on the monad R itself. We illustrate
this on the example of the typed signature of PCF:
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Example 3.54. Representing the signature of PCF in the untyped lambda cal-
culus leaves one with several choices to take, e.g., as to how to translate the fixed
point operator Fix. To represent Fix in ULC, one must give a unary operation on
ULC. Reasonable from the semantic viewpoint are, e.g., the representations

x+— App(Y,x) or x+— App(©,x) , (3.10)
using, e.g., one of the fixedpoint combinators
Y ;= Af.(Az.f(xz))(Az. f(xz)) (Curry)
O := (Az.Ay.(y(zzy)))(Az.Ay.(y(zzy))) (Turing).

By initiality, those two representations yield two different compilations of PCF to
ULC, mapping a PCF term of the form Fix(f) to Y(f) = App(Y, f) and ©(f) =
App(O, f), respectively. The representation module morphisms thus constitute the
“extra structure” ¢, 1 and 1)’ mentioned in Sect. 1.1. A complete translation is
given in Sect. 9.

3.4 Logics and Logic Translations

In the style of the Curry—Howard isomorphism, we consider propositions as types
and proofs of a proposition as terms of that type. In this example we present the
typed signatures of two different logics,

—Classical propositional logic, called CPC, and
—Intuitionistic propositional logic, called IPC.

According to our main theorem each of those signatures gives rise to an initial rep-
resentation, a logical type system. We then use the iteration principle on CPC in
order to specify a translation of propositions and their proofs from CPC to IPC.
The translation we specify is actually the propositional fragment of the Gdidel-
Gentzen negative translation [TvD88, Def. 3.4].

3.4.1 Signatures of Classical and Intuitionistic Logic. We present typed signa-
tures for classical and intuitionistic propositional logic. Their respective signatures
for types — propositions — are the same: let P denote a set of atomic formulas. The
types — propositions — of classical (CPC) and intuitionistic (IPC) propositional
logic are given by the following algebraic signature:

P:={p:0, T:0, A:2 1:0, V:2 =:2}.

where for any atomic formula p € P we have an arity p : 0. We call P the initial
representation as well as its underlying set, i.e. the propositions of CPC and IPC.
For the set P we use infixed binary constructors. Note that negation is defined as
-A = A= 1.

3.4.1.1 Signature of CPC. For the terms of CPC, each inference rule is given
by an arity. In Fig. 3 (p. 72), the inference rules and their corresponding arities
are presented. Each inference rule corresponds to a (family of) term — proof —
constructor(s), where inference rules without hypotheses are constants. Note that
the initial representation automatically comes with an additional inference rule

TAFA
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Inference Rule Arity
TET 1 Tr:x— [0
et 1r: (6] — O]

s }_11‘4% A/\FB'_ 2 AL: O x [O]2 — [B]1n2
W AEL AE1L ¢ [@in2 = [O]1
W B2 AEL : [@lin2 — [O]2

% e =1: (0] — [6]1=2

4 :>FB|— B A e =%: [Olim2 X [O]1 — [6]2
% Vil Vi1 : [B]1 — [B]ive
% V12 Viz : [€]2 = [O]1ve

I'-AVB I AR C nLBEC Ve : [Blive x O]} x (B — [Ols
T-C
Tr-ava M EM : # — [0] 191

Fig. 3. Inference Rules of CPC and their Arities

corresponding to the monadic operation 7, i.e. to the variables—as—terms construc-
tor. Analogously to Rem. 3.24, it is not necessary, using our approach, to specify
this inference rule explicitly by an arity in the term signature of the logic under
consideration; any logic we specify via a typed signature automatically comes with
this rule.

3.4.1.2 Signature of IPC. The type signature and thus the formulas of intu-
itionistic propositional logic IPC are the same as for CPC. However, the term
signature is missing the arity EM for excluded middle.

3.4.2  Translation via Initiality. The translation of propositions ()9 : P — 75,
Le. on the type level, is specified by a representation g of the algebraic signature P
in the set P. AAccording to Def. 3.3 we must specify, for any arity s: n € Nof P, a
map towards P taking a suitable number of arguments in P,

s9 P =P .

There is, of course, a canonical such map for each arity — but this would only give
us the identity morphism on P. We represent P in P not by this identity represen-
tation, but in such a way that we obtain the Godel-Gentzen negative translation:
p?i=——p, T9:=--T, AN :=A, VI:=(A4,B)— ~(-AA-DB),
=9= (=), 19:=--1.
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The proofs of IPC are given by the signature of CPC without the classical axiom
EM. We represent EM in IPC by giving, for any proposition A, a term of type
ﬁ(ﬁﬁA A ﬁA), e.g.,

var var
—AAN-AF ———AAN-A ——AAN-AF ——AAN-A
NE1 NE2
AN —AF A —AN-AF A _
E
——AAN-AF L -
I

F-—AAN-A= L

As another example, we give a representation of Vry, that is, for any proposition A
and B, we give a term of type A9 — —(—A9 A —BY):

A9
—\—|Ag
A9V ——BY n
————— De Morgan

—|(—|Ag A —|Bg)

Here the proof of A9 — ——A9 and of the used De Morgan law are abbreviations
for longer proofs in IPC. We leave it up to the reader to find representations in
IPC for the other arities.

3.4.3 Remarks. This representation of the signature of CPC in IPC yields the
(propositional fragment of the) Godel-Gentzen translation of propositions specified
in Troelstra and van Dalen’s book [TvD88, Def. 3.4], denoted on propositions with
the same name as its specifying representation,

(L) :P—=P.

Our translation of terms shows that any provable proposition in CPC translates
to a provable proposition in IPC, since we provide the corresponding proof term
via our translation:

Thc A implies T9Fp A9 .

However, a logic translation ¢ from a logic L to another logic L’ should certainly
satisfy an equivalence of the form

' A if and only if T by, A? .

Our framework does not ensure the implication from right to left, and is thus
deficient from the point of view of logic translations.

Another important property of logics is normalization through cut elimination.
This aspect can be treated using the techniques presented in Sect. 5, where we
integrate reduction rules into the notion of signature and their representations as
presented in this chapter.

4. REDUCTIONS FOR UNTYPED SYNTAX

We now would like to consider not just the terms (and types) of a language, but
also reductions on the terms. As an example, suppose we would like to equip the
untyped lambda calculus with the reduction relation generated by the beta rule
given in Disp. (A.1). We could produce the syntax associated to the signature via
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the universal property explained in the preceding section — possibly in a com-
puter implementation thereof — and define a suitable relation on the terms of the
language a posteriori.

However, in this way we would not have any guarantee concerning compatibility
of substitution with respect to this reduction relation. Furthermore, how could we
ensure any compatibility of a translation from the initial representation to another
term language, equipped with some reduction rules, specified via the iteration prin-
ciple? There would not be any systematic way of doing so, we would need to check
manually for each translation we consider.

The solution to this problem is to integrate reduction rules into signatures and the
models of those signatures. Indeed, instead of considering reduction rules for just
the initial representation of a signature, say, 3, we define inequations over ¥, which
specify rules for each representation of . However, not all of the representations
of 3 satisfy those rules; we define a “satisfaction” predicate on the representations
of 3, to pick out the representations that satisfy those rules.

In order to define the satisfaction predicate, we need to consider representations
whose codomain (read: the codomain of the underlying monad) is not the category
of plain sets, but of sets with a structure suitable to express relations between its
elements. The following monadic models come to mind:

X M : Set — Set — Terms modulo relations by quotienting
We reject the idea of quotienting by the congruence relation generated by a set
of inequations on the grounds that we want to avoid adding a symmetry rule and
thus loose the information of direction of a reduction

X M : Pre — Pre — Monads on preordered sets
While the use of monads on preordered sets allows to retain directions of reduc-
tions, it would necessitate to consider preordered contexts. However, contexts
usually are given by unstructured sets of variables.

v M : Set — Pre — Relative Monads from sets to preordered sets
Relative monads from sets to preorders avoid the problems one encounters with
the aforementioned approaches. As shown in Sect. 2.4.1, the mediating functor
to use is the functor A : Set — Pre.

Before going into more detail concerning the models of signatures with inequations,
we have a closer look at those signatures themselves. Signatures should carry
information about

Syntaz. the terms, optionally typed over a set of sorts, and
Semantics. reductions on the terms.

Accordingly, we introduce a notion of 2-signature. A 2-signature (X, A) consists
of a (higher—order) signature ¥ — which we also call 1-signature from now on, to
emphasize the existence of a second level, the semantic level — which specifies the
terms of a language, as well as a set A of inequations over X. Each inequation of
A specifies a reduction rule.

We borrow the terms “l1-signature” and “2-signature” from T. Hirschowitz [Hir|:
they are motivated by the point of view of Categorical Semantics. There, types and
terms of a language are modelled as the objects and morphisms of a category. Fur-
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thermore, reductions between terms may be modelled through 2—cells. In this way,
a l-signature specifies a 1-category, whereas a 2-signature specifies a 2—category.

As the 1-signature which underlies a 2-signature, we may choose any of the
notions of signature defined in the preceding chapters (cf. Defs. 3.18, 3.46). For
this chapter, however, we restrict ourselves to untyped syntax with reductions,
allowing us to employ a simple notion of 1-signature. The next chapter integrates
reductions and types.

While we present 1-signatures from two perspectives, a syntactic one and a se-
mantic one, we only present inequations semantically. We refer to Sect. 10.2 for
thoughts about the syntactic aspect.

4.1 1-Signatures

We start out by defining 1-signatures in two different ways, once syntactically, and
once in terms of pairs of functors between suitable categories.

The syntactic description of arities is actually the same as in Sect. 3.2, even
simpler: since we only consider untyped syntax, we just need to specify the number
of arguments of a constructor, and, for each argument, the number of variables
bound in it:

Definition 4.1 (Classic Arity, Signature). A classic arity is given by a list of
natural numbers. The length of the list indicates the number of arguments of its
associated constructor, whereas the i—th component of the list specifies the number
of variables bound in the i—th argument. A classic signature is given by a family
of arities.

Ezample 4.2 (Untyped Lambda Calculus). The signature of the untyped lambda
calculus is given by

Yuic :=={app:[0,0] , abs:[1]} .

For the semantic definition of arities, we define a suitable category of monads and
a large category of modules. As discussed at the beginning of the chapter, we use
relative monads and modules over relative monads.

We start by giving a simplified version of the definition of morphism of relative
monads, to which we restrict ourselves throughout this chapter. It is obtained
from Def. 2.87 by restricting the vertical functors G and G’ to the identity functor.
Furthermore we will have F' = F’, and the natural transformation N is the identity
transformation. Given two relative monads P and @Q on F : C — D, a (simple)
morphism of relative monads is a family of morphisms 7. € D(Pc,Qc) that is
compatible with the monadic structure:

Definition 4.3 (Morphism of Relative Monads). Given two relative monads P
and @ from C to D on the functor F': C — D, a morphism of monads from P to
Q is given by a collection of morphisms 7. € D(Pc,Qc) such that the following
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diagrams commute for all suitable morphisms f:

" (f) nf
Pec—— Pd Fe—— Pc
Tc Td Tc

ng
c—Qd c.
Q pp— Q Q

As a consequence from these commutativity properties the family 7 is a natu-
ral transformation between the functors induced by the monads P and @ (cf.
Rem. 2.80).

Definition 4.4 (Category of Relative Monads on F). Given a functor F : C — D,
we define the category RMon(F) to be the category whose objects are relative
monads on F. A morphism from P to @ in RMon(F') is a morphism as in Def. 4.3.

There is an adjunction between relative monads on A and monads on sets:

LeEMMA 4.5 (Adjunction between Mon(Set) and RMon(A)):  The functors (with
object functions) defined in Lem. 2.83 give rise to an adjunction

A

Mon(Set) /J_\" RMon(A)

f\_/

U.

Proof. The isomorphism ¢p g : RMon(A)(A,P, Q) = Mon(Set)(P,U.Q) is defined
by applying the adjunction of Lem. 2.18 in each morphism of the family underlying a
morphism of (relative) monads. Commuting diagrams are not modified by applying
this adjunction. Naturality of ¢ is trivial. O

Definition 4.6 (Large Category of Modules). Given a functor F': C — D and a
category &, we define the category LRMod(F,E) to be the category whose objects
are pairs (P, M) of a relative monad P € RMon(F) and a relative P-module M
with codomain £. A morphism to another such (Q, N) is a pair (h, f) of a morphism
h: P — @ in RMon(F') and a morphism of P-modules f : P — h*Q to the pullback
of @ along h (cf. Sect. 2.4.2).

For any monad P on F there is the injection functor

Ip : RMod(P, &) — LRMod(F, &), f+—(id,f) .

A half-arity associates a P-module towards the category Pre of preorders to any
relative monad P on A:

Definition 4.7 (Half-Arity). A half-arity a is a functor
a : RMon(A) — LRMod(A, Pre)
that is pre—inverse to the forgetful functor.
Similarly to the preceding sections we restrict our attention to classic half-arities:

Definition 4.8 (Classic Half-Arity). The following clauses define the inductive
set of classic half-arities:
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—O : P~ (P, P), the tautological module, is classic;

—if M is classic, so is its derivation M’ : P — (P, M(P)");

—if M and N are classic, so is their product M x N : P+~ (P, M(P) x N(P));
—the constant half-arity % : P — 1 is classic.

Classic half—arities as defined in Def. 4.8 are in one—to—one correspondence to classic
arities as defined in Def. 4.1:

Remark 4.9. We use the notation defined in Not. 2.103. More generally, given a
list of natural numbers s = [nq,...,ny], we write M*® := M™ x M™ x ... x M"™.

The same notation is used for morphisms, i.e. given a morphism of R—modules
f: M — N, we write

fe=fMx...ox ffm: M®— N° .

Thus any list of natural numbers specifies uniquely a classic half-arity, the empty
list denoting the terminal module * : R +— 1.

Definition 4.10 (Arity). An arity s is a pair s = (dom(s), cod(s)) of half-arities
dom(s), cod(s) : RMon(A) — LRMod (A, Set) .
We write s = dom(s) — cod(s), and dom(s, P) := dom(s)(P) (and similarly for
cod).

Definition 4.11 (Classic Arity, 1-Signature). A classic arity is an arity of the
form

dom(s) - ©

such that dom(s) is a classic half-arity. Any classic arity as in Def. 4.1 uniquely
specifies a classic arity by specifying its domain according to Rem. 4.9. A 1-
signature is a family of classic arities, or, equivalently according to Rem. 4.9, a
family of lists of natural numbers.

Ezample 4.12 (Untyped Lambda Calculus). The 1-signature Xy c of the un-
typed lambda calculus, already given syntactically in Ex. 4.2, is given by the two
arities

app:=OxO -0, abs:=0"—-06 .

42 Representations of 1-Signatures

A representation of a classic arity s in amonad P is a module morphism dom(s, P) —
P. More generally:

Definition 4.13 (Representation of an Arity). A representation of an arity s =
dom(s) — cod(s) in a monad P on A is a morphism M of P-modules

M : dom(s, P) — cod(s, P)

in the category LRMod (A, Set), such that 7 (M) = id. By abuse of notation, we
also denote by M the second projection of M, i.e. we consider M € RMod(P, Set).

A representation of a signature is given by a relative monad on A and a repre-
sentation of each arity in this monad:
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Definition 4.14 (Representation of a 1-Signature). A representation R of a sig-
nature X is given by
—a monad P on A and
—a representation s : dom(s, P) — cod(s, P) of each arity s € ¥ in P as in
Def. 4.13.
Given a representation R, we denote its underlying monad by R as well.

For any signature ¥ as in Def. 4.11, we have representations of ¥ in monads
on Set (cf. Def. 3.25) and in relative monads on A (cf. Def. 4.14). The following
definition links those representations:

Definition 4.15 (Reps. in Relative Monads and Monads). To any representation
of a classic signature ¥ in a relative monad R as defined in Def. 4.14 we associate
a representation of 3 in the monad U, R (cf. Lem. 4.5) according to the definition
of representation of Def. 3.25, by postcomposing with the forgetful functor from
preorders to sets.

Conversely, to any representation of ¥ in a monad @ over sets we associate a
representation of ¥ in the relative monad A,Q over A, by postcomposing with A.
More precisely, an arity s = [s1,...,S,] € 2 and a representation of s in Q, say,

s9Q° > Q .,
with Q° := Q°* x ... x @°, we have to give a morphism of modules
AQ° x ... x AQ° — AQ,

that is, a family of monotone morphisms in the category Pre. However, the domain
module is isomorphic to A,Q?, hence postcomposing the map s¢ with A does the
job,

As? i ALQY = ALQ

and A, s obviously has the necessary commutation property with respect to sub-
stitution.

Ezample 4.16 (Ex. 4.12 continued). A representation P of Yy c is given by
—amonad P: Set 3 Pre and
—two morphisms of P-modules in RMod(P, Pre),
app: PxP —-P and abs:P — P .

Morphisms of representations are monad morphisms which commute with the rep-
resentation morphisms of modules:

Definition 4.17 (Morphism of Representations). Let P and @ be representations
of a classic signature .. A morphism of representations f : P — @ is a morphism of
monads f: P — @ such that the following diagram commutes for any arity s € >:

P
dom(s, P) —>—— P

wor| |

dom(s, Q) — Q.
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The meaning of those diagrams might become clearer when we consider the example
of the untyped lambda calculus. In line with the abuse of notation mentioned in
Def. 4.13, we omit the first component of objects and morphisms in LRMod (A, Set):

Ezample 4.18 (Ex. 4.16 continued). Let P and R be two representations of Xy c-
A morphism from P to R is given by a morphism of monads f : P — R such that
the following diagrams of P—module morphisms commute:

a P S
PxP PP P p—" . p
foJ lf f'J{ Jf
*(RXx R) ——— — f*R *R’ *R.
Pl — ! e

To make sense of these diagram it is necessary to recall the constructions on modules
of Sect. 2.4.2. The diagrams live in the category RMod(P,Pre). The vertices are
obtained from the tautological modules P resp. the @) over the monads P resp. @
by applying the pullback (for @) and derivation functors as well as by the use of
the product in the category of P-modules into Pre. The vertical morphisms are
module morphisms induced by f, to which — on the left—-hand side — functoriality
of derivation and products are applied. Furthermore instances of Lem. 2.106 and
2.107 are hidden in the lower left corner. The lower horizontal morphism makes
use of the functoriality of the pullback operation.

Definition 4.19 (Category of Representations). Representations of ¥ and their
morphisms form a category Rep™ ().

LeEMMA 4.20 (Adj. between Reps. in Rel. Monads and Reps. in Monads): The
assignment of Def. /.15 extends to an adjunction between the category of represen-
tations in relative monads on A and the category of representations in monads on
sets (cf. Def. 8.27):

A
/T\
f\_/

U

Rep(X) Rep™ (%)

LEMMA 4.21 (Initiality for 1-Signatures): The category of representations of
a signature X in relative monads as defined in Def. /.19 has an initial object. Its
underlying monad associates, to any set of variables, the set of terms of 3, equipped
with the equality preorder.

Proof. This is a direct consequence of Lem. 2.19 which says that left adjoints pre-
serve colimits — thus, in particular, initial objects —, applied to the adjunction of
Lem. 4.20. O

4.3 Inequations

Consider the beta rule of lambda calculus,

AM(N) ~ M|+ := NJ .
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In our formalism, abstraction and application are considered as morphisms of mod-
ules (cf. Ex. 2.95), and so is substitution (cf. Def. 2.110). This suggests to define
(in)equations over a 1-signature X as parallel pairs of module morphisms, indexed
by representations of X. Put differently, an (in)equation associates a parallel pair of
module morphisms to any representation of 3. Hirschowitz and Maggesi [HMOT7h]
specify equations through such pairs of (indexed) module morphisms over (plain)
monads. We adapt their definition to our use of relative monads and modules over
such monads. Afterwards we simply interpret a pair of half-equations as inequation
rather than equation.

Definition 4.22 (Category of Half-Equations, [HMO07b]). Let X be a signature.
A Y-module U is a functor from the category of representations of 3 to the category
LRMod (A, wPre) commuting with the forgetful functors to the category of relative

monads over A:

RMon(A).

Rep™ (%)

LRMod (A, wPre)

Such a YX-module U associates, to any representation of ¥ with underlying monad
P, a module over P.

We define a morphism of ¥-modules to be a natural transformation which be-
comes the identity when composed with the forgetful functor. We call these mor-
phisms half-equations. These definitions yield a category which we call the category
of X—modules (or the category of half-equations). We sometimes write

UR = U(R)(X)

for the value of a ¥—module at the representation R and the set X. Similarly, for
a half-equation « : U — V we write

ol =a(R)(X): U = VE .

Remark 4.23. We define Y—modules over the signature ¥ as functors into the
category LRMod (A, wPre), whose objects are modules with codomain category wPre
instead of Pre to accommodate an important example: recall that substitution of
one variable (cf. Def. 2.110) is not necessarily monotone in the second argument.
Thus, in order to build a half-equation from this substitution (cf. Def. 4.27), we
need to use the category wPre as codomain category.

Remark 4.24. A half-equation « from Y-module U to V associates, to any
representation R, a morphism of R-modules o : U(R) — V(R) in RMod(R, wPre)
such that for any morphism f : P — R of representations of 3 the following diagram
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commutes:
(P,U(P)) o (P,V(P))
(f£,Uf) (V)
(R, [*(U(R))) - (R, f*(V(R))) .

[e3

Remark 4.25. Pierre-Louis Curien suggested the following alternative definition
of a half-equation, where its domain and codomain only depend on the monad
underlying each representation: domain and codomain are specified by functors U
and V on the category RMon(A), and a half-equation « from U to V is given by a
natural transformation

a:Uom —-Vom ,

where 7 : Rep®(Z) — RMon(A) is the forgetful functor. Indeed, in all the ex-
amples of half-equations we consider, the domain and codomain Y-modules only
depend on the monads underlying a representation, not the representation structure
itself. Both variants, the one presented here in detail as well as the one suggested
by Curien, are implemented in our Coq library.

Given a l-signature X, we restrict ourselves to classic inequations: these are
inequations whose codomain Y—module is of a specific form. The restriction to
these inequations allows us to ensure a technical condition which we prove, for
classic inequations, in Lem. 4.35. Analogously to the preceding chapters, we only
write the second component of objects in the large category LRMod (A, wPre) of
modules.

Definition 4.26 (Classic ¥-Module). We call classic any Y—module satisfying
the following inductive predicate.

— The map © : R — 77/17% (cf. Def. 2.109 and Rem. 4.25) is a classic Y—module.
—If the ¥-module M : R +— M(R) is classic, so is

M':R— M(R)" .
—If M and N are classic, so is
MxN:R— M(R)x N(R) .
—The terminal module * : R — 1 is classic.

Using the same notation as in Rem. 4.9, any list of natural numbers specifies
uniquely a classic ¥-module.

We now present some particular classic half-equations:
Definition 4.27. The substitution operation of Def. 2.110,
subst : R — subst® : R x R — R
is a half—equation over any 1-signature . Its domain and codomain are classic.
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Ezample 4.28 (Ex. 4.12 continued). The map
app o (abs x id) : R — app’ o (abs® xid®) : ' x R = R
is a half—equation over the signature Xy c.-
Definition 4.29. Any arity s = [n1,...,n,] € ¥ defines a classic ¥-module
dom(s) : R— R™ x ... x R"™ .
An inequation is given by a pair of parallel half-equations:

Definition 4.30 (Inequations, 2-Signature). Given a 1-signature 3, a Y—inequa-
tion is a pair of parallel half-equations between Y-modules. We write

a<~y:U—->V

for the inequation («, ) with domain U and codomain V. A 2-signature is a pair
(X, A) of a 1-signature ¥ and a set A of Y-inequations.

Given a 2-signature (X, A), we can test whether a given representation R of ¥
satisfies the inequations of A. Those representations satisfying any inequation of A
form the category of representations of (X, A):

Definition 4.31 (Representation of Inequations). A representation of a L—in-
equation o < : U — V is any representation R of ¥ such that o < % pointwise,
i.e. such that for any set X and any y € U(R)(X),

R R
ax(y) <vx () -

We say that such a representation R satisfies the inequation o < 7.

For a set A of Y-inequations, we call representation of (X, A) any representation
of ¥ that satisfies each inequation of A. We define the category of representations
of the 2-signature (X, A) to be the full subcategory RepA(E, A) of the category of
representations of ¥ whose objects are representations of (X, A).

Ezample 4.32 (Ex. 4.28 continued). We denote by 8 the Xy c—inequation
app o(abs x id) < subst . (8)
We write (Zuyic, 8) := (BuiLc, {8}). A representation P of (XyLc, 8) is given by
—amonad P : Set = Pre and
—two morphisms of P-modules
app: Px P — P and abs:P — P
such that for any set X and any y € P(X’) and z € PX
appx (absx (y),2) < yl:=2] .
4.4 |Initiality for 2-Signatures

Given a 2-signature (X, A), we would like to exhibit an initial object in its associated
category of representations of (X, A). However, we have to rule out inequations
which are never satisfied, since an empty category obviously does not not have an
initial object. We restrict ourselves to inequations with a classic codomain:
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Definition 4.33 (Classic Inequation). A Y—-inequation is classic if its codomain
is classic.

THEOREM 4.34: For any set of classic X—inequations A, the category of repre-
sentations of (X, A) has an initial object.

Proof. The basic ingredients for building the initial representation are given by the
initial representation AY in the category Rep® (2) (cf. Lem. 4.21) or, equivalently,
by the initial representation 3 in Rep(X). We call 3 the monad underlying the
representation 3.

The proof consists of three steps: at first, we define a preorder <4 on the terms
of 3, induced by the set A of inequations. Afterwards we show that the data of the
representation Y — substitution, representation morphisms etc. — is compatible
with the preorder <4 in a suitable sense. This will yield a representation )y 4 of
(X, A). Finally we show that 34 is the initial such representation.

— The monad underlying the initial representation:
For any set X, we equip $X with a preorder A by setting, for x,y € f]X,

x<a Yy = VR: RepA(E7A)7 ZR('r) <R ZR(y) ’ (41)

where ip : AS — R is the initial morphism of representations of ¥, cf. Lem. 4.21.
We have to show that the map

X = 34X = (2X,<y)

yields a relative monad on A. The missing fact to prove is that the substitution
with a morphism

f €Pre(AX,3,4Y) = Set(X,2Y)

is compatible with the order <4: given any f € Pre(AX, fJAY) we show that

o> (f) : Set(EX,2Y) is monotone with respect to <4 and hence (the carrier of) a
morphism o(f) : Pre(¥4X,X4Y). We overload the infix symbol >= to denote
monadic substitution. Suppose = <4 y, we show

r>=f <o y>=f.
Using the definition of <4, we must show, for any representation R of (X, A),
iR(a: >= f) <r ZR(y>>=f) .

Since ip is a morphism of representations, it is compatible with the substitution of
Y. and U, R; we have

ir(x>=f) = ip(x)>=igof .
Rewriting this equality and its equivalent for y in the current goal yields the goal
Z'R(x)>ﬁiROf <a iR(y) S=irof ,

which is true since the substitution of R (whose underlying map is that of U, R) is
monotone in the first argument (cf. Rem. 2.86) and ir(z) <g ir(y) by assumption.
We hence have defined a monad ¥ 4 over A. We interrupt the proof for an important
lemma:
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LEMMA 4.35:  Given a classic S-module V : Rep™(X) — LMod (A, wPre) from
the category of representations of X in monads on A to the large category of modules
over such monads, we have

r<ayeV(E)X) & VR:Rep(S,4), V(ir)(x)<yp V(ir)y) ,
where now and later we omit the argument X, e.g., in V(ig)(X)(z).

Proof of Lem. 4.35. The proof is done by induction on the derivation of “V classic”.
The only interesting case is where V' = M x N is a product:

(1,91) < (22,92) & 1 S22 Ayt < Yo

& VR, M(ig)(z1) < M(ig)(x2) AVR, N(ir)(y1) < N(ir)(y2)

& VR, M(ig)(x1) < M(ir)(x2) A N(ir)(y1) < N(ir)(y2)

& VR, V(ig)(21,91) < V(ir)(22,92) -

O
— Representing X in Sa: )
Any arity s € X should be represented by the module morphism s>, i.e. by the
representation of s in X. We have to show that those representations are compatible
with the preorder <4. Given z <4 y in dom(s,X)(X), we show (omitting the
argument X in s¥(X)(z))
S <a s

By definition, we have to show that, for any representation R as before,

zR(sZ(x)) <r iR(Si(y))~

Since ig is a morphism of representations, it commutes with the representational
module morphisms — the corresponding diagram is similar to the diagram of
Def. 4.17. By rewriting with this equality we obtain the goal

(o) iw)@)  <n 5" ((dom(s)in)w) -

This goal is proved by instantiating Lem. 4.35 with the classic ¥-module dom(s)
(cf. Def. 4.29) and the fact that s is monotone. We hence have established a
representation — which we call )y 4 — of ¥ in the monad )y A

— 34 satisfies A:

The next step is to show that the representation 34 satisfies A. Given an inequation

al~y:U—=V

of A with a classic ¥-module V', we must show that for any set X and any x €
U(X4)(X) in the domain of o we have

oS () <a () (4.2)

In the following we omit the subscript X. By Lem. 4.35 the goal is equivalent to

VR:Rep(S.A), V(ip)@™ (@) <yr V(R)™(@) .  (43)
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Let R be a representation of (3, A). We continue by proving Disp. (4.3) for R. By
Rem. 4.24 and the fact that ig is also the carrier of a morphism of representations
of ¥ from AY to R (cf. Lem. 4.20) we can rewrite the goal as

aR(U(iR)(m)) Svp ’YR(U(iR)(x))v

which is true since R satisfies A.

— Initiality of Sa:

Given any representation R of (X, A), the morphism ip is monotone with respect
to the preorders on $4 and R by construction of <4. It is hence a morphism of
representations from 4 to R. Uniqueness of the morphisms ir follows from its
uniqueness in the category of representations of X, i.e. without inequations. Hence
$34 is the initial object in the category of representations of (X, A). O

Remark 4.36. Note that the proof of the main theorem uses the equivalence
proved in Lem. 4.35 in both directions. The implication from left to right would be
ensured automatically if we had defined ¥—modules to be functors into the category
LRMod (A, Pre) instead of LRMod (A, wPre). See Rem. 4.23 for an explanation why
we still choose the latter category as codomain category.

Remark 4.37. Note that for a classic ¥—module V' we can actually prove the
implication from left to right of Lem. 4.35 more generally: for any morphism of
representations f : P — R (not just an initial one as in Lem. 4.35) the module
morphism V(f) : V(P) — V(R) is monotone. Again the only interesting case is
where V = V; x V5 is a product. Let X be a set and « = (x1,z2) and y = (y1,y2)
in V(P)(X):

(x1,22) <yr (y1,92) © 21 Svp Y1 ANT2 Syp Y2
= Vi(f)(z1) <yr Vi(f)(y1) AVa(f)(22) <yr Va(f)(y2)

& V() (1), Va(f)(22)) <vr (Vi(f)(y1), Va(£)(v2))
& V() (@1, 32) <vr V(Y1 92) -

Ezample 4.38 (Ex. 4.32 continued). The only inequation Disp. (8) of the sig-
nature (Xyrc,) is classic. The initial representation of (¥yLc, ) is given by
the monad ULCg together with the ULCg-module morphisms Abs and App (cf.
Ex. 2.95) as representation structure.

We conclude this section with some remarks about “generating inequalities”, (reg-
ular) monads and fully faithful morphisms:

Remark 4.39 (about “Generating” Inequations). Given a 2-signature (£, A) and
a representation R of ¥, the representation morphism of modules s? of any s € &
of R is monotone. For the initial representation of (X, A) this means that any
relation between terms of ¥ which comes from A is automatically propagated into
subterms. Similarly, the relation on those terms is by construction reflexive and
transitive, since we consider representations in monads with codomain Pre.

For the example of ULCg this means that in order to obtain a complete reduction
relation, it is sufficient to enforce only one rule by an inequation, which is

(AM)N < M[x:= N] .
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Remark 4.40 (about Finite Contexts). Altenkirch et al. [ACU10] character-
ize the untyped lambda calculus as a relative monad on the inclusion functor
i : Fin — Set from finite sets to sets. An anonymous referee suggested combin-
ing our viewpoint — syntax as monad over A : Set — Pre — with Altenkirch et
al.’s one might consider the lambda calculus as a relative monad on the composi-
tion A o : Fin — Pre, and, more generally, one might consider representations of
a signature (3, A) over monads on A o : Fin — Pre. The above theorem remains
true when replacing monads on A by monads on A o everywhere. An equivalence
between the theorem thus obtained and our Thm. 4.34 might be established in a
way similar to what Zsid6 [Zsi10] does in her PhD thesis: she shows, by means of
adjunctions between the respective categories of models, the equivalence between
the approach of Fiore et al. [FPT99] — based on monoids over finite contexts —
and the approach of Hirschowitz and Maggesi [HMO07a], where models are built
from monads on the category Set, i.e. over arbitrary contexts.

Remark 4.41 (about Monads on Pre). As mentioned in Sect. 1.5, Ghani and
Liith [GL03] and Hirschowitz and Maggesi [HM10a] suggest the use of monads
over the category Pre of preordered sets for modelling syntax with a rewriting
relation. Indeed, representations of a signature (3, A) could be analogously defined
for such monads. The above construction of the initial representation of (3, A)
carries over to representations in such monads, thus yielding an initiality result in
which syntax is modelled as monad on Pre. It might be interesting to establish a
precise connection — e.g., in form of adjunctions — between the resulting categories
of representations in monads on Pre and representations in relative monads on A.

Remark 4.42 (about Fully Faithful Translations). By construction any mor-
phism f: P — @ of representations of a 2-signature (3, A) is faithful, i.e. it sends
related terms x ~ y in P(X) to related terms fx(z) ~ fx(y) in Q(X). It is natu-
ral to ask whether f is also full, that is, whether each fx : P(X) — Q(X) is a full
functor between the preorders P(X) and Q(X), considered as functors. Explicitly,
this means to ask whether for any z,y € P(X) such that fx(z) ~ fx(y) in Q(X)
we have x ~> y.

5. SIMPLE TYPE SYSTEMS WITH REDUCTIONS

This chapter aims to combine the contents of Sects. 3 and 4 in order to obtain an
initiality result for simple type systems with reductions on the term level. This
result thus accounts for our example from Sect. 1.1: the translation from PCF with
its usual reduction relation to the untyped lambda calculus with beta reduction.
The goal thus is to define a notion of signature and suitable representations for such
signatures, such that the types and terms generated by the signature, equipped
with reductions according to the inequations specified by the signature, form the
initial representation. Analogously to the previous chapter, we define a notion of 2—
signature with two levels: a syntactic level specifying types and terms of a language,
and, on top of that, a semantic level specifying reduction rules on the terms.

5.1 1-Signatures

From the syntactic point of view presented in § 3.3.1.1, 1-signatures for types and
terms are the same as in Sect. 3, Def. 3.46. We have to adapt the semantic definition
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of signatures for terms, however, since we now work with relative monads on AT
for some set T instead of monads over families of sets. The following definition is
the analogue of Def. 3.34, adapted to the use of relative monads:

Definition 5.1 (Relative S—~Monad). Given an algebraic signature S, the category
S-RMnd of relative S—monads is defined as the category whose objects are pairs
(T, P) of a representation T of S and a relative monad

AT
P:Set” 25 pre” .

A morphism from (T, P) to (T’, P') is a pair (g, f) of a morphism of S-representa-
tions g : T — T’ and a morphism of relative monads f : P — P’ over the retyping
functor g as in Rem. 2.89.

Given n € N, we write S-RMnd,, for the category whose objects are pairs (T, P) of
a representation T of S and a relative monad P over AL, A morphism from (7', P)
to (T', P') is a pair (g, f) of a morphism of S-representations g : T — T” and a
monad morphism f: P — P’ over the retyping functor g(n) defined in Def. 2.28.

Similarly, we have a large category of modules over relative monads:

Definition 5.2 (Large Category LRMod, (S, D) of Modules). Given a natural
number n € N, an algebraic signature S and a category D, we call LRMod,, (S, D)
the category an object of which is a pair (P, M) of a relative S—monad P € S-RMnd,,
and a P-module with codomain D. A morphism to another such (Q, N) is a pair
(f, h) of a morphism of relative S—monads f : P — @ in S-RMnd,, and a morphism
of relative modules h : M — f*N.

As before, we sometimes just write the module — i.e. the second — component of
an object or morphism of the large category of modules. Given M € LRMod,, (S, D),
we thus write M (V) or My for the value of the module on the object V.

A half-arity over S of degree n is a functor from relative S—monads to the cate-
gory of large modules of degree n:

Definition 5.3 (Half-Arity over S (of degree n)). Given an algebraic signature
S and n € N, we call half-arity over S of degree n a functor

a : S-RMnd — LRMod,, (S, Pre) .
which is pre-inverse to the forgetful functor.

As before we restrict ourselves to a class of such functors. Again, we start with
the tautological module:

Definition 5.4 (Tautological Module of Degree n). Given n € N, any relative

monad R over AT induces a monad R,, over AL with object map (V,t1,...,t,) —
(RV,t1,...,t,). To any relative S—monad R we associate the tautological module
of R,

0,.(R) := (R, R,) € LRMod,, (S, Prel) .

Furthermore, we again use canonical natural transformations (cf. Def. 3.41) to build
classic half-arities; these transformations specify context extension (derivation) and
selection of specific object types (fibre):
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Definition 5.5 (Classic Half-Arity). As with monads (cf. Sect. 3.3), we restrict
our attention to classic half-arities, which we define analogously to Def. 3.42 as
constructed using derivations and products, starting from the fibres of the tauto-
logical module and the constant singleton module. We omit the precise statement
of this definition.

A half-arity of degree n thus associates, to any relative S—monad P over a set, of
types T, a family of P—modules indexed by T™:

Remark 5.6 (Module of Higher Degree corresponds to a Family of Modules (II)).
Remark 3.37 applies analogously to modules over relative modules. More pre-
cisely, let T be a set and let R be a monad on the functor A”. Then a module
M over the monad R,, corresponds precisely to a family of R—modules (My)¢ern
by (un)currying. Similarly, a morphism « : M — N of modules of degree n
is equivalent to a family (ay)ter» of morphisms of modules of degree zero with
Ot . Mt — Nt.

An arity of degree n € N for terms over an algebraic signature S is defined to be a
pair of functors from relative S—-monads to modules in LRMod,, (S, Pre). The degree
n corresponds to the number of object type indices of its associated constructor.
As an example, the arities of Abs and App of Ex. 1.3 are of degree 2.

Definition 5.7 (Term—Arity, Signature over S). A classic arity « over S of degree
n is a pair
s = (dom(a), cod(c))
of half-arities over S of degree n such that

—dom(a) is classic and

—cod(a) is of the form [©,], for some canonical natural transformation 7 as in
Def. 3.41.

Any classic arity is thus syntactically of the form given in Disp. (3.8). Note, however,
that the definition of © in Sect. 3.3 differs from the one used in the present chapter.
We write dom(a) — cod(«) for the arity «, and dom(a, R) := dom(«)(R) and
similar for the codomain and morphisms of relative S—monads. Given a weighted
set (J,d) as in Def. 3.44, a term-signature 3 over S indexed by (J, d) is a J-family
¥ of classic arities over .S, the arity X(j) being of degree d(j) for any j € J.

Definition 5.8 (Typed Signature). A typed signature is a pair (S, 3) consisting
of an algebraic signature S for sorts and a term-signature ¥ (indexed by some
weighted set) over S.

Ezample 5.9. Ex. 3.47 and 3.48 still apply. Note, however, that the underlying
definition of © differs from that of Sec. 3, and that fibre and derivation are adapted
accordingly.

5.2 Representations of 1-Signatures

Definition 5.10 (Representation of an Arity, a Signature over S). A representa-
tion of an arity o over S in an S—monad R is a morphism of relative modules

dom(a, R) — cod(a, R) .
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A representation R of a signature over S is a given by a relative S—-monad — called
R as well — and a representation o of each arity o of S in R.

Representations of (S,Y) are the objects of a category Rep™(S, %), whose mor-
phisms are defined as follows:

Definition 5.11 (Morphism of Representations). Given representations P and R
of a typed signature (S,Y), a morphism of representations f : P — R is given by
a morphism of relative S—monads f : P — R, such that for any arity a of X the
following diagram of module morphisms commutes:

dom(a, P) S cod(a, P)

dom(a,f)l lCOd(Chf)

dom(a, R) ————— cod(a, R).
«

LEMMA 5.12:  For any typed signature (S, ), the category of representations of
(S, %) has an initial object.

Proof. The initial object is obtained, analogously to the untyped case (cf. Lem. 4.5,
4.20, 4.21), via an adjunction A, - U, between the categories of representations of
(S,3) in relative monads and those in monads as in Sect. 3.

In more detail, to any relative S—monad (T, P) € S-RMnd we associate the S—
monad U(T, P) := (T,UP) where U,P is the monad obtained by postcomposing
with the forgetful functor UT : Pre? — Set”. Substitution for U, P is defined, in
each fibre, as in Lem. 2.83. For any arity s € ¥ we have that

U. dom(s, P) = dom(s,U,P) ,

and similar for the codomain. The postcomposed representation morphism U, s(P)
hence represents s in U, P in the sense of Sect. 3. This defines the functor U, :
RepA(S, ¥) — Rep(S,X). Conversely, to any S—monad we can associate a relative
S—monad by postcomposing with AT : Set” — Pre’, analogous to the untyped
case in Def. 4.15, yielding A, : Rep(S,X) — RepA(S, ¥). In summary, the natural
isomorphism

¢rp: (Rep™(S,%))(ALR, P) = (Rep(S, %)) (R, U.P)

is given by postcomposition with the forgetful functor (from left to right) resp. the
functor A (from right to left).
O

5.3 Inequations

Analogously to the untyped case (cf. Defs. 4.22, 4.30), an inequation associates,
to any representation of (S,X) in a relative monad P, two parallel morphisms
of P-modules. However, similarly to arities, an inequation may now be, more
precisely, a family of inequations, indexed by object types. Consider the simply—
typed lambda calculus, which was defined with typed abstraction and application.
Similarly, we have a typed substitution operation for TLC, which substitutes a term
of type s € Tt ¢ for a free variable of type s in a term of type t € Tt ¢, yielding
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again a term of type t. For s,t € Tt c and M € TLC(V*¥), and N € TLC(V),,
beta reduction is specified by

AstM(N) ~ M[* := N] ,

where our notation hides the fact that not only abstraction, but also application
and substitution are typed operations. More formally, such a reduction rule might
read as a family of inequations between morphisms of modules

S

apps ¢ o (abss ¢ xid) < [ = |,

where s,t € Tt c range over types of the simply—typed lambda calculus. Analo-
gously to Sect. 3.3, we want to specify the beta rule without referring to the set
TrLc, but instead express it for an arbitrary representation R of the typed signature
(STLC7 ZTLC) (Cf Exs. 3.2, 347), as in

app™ o (abs® xid) <

=0

where both the left and the right side of the inequation are given by suitable R—
module morphisms of degree 2. Source and target of a half-equation accordingly
are given by functors from representations of a typed signature (S, X) to a suitable
category of modules. A half-equation then is a natural transformation between its
source and target functor:

Definition 5.13 (Category of Half-Equations). Let (S,X) be a signature. An
(S, X)-module U of degree n € N is a functor from the category of representations
of (S,%) as defined in Sect. 5.2 to the category LRMod,, (S, wPre) (cf. Def. 5.2)
commuting with the forgetful functor to the category of relative monads. We define
a morphism of (S5, ¥)-modules to be a natural transformation which becomes the
identity when composed with the forgetful functor. We call these morphisms half-
equations (of degree n). We write U® := U(R) for the image of the representation
R under the S—module U, and similar for morphisms.

Definition 5.14 (Substitution as Half-Equation). Given a relative monad on
AT, its associated substitution-of-one—variable operation (cf. Def. 2.111) yields a
family of module morphisms, indexed by pairs (s,t) € T. By Rem. 5.6 this family
is equivalent to a module morphism of degree 2. The assignment

subst : R — subst®™ : [Ry]} % [Ra]1 — [Ra]2

thus yields a half-equation of degree 2 over any signature S. Its domain and
codomain are classic.

Ezample 5.15 (Ex. 3.47 continued). The map
app o (abs x id) : R — app’ o (abs™ x id™) : [Ra]} x [Ra]1 — [Ra2
is a half-equation over the signature TLC, as well as over the signature of PCF.
Definition 5.16. Any classic arity of degree n,
$=10,]F X ... x[0,]7" = [0,], ,

o1 Om
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defines a classic S—module

dom(s) : R = [Ry]3t x ... x [R]7m .

o Om

Definition 5.17 (Inequation). Given a signature (S, ), an inequation over (S, X),
or (S, X)—inequation, of degree n € N is a pair of parallel half-equations between
(S, ¥)—modules of degree n. We write « < ~ for the inequation (a,). We leave
the degree implicit whenever possible, analogously to Rem. 3.33.

Ezample 5.18 (Beta Reduction). For any suitable 1-signature — i.e. for any 1-
signature that has an arity for abstraction and an arity for application — we specify
beta reduction through an inequation of degree 2 using the parallel half-equations
of Def. 5.14 and Ex. 5.15:

app o (abs x id) < subst : [O]3 x [0]; — [©], .

Ezample 5.19 (Fixpoints and Arithmetics of PCF). The reduction rules for PCF
are informally given in Fig. 7. We specify these reduction rules as inequations over
the 1-signature of PCF (cf. Ex. 3.48) as follows:

app o (abs x id) < subst : [0]3 x [0]; — [O]2
Fix < app o (id, Fix) : [0]1=1 — [0
appo (Succ,n) <n+1:%— [O],
app o (Pred,0) < 0:x — [0O)],
app o (Pred, app o (Suce,n)) < n:x* — [0)],
T: O]

app o (Zero?,0 * —>
F:x— [O]

<
<

]
]

—_ —= — =

app o (Zero?, app o (Succ, n)

Definition 5.20 (Representation of Inequations). A representation of an (S,X)-
inequation o < v : U — V (of degree n) is any representation R over a set of
types T of (S,%) such that o < ~% pointwise, i.e. if for any pointed context
(X,t) € Set” x T" any t € T and any y € Ul o),

afy) < 7R . (5.1)

where we omit the sort argument ¢ as well as the context (X, t) from « and . We
say that such a representation R satisfies the inequation o < 7.

For a set A of (S,3)-inequations, we call representation of ((S,X), A) any rep-
resentation of (S,X) that satisfies each inequation of A. We define the category
of representations of the 2-signature ((S,X), A) to be the full subcategory of the
category of representations of S whose objects are representations of ((S,3), A).
We also write (X, A) for ((S,X), A).

According to Rem. 5.6, the inequation of Disp. (5.1) is equivalent to ask whether,
for any t € T", any t € T and any y € UZ(X)(t),

ali(y) < &) .
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5.4 Initiality for 2-Signatures

We are ready to state and prove an initiality result for typed signatures with in-
equations:

THEOREM 5.21: For any set of classic (S,X)—inequations A, the category of
representations of ((S,X), A) has an initial object.

Proof. The proof is analogous to that of the untyped case (c.f. Thm. 4.34). The
fact that we now consider typed syntax introduces a minor complication, on the
presentation of which we put the emphasis during the proof. The basic ingredients
for building the initial representation are given by the initial representation (S’ , f))
— or just 3 for short — in the category Rep(S,X) of representations in monads
on set families (cf. Thm. 3.53). Equivalently, the ingredients come from the initial
object (5‘, A*f)) — or just A, Y for short — of representations without inequations
in the category RepA(S, ¥) (cf. Lem. 5.12). We call $ resp. A, the monad resp.
relative monad underlying the initial representation

The proof consists of 3 steps: at first, we define a preorder <4 on the terms of
3, induced by the set A of inequations. Afterwards we show that the data of the
representation S substitution, representation morphisms etc. — is compatible
with the preorder <, in a suitable sense. This will yield a representation $4 of
(2, A). Finally we show that 34 is the initial such representation.
— The monad underlying the initial representation:

For any context X € Set® and ¢ € S:, we equip f]X(t) with a preorder A by setting
— morally, cf. below —, for x,y € ¥ X (t),

<A Y <~ VR: Rep<z7 A)7 ZR(‘/L') <R ZR(y) ) (52)

where i : A,S — R is the initial morphism of representations of (S,%), cf.
Lem. 5.12. Note that the above definition in Disp. (5.2) is ill-typed: we have
& € 2X(t), which cannot be applied to (a fibre of) iz(X) : F(EX) — R(§X).
We denote by ¢ = ¢g the natural isomorphism induced by the adjunction of
Rem. 2.23 and Def. 2.22 obtained by retyping — along the initial morphism of
types g : S — T = Tr — towards the set T' of “types” of R,

ex.y i Pre” (§(EX), R(GX)) = Pre® (X, R(GX) o g)
Instead of the above definition in Disp. (5.2), we should really write
v<ay = VR:Rep(E A4), (¢lirx)) (@) =<r (¢lirx))y) (5.3)
where we omit the subscript “R” from ¢. We have to show that the map
X = 34X = (8X,<4)

yields a relative monad on AS. The missing fact to prove is that the substitution
with a morphism

fePre(AX,5,4Y) = Set®(X, %)

is compatible with the order < 4: given any f € Pre®(AX,$,4Y) we show that
o= (f) € Set® (£X,3Y)
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is monotone with respect to <4 and hence (the carrier of) a morphism
UiA(f) € Preg(iAX, $A4Y) .
We overload the infix symbol >= to denote monadic substitution. Note that this
notation now hides an implicit argument giving the sort of the term in which we
substitute. Suppose z,y € XX (t) with x <4 y, we show
r>=f <o y>=f.
Using the definition of <4, we must show, for a given representation R of (X, A),

(p(ir)) (x>=f) <r (¢(ir))(y>=f) . (5.4)

Let g be the initial morphism of types towards the types of R. Since i := ig is
a morphism of representations — and thus in particular a monad morphism, it is
compatible with the substitution of ¥ and R; we have

. JolN) e
— 2 LGy (5.5)

R(GX) ———— R(gY).

oM (iy ogf)
By applying the isomorphism ¢ on the diagram of Disp. (5.5), we obtain
pliv) oo (f) = ¢ (iy o glo(f)))

= ¢ (o(iy 0 Gf) oix)

=g (%(iv 0 Gf)) o plix) - (5.6)
Rewriting the equality of Disp. (5.6) twice in the goal Disp. (5.4) yields the goal

g* (" (iy 0 GF)) ((p(ix))(x)) = g" (% (iv © G)) ((p(ix))(y))

which is true since g* (¢ (iy o §f)) is monotone and (¢(ix))(z) <g (¢(ix))(y) by

hypothesis. We hence have defined a monad 4 over A,
LEMMA 5.22: Lemma 4.35 generalizes to the typed setting of this chapter.

Proof of Lem. 5.22. The proof is analogous to the proof of Lem. 4.35: we apply the
same reasoning in the corresponding fibre.
O

— Representing ¥ in Sa: A
Any arity s € X should be represented by the module morphism s>, i.e. by the
representation of s in 3. We have to show that those representations are compatible

with the preorder A. Given z <4 y in dom(s,¥)(X), we show (omitting the

argument X in s¥(X)(z))

sS@) <a sS() -
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By definition, we have to show that, for any representation R with initial morphism
i=1iRp: X — R as before,

olix)(s5(x) <r  @lix)(s°®)) .

But these two sides are precisely the images of x and y under the upper-right
composition of the diagram of Def. 5.11 for the morphism of representations ig. By
rewriting with this diagram we obtain the goal

st ((dom(s) (iR)) (:C)) <p s" ((dom(s)(iR)) (y)) :
We know that s® is monotone, thus it is sufficient to show

(dom(s)(ir)) (@) <n (dom(s)(ir))(y) -

This goal follows from Lem. 5.22 (instantiated for the classic S—module dom(s), cf.
Def. 5.16) and the hypothesis z <4 y. We hence have established a representation
— which we call 4 — of S'in 4.

— S satisfies A:

The next step is to show that the representation 34 satisfies A. Given an inequation

a<l~vy:U—->V

of A with a classic S—module V', we must show that for any context X € Set® , any
teSand any x € U(X4)(X): in the domain of o we have

aFa(z) <a AA(x)

where here and later we omit the context argument X and the sort argument ¢. By
Lem. 5.22 the goal is equivalent to

VR:Rep(,4), V(ip)@™ (@) <yn VipG ().  (57)

Let R be a representation of (X, ). We continue by proving Disp. (5.7) for R.
Remark 4.24 holds analogously in the typed setting of this chapter. The fact that
ig is the carrier of a morphism of (S, ¥)-representations from AY to R allows to
rewrite the goal as

aR(U(iR)(x)) Svp ’YR(U(iR)(33))7

which is true since R satisfies A.

— Initiality of Sa:

Given any representation R of (X, A), the morphism ix is monotone with respect

to the orders on ©4 and R by construction of <4. It is hence a morphism of

representations from 34 to R. Uniqueness of the morphisms ip follows from its

uniqueness in the category of representations of (S,X), i.e. without inequations.

Hence (5’, EA) is the initial object in the category of representations of ((S,%), A4).
O

Remark 5.23 (Iteration Principle by Initiality). The universal property of the
language generated by a 2—signature yields an iteration principle to define maps —
translations — on this language, which are certified to be compatible with substi-
tution and reduction in the source and target languages. How does this iteration

Journal of Formalized Reasoning Vol. 8, No. 2, 2015.



Initiality for Typed Syntax and Semantics . 95

principle work? More precisely, what data (and proof) needs to be specified in order
to define such a translation via initiality from a language, say, (S’ By A) to another
language (S’, 5324,), generated by signatures (S, %, A) and (S, ¥/, A’), respectively?
The translation is a morphism — an initial one — in the category of representa-
tions of the signature (5,3, A) of the source language. It is obtained by equipping
the relative monad XA]’A, underlying the target language with a representation of the
signature (S, %, A). In more detail:

(1) we give a representation of the type signature S in the set $’. By initiality of
S, this yields a translation S — S of sorts.

(2) Afterwards, we specify a representation of the term signature ¥ in the monad
3., by defining suitable (families) of morphisms of %’,,~modules. This yields
a representation R of (S, ¥) in the monad 3,,.

By initiality, we obtain a morphism f : (.§, f]) — R of representations of (S,), that
is, we obtain a translation from (5,%) to ($',%') as the colax monad morphism
underlying the morphism f. However, we have not yet ensured that the translation
f is compatible with the respective reduction preorders in the source and target
languages.

(3) Finally, we verify that the representation R of (S, ) satisfies the inequations
of A, that is, we check whether, for each « <~ :U — V € A, and for each
context V, each t € S and x € UZ(¢),

afi(z) < +(x) .

After verifying that R satisfies the inequations of A, the representation R is in
fact a representation of (5,3, A). The initial morphism f thus yields a faithful
translation from (5,3 4) to (57, %/).

Ezample 5.2/ (Translation from PCF to ULC, Exs. 3.54 and 5.19 cont.). Recall
the translations from PCF to the untyped lambda calculus of Ex. 3.54. We might
attempt to specify the same translations using the iteration operator obtained by
Thm. 5.21, where PCF is equipped with the reduction relation generated by the
inequations of Ex. 5.19 and ULC is equipped with beta reduction as in Ex. 4.32.
However, representing the fixedpoint operator of PCF by the lambda term © fails,
for reasons explained at the end of Sect. 9.

For the translation of PCF to the lambda calculus mapping the fixedpoint op-
erator of PCF to the Turing fixedpoint combinator, we have formalized its spec-
ification via initiality in the proof assistant Coq [Coql0]. After constructing the
category of representations of PCF, we equip the untyped lambda calculus with a
representations of PCF, representing the arity Fix by the Turing operator ©. The
formalization is explained in Sect. 9. Note that the translation is given by a Coq
function and hence executable.

6. FORMALIZING CATEGORY THEORY IN COQ

In this chapter we describe our computer formalization of general concepts of cat-
egory theory as presented in Sect. 2. We start with a brief introduction to our

Journal of Formalized Reasoning Vol. 8, No. 2, 2015.



96 . B. Ahrens

favourite theorem prover Coq [Coql0]. We then describe the challenges one encoun-
ters when one attempts to formalize algebraic structures in general, and category
theory in particular, in Coq. Finally we present our implementation of monads
and modules over monads as well as their relative counterparts. Throughout the
chapter we explain features of Coq when we first encounter them.

6.1 About the Proof Assistant Coq

The proof assistant Coq [Coq10] is an implementation of the Calculus of Inductive
Constructions (CIC) which itself is a constructive type theory. Its objects are terms
built according to a grammar (see the Coq manual [Thel(] for the term forming
rules). Each valid term has its associated type which is itself a term and which
is automatically computed by Coq. In Coq a typing judgment is written t: T,
meaning that ¢ is a term of type T. Typing judgments are for example 1 : Nat and
plus : Nat —> Nat —> Nat. Function application is simply denoted by a blank, i.e.
we write f x for f(z).

The CIC also treats propositions as types via the Curry—Howard isomorphism,
hence a proof of a proposition P is in fact a term of type P. Accordingly, a proof
of a proposition A = B is a function A — B, i.e. a term which associates a proof
of B to any proof of A. As an example, the function id : P — P is a proof of the
tautology P = P. In the proof assistant Coq a user hence proves a proposition P
by providing a term p of type P. Coq checks the validity of the proof p by checking
whether p : P.

Coq comes with extensive support to interactively build the proof terms of a given
proposition. In proof mode so-called tactics help the users to reduce the proposition
they want to prove — the goal — into one or more simpler subgoals, until reaching
trivial subgoals which can be solved directly.

Particular concepts of Coq such as records and type classes, setoids, implicit
arguments and coercions are explained in a call-by—need fashion in the course
of the thesis. One important feature is the Section mechanism (cf. also the Coq
manual [Thel0]). Parameters and hypotheses declared in a section automatically
get discharged when closing the section. Constants of the section then become
functions, depending on an argument of the type of the parameter they mentioned.
We illustrate this concept by means of a small example; consider the following Coq
declarations:

Section def double.
Variable n : nat.

Definition double : nat := 2 * n.
Check double.

double

> nat

Print Assumptions double.
Section Variables:

n : nat

Inside the section def double, the constant double is of type nat, as we verify us-
ing the Check command. Furthermore, it depends on the section variable n : nat
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declared using the Variable vernacular command. After closing the section, the
constant double is a closed term of function type:

End def double.
Check double.
double
:nat —> nat
Print Assumptions double.
Closed under the global context
Eval compute in double 4.
=8 : nat

In our formalization, we use the Section mechanism extensively. When presenting
a definition depending on section variables, we either give a slightly modified, fully
discharged version of the statement — compared to the actual Coq code —, or
mention the section variables informally in the text.

6.2 Formalizing Algebraic Structures

An algebraic structure typically is given by some data — i.e. sets and operations
on them — that satisfies given properties. For instance, a group is given by a
set, together with a binary associative multiplication and a unit element, such that
any element of the set has a multiplicative inverse. Such algebraic structures are
defined in a hierarchic way: for instance, any group is a particular monoid that
admits inverses. Thus any group is a monoid. The other way round, given a group,
if multiplication is commutative, then this group is actually abelian, and the group
is an element of the class of abelian groups.

This hierarchic structure poses a major problem in the formalization of classic
mathematics, and the question of how to formalize algebraic structures is a subject
of active research. Put simply, the main question is how tightly one should pack
together the data and properties of an algebraic structure. If data and properties
are packed together tightly, then operations and properties can easily be associated
to their respective underlying sets, and this allows for overloading notation and
coercions. On the other hand, this tight packing makes it difficult to “add” data
and properties to an instance of an algebraic structure, e.g., to consider a group,
for which one has proved commutativity of multiplication, as an abelian group.
We do not attempt to propose a solution to the challenge of how to formalize
algebraic structures. However, we need to choose from the existing solutions. In
Coq there are basically two possible answers: records, employed e.g., by Garillot et
al. [GGMRO09], correspond to a tight packing of algebraic structure, whereas type
classes [SO08], as used by Spitters and v. d. Weegen [SvdW11], correspond to a
rather loose packaging.

Coq records are implemented as an inductive data type with one constructor,
However, use of the vernacular command Record (instead of plain Inductive) allows
the optional automatic definition of the projection functions to the constructor ar-
guments — the “fields” of the record. Additionally, one can declare those projections
as coercions, i.e. they can be inserted automatically by Coq, and left out in print-
ing. As an example for a coercion, it allows us to write ¢ : C for an object ¢ of a
category C. Here the projection from the category type to the type of objects of
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a category is declared as a coercion (cf. Code 6.1). This is the formal counterpart
to the convention introduced in the informal definition of categories in Def. 2.1.
Another example of coercion is given in the definition of monad (cf. Def. 2.33),
where it corresponds precisely to the there-mentioned abuse of notation. Finally,
an example of coercion that is not given by a projection is given by the tautological
module, i.e. the map that associates to any monad P the tautological P-module
(cf. Def. 2.48).

Type classes are implemented as records. Similarly to the difference between
records and inductive types, type classes are distinguished from records only in
that some meta—theoretic features are automatically enabled when declaring an
algebraic structure as a class rather than a record. For details we refer to Sozeau’s
article about the implementation of type classes [SO08] and Spitters and v. d.
Weegen’s work [SvdW11]. Type classes differ from records in their usage, more
specifically, in which data one declares as a parameter of the structure and which
one declares as a field. The following example, borrowed from [SvdW11], illustrates
the different uses; we give two definitions of the algebraic structure of reflexive
relation, one in terms of classes and one in terms of records:

Class Reflexive {A : Type}{R : relation A} :=
reflexive : forall a, R a a.

Record Reflexive := {
carrier : Type ;
car_rel : relation carrier ;
rel _refl : forall a, car_rel a a }.

Our main interest in classes comes from the fact that by using classes many of the
arguments of projections are automatically declared as implicit arguments. This
leads to more readable code since arguments that can be deduced by Coq do not
have to be written down. Thus it corresponds precisely to the mathematical practice
of not mentioning arguments (e.g. indices) which “are clear from the context”. An
instance of this behaviour can be seen in the definition of category in Def. 2.1,
where we omit the 3 “object” arguments — written as an index — of the dependent
composition of morphisms. In particular, the structure argument of the projection,
that is, the argument specifying the instance whose field we want to access, is
implicit and deduced automatically by Coq. This mechanism allows for overloading,
a prime example being the implementation of setoids (cf. Sect. 6.3.3) as a type class;
in a term “a == b” denoting setoidal equality, Coq automatically finds the correct
setoid instance from the type of a and b®.

We decide to define our algebraic structures in terms of type classes first, and
bundle the class together with some of the class parameters in a record afterwards,
as is shown in the following example for the type class Cat_struct (cf. Code 6.3)
and the bundling record Cat.

5Beware! In case several instances of setoid have been declared on one and the same Coq type,
the instance chosen by Coq might not be the one intended by the user. This is the main reason
for Spitters and v. d. Weegen to restrict the fields of type classes to propositions.
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Code 6.1. (Bundling a type class into a record):

Record Cat := {
obj:> Type ;
mor: obj —> obj —> Type ;
cat_struct:> Cat_ struct mor }.

This duplication of Coq definitions is a burden rather than a feature. We still pro-
ceed like this for the following reasons: in our case the use of records is unavoidable
since we want to have a Coq type of categories, of functors between two given cat-
egories, etc. This is necessary when those objects — functors, for instance — shall
themselves be the objects or morphisms of some category, as is clear from Code 6.1.
However, we profit from aforementioned features of type classes, notably automatic
declaration of some arguments as implicit and the resulting overloading.

Apart from that, we do not employ any feature that makes the use of type classes
comfortable — such as maximally inserted arguments, operational classes, etc. —
since we usually work with the bundled versions. Readers who are interested in how
to use type classes in Coq properly, are advised to take a look at Spitters and v.
d. Weegen’s paper [SvdW11]. There, the authors employ the mentioned bundling
of type classes in records only when necessary, e.g., when the considered structures
are to be the objects or morphisms of some category.

6.3 Formalizing Categories

As seen in Sect. 2.1, there are two definitions of category (Def. 2.1, Rem. 2.3), which
are equivalent from the point of view of a mathematician. When implementing
category theory in dependent type theory, however, one needs to choose the one or
the other definition. This section explains how we implement categories in Coq and
some consequences of our design choice.

6.3.1 Which Definition to Formalize — Dependent Hom—Sets?. The main dif-
ference concerning formalization between these two definitions is that of compos-
ability of morphisms. The first definition can be implemented directly only in type
theories featuring dependent types, such as the Calculus of Inductive Constructions
(CIC). The ambient type system, i.e. the prover, then takes care of composability
— terms with compositions of non—composable morphisms are rejected as ill-typed
terms.

The second definition can be implemented also in provers with a simpler type
system such as the family of HOL theorem provers. However, since those (as well as
the CIC) are theories where functions are total, one is left with the question of how
to implement composition. Composition might then be implemented either as a
functional relation or as a total function about which nothing is known (deducible)
on non—-composable morphisms. The second possibility is implemented in O’Keefe’s
library [O’KO04]. There the author also gives an overview of available formalizations
in different theorem provers with particular attention to the choice of the definition
of category.

In our favourite prover Coq, both definitions have been employed in significant de-
velopments: the second definition is used in Simpson’s construction of the Gabriel-
Zisman localization [Sim06], whereas Huet and Saibi’s ConCaT [HS98] uses type
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families of morphisms as in Def. 2.1. To our knowledge there is no library in a
prover with dependent types such as Coq or NUPRL [CAA*86] which develops and
compares both definitions with respect to provability, readability, and other criteria.

We decided to construct our library using type families of morphisms. In this
way the proof of composability of two morphisms is done by Coq type computation
automatically. As a consequence, we are sometimes obliged to insert trivial isomor-
phisms between equal — but not convertible — objects of some category, in order
to make compositions typecheck. For an example see Sect. 7.1.2.

Coq’s implicit argument mechanism allows us to omit the deducible arguments, as
we do in Def. 2.1 for the “object arguments” ¢, d and e of the composition. Together
with the possibility to define infix notations, this brings our formal syntax close to
informal mathematical syntax.

6.3.2 Setoidal Equality on Morphisms. All the properties of a category C con-
cern equality of two parallel morphisms, i.e. morphisms with same source and
target. In Coq there is a polymorphic equality, called Leibniz equality, readily avail-
able for any type. However, this equality actually denotes syntactic equality, which
already in the case of maps does not coincide with the “mathematical” equality on
maps — given by pointwise equality — that we would rather consider. With the use
of axioms — for the mentioned example of maps the axiom functional _extensionality
from the Coq standard library — one can often deduce Leibniz equality from the
“mathematical equality” in question. But this easily gets cumbersome, in particular
when the morphisms — as will be in our case — are sophisticated algebraic struc-
tures composed of a lot of data and properties. Instead, we require any collection
of morphisms C(c,d) for objects ¢ and d of C to be equipped with an equivalence
relation, which plays the role of equality on this collection. In the Coq standard
library equivalence relations are implemented as a type class with the underlying
type as a parameter A, and the relation as well as a proof of it being an equivalence
as fields:

Code 6.2. (Setoid Type Class):

Class Setoid A := {
equiv : relation A ;
setoid _equiv :> Equivalence equiv }.

Setoids as morphisms of a category have been used by Aczel [Acz93] in LEGO (there
a setoid is simply called “set”) and Huet and Saibi (HS) [HS98] in Coq. HS’s setoids
are implemented as records of which the underlying type is a component instead of
a parameter. This choice makes it necessary to duplicate the definitions of setoids
and categories in order to make them available with a “higher” type 6.

6.3.3 Coq Setoids and Setoid Morphisms. Setoids in Coq are implemented as a
type class (cf. Code 6.2) with a type parameter A and a relation on A as well as
a proof of this relation being an equivalence as fields. For the term equiv a b the

6In HS’s ConCAaT, a type T that is defined after the type of setoids cannot be the carrier of a
setoid itself. As a remedy, HS define a type Setoid’ isomorphic to Setoid after the definition of T.
The type of Setoid’ now being higher than that of T, one can define a term of type Setoid” whose
carrier is T.
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infix notation “a == b” is introduced. The instance argument of equiv is implicit
(cf. Sect. 6.2).

A morphism of setoids between setoids A and B is a Coq function on the under-
lying types which is compatible with the setoid relations on the source and target.
That is, it maps equivalent terms of A to equivalent terms of B, or, in mathematical
notation,

a=4d implies f(a)=p f(d') . (6.1)
In the Coq standard library such morphisms are implemented as a type class

Class Proper {A} (R : relation A) (m : A) : Prop :=
proper_prf : R m m.

where the type A is instantiated with a function type A —> B and the relation R
on A —> B is instantiated with pointwise compatibility”:

Definition respectful (A B : Type) (R : relation A) (R’ : relation B) :=
fun f g => forallxy, Rxy —> R' (fx) (g y).
Notation " R ==> R’ " := (@respectful _ _ (R%signature) (R'%signature))
(right associativity, at level 55) : signature scope.

Given Coq types A and B equipped with relations R : relation A and R’ : relation B,
respectively, and amap f : A —> B, the statement Proper (R ==> R’)f — replacing
aforementioned notation — really means

Proper (respectful R R’) f,
which is the same as respectful R R’ f f, which itself just means
forallxy, Rxy —> R" (fx) (fy) .

This is indeed the statement of Disp. (6.1) in the special case that R and R’ are
equivalence relations.

For any component of an algebraic structure that is a map defined on setoids,
we add a condition of the form Proper... in the formalization. Examples are the
categorical composition (Code 6.3) and the monadic substitution map (Code 6.10).
Rewriting related terms under those equivalence relations is tightly integrated in
the rewrite tactic of Coq.

6.3.4 Coq Implementation of Categories. As a result of the aforementioned con-
siderations, we adopt Sozeau’s definition of category [SO08], which itself is a variant
of the definition given by Huet and Saibi [HS98]. Unlike Huet and Saibi’s contribu-
tion ConCaT, Sozeau’s approach uses type classes for algebraic structures and thus
avoids the universe inconsistencies that have to be circumvented by duplicating
definitions in ConCaT (cf. Sect. 6.3.2). More precisely, in Sozeau’s implementation
of setoids (cf. Code 6.2), the carrier type is a parameter instead of a field as in Huet
and Saibi’s. Our type class of categories is parametrized by a type of objects and

7 In the Coq standard library the definition of respectful is actually a special case of a more general
definition of a heterogeneous relation respectful _hetero.
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a type family of morphisms, whose parameters are the source and target objects.
Code 6.3. (Type Class of Categories):

Class Cat_struct (obj : Type)(mor : obj —> obj —> Type) := {
mor_oid :> forall a b, Setoid (mor a b) ;
id : forall a, mor a a;
comp : forall {a b c}, morab —> morbc —>morac;
comp_oid :> forall a b ¢, Proper (equiv ==> equiv ==> equiv) (@comp a b ¢) ;
id_r: forall a b (f: mor a b), comp f (id b) == f ;
id | forall a b (f: mor a b), comp (id a) f ==f;
assoc : forall a b ¢ d (f: mor a b) (g:mor b ¢) (h: mor ¢ d),
comp (comp f g) h == comp f (comp g h) }.

Compared to Def. 2.1 there are two additional fields: the field
mor_oid :> forall a b, Setoid (mor a b)

equips each collection of morphisms mor a b with a custom equivalence relation.
The field comp _oid states that the composition comp of the category is compatible
with the setoidal structure on the morphisms given by the field mor _oid as explained
in Sect. 6.3.3. We recall that setoidal equality is overloaded and denoted by the
infix symbol ‘==’. In the following we write ‘a ———> b’ for mor a b and f;;g for
the composition of morphisms f :a ——>bandg:b ———> c 8.

6.3.5 The Categories of Interest. The category Set is formalized in Coq as the
category of Coq types. By using Coq types and functions as objects and morphisms
of this category, we obtain executable Coq substitution and translation maps, cf.
Code 9.11.

Code 6.4. (Set, Def. 2.4):

Program Instance TYPE _struct : Cat_struct (funa b =>a —>b) := {
mor_oid a b := TYPE _hom oid a b ;
ida:=funx:a=>x;
compabc:=fun(f:a—>b)(g:b—>c)=>funx=>¢g(fx)}.

In this instance declaration, the fieldsid _r, id | and assoc are filled automatically by
the Program framework, cf. Sect. 6.3.7. For a set T, the category Set” of Def. 2.20
has, as objects, Coq type families indexed by T. Morphisms between two such
objects are suitable families of Coq functions :

Code 6.5. (Category of Type Families):

Program Instance ITYPE _struct : Cat_struct (obj := T —> Type)
(fun AB =>forall t, At —> B t) :={
mor_oid = |NDEXED_TYPE_OId ; (* pointwise equal. in each component *)
compABCfg:=funt=>funx=>gt (ftx);
id A:=funtx=>x}

8Coq deduces and inserts the missing “object” arguments a, b and ¢ of the composition automat-
ically from the type of the morphisms. For this reason those arguments are called implicit (cf.
Sect. 6.2).
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We also employ categories whose objects are families of preordered sets (i.e. Coq
types), and morphisms are monotone Coq functions. We omit their definition.

6.3.6 Initial Objects. Initial objects have been defined in Def. 2.5. Formally,
we implement the initiality structure as a type class, parametrized by categories.
Its fields are given by an object Init of the category, a map InitMor mapping each
object a of the category to a morphism from Init to a and a proposition stating that
InitMor a is unique for any object a.

Class Initial (C : Cat) := {

Init : C;
InitMor: forall a : C, Init ———> a;
InitMorUnique: forall a (f : Init ———> a), f == InitMor a }.

Note that the initial morphism is mot given by an existential statement of the
form Va,3f : ..., or, in Coq terms, using an exists statement. This is because the
Coq existential lies in Prop and hence does not allow for elimination — witness
extraction — when building anything but proofs.

6.3.7 Interlude on the Program feature. The Program Instance vernacular allows
to fill in fields of an instance of a type class by means of tactics. Indeed, when
omitting a field in an instance declaration — such as the proofs of associativity assoc
and left and right identity id | and id r in Code 6.4. — the Program framework
creates an obligation for each missing field, making use of the information that the
user provided for the other fields. As an example, the obligation created for the
field assoc of the previous example is to prove associativity for the composition
defined by

comp f g = funx => g (f x) .

It then tries to solve the resulting obligations using the tactic that the user has
specified via the Obligation Tactic command. In case the automatic resolution of
the obligation fails, the user can enter the interactive proof mode finish the proof
manually.

It is technically possible to fill in both data and proof fields automatically via
the Program framework. However, in order to avoid the automatic inference of data
which we cannot control, we always specify data directly as is done in Code 6.4,
and rely on automation via Program only for proofs.

6.3.8 Retyping and Option. We present the formalization of some commonly
used definitions. The reader might want to skip this section and come back to it
when being pointed back here.

We define retyping (cf. Rem. 2.23) for families of sets and preordered sets through
an inductive type:

Code 6.6. (Retyping Functor, Rem. 2.23):

Variables (T T': Type) (g T —> T').
Inductive retype (V : ITYPET) : ITYPE T' :=
| ctype : forall t, V t —> retype V (g t).
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The constructor ctype : forall V t, V t —> retype V (g t) is the carrier of the nat-
ural transformation of the same name of Rem. 2.23. Given a family V of preordered
sets, the preorder on ¢V is induced by the preorder on V:

Inductive retype ord (V : IPO T) : forall u, relation (retype g V (u)) :=

| ctype _ord : forall t (x y : V t), x <<<'y —> retype_ord (ctype g x) (ctype g y).
The option data type is implemented in the module Coq.Init.Datatypes of the
Coq standard library.

Code 6.7. (Option, § 2.2.3.1):
Inductive option (A:Type) : Type :=

| Some : A —> option A

| None : option A.
We can turn the map A — A’ := A+ {*} into a monad as follows:

Code 6.8. (Option Monad):
Program Instance option_monad_s :

Monad_struct (C:=TYPE) (option) := {

weta := QSome ;

kleisli a b f := fun t => match t with

| Somey =>fy
| None => None
end }.

There is also a typed variant of the option data type:
Code 6.9. (Typed Option, § 2.2.3.1):

Inductive opt (u: T) (V:ITYPET) :ITYPET :=
| some : forallt: T,Vt —>optuVt
| none : opt u V u.

Given a list | over T, the multiple addition of variables with (object language) types
according to | to a set of variables V is defined by recursion over |. For this enriched
set of variables we introduce the notation V ** .
Fixpoint pow (I : [T]) (V: ITYPET) : ITYPET =

match | with

| nil =>V
| b::bs => pow bs (opt b V)
end.

The map opt is functorial, as is the multiple addition of variables pow. On mor-
phisms the pow operation is defined by recursively applying the functoriality of opt,
where for the latter we use a special notation with a prefixed hat.

Fixpoint pow _map (I: [T VW (f:V ———> W) :V** | ———> W ** | :=
match | return V ** | ———> W ** | with
| nil => f
| bi:bs => pow_map (°f)
end.
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6.4 Monads, Modules and their Morphisms

Implementing monads leaves one with the choice between the definitions given in
Def. 2.33 and Def. 2.65. The first definition, while preferred by category theorists,
has the inconvenience that defining instances of monads such as monadic syntax
would require proving commutativity of the square, e.g., using multiple induction
for monadic syntax. Furthermore the second definition is well-known in the pro-
gramming community for its use in HASKELL. We thus decide to implement the
definition of Def. 2.65. Since we are mainly interested in its instances over the
category of (families of) sets, we can define convenient infix notation for its substi-
tution.

Formally, a monad (cf. Def. 2.65) is a type class parametrized by a category C
and a function F : C —> C on the objects of C:

Code 6.10. (Monad, Def. 2.65):
Class Monad_struct (C : Cat) (F: C —> C) :={

weta : forall ¢, c ———> (F ¢);

kleisli : foralla b, (a ———>F b) —> (F a ———> F b);

kleisli_oid :> forall a b, Proper (equiv ==> equiv) (kleisli (a:=a) (b:=b));
eta_kl:forallab (f:a ———> F b), weta a ;; kleisli f == f;

kl eta : forall a, kleisli (weta a) ==id _;

dist: forallabc(f:a——>Fb)(g:b———>F ),
kleisli f ;; kleisli g == kleisli (f ;; kleisli g) }.

Monads admit a functorial structure:
Code 6.11. (Functoriality for Monads, Rem. 2.66):

Variable T : Monad C.
Definition lift : foralla b (f:a ———=>b), Ta ———> T b :=
fun a b f => Kkleisli (f ;; weta b).

We present two different implementations of monad morphisms. The more general
definition implements colax monad morphisms as defined in Def. 2.69:

Code 6.12. (Colax Monad Morphism, Def. 2.69):

Class colax_Monad Hom _struct (Tau : forall ¢, F (P ¢) ———> Q (F ¢)) :={
gen_monad _hom kil : forallcd (f: c ———> P d),
#F (kleisli f) ;; Tau ==
Tau _ ;; (kleisli (#F f;; Tau )
gen_monad _hom weta : forall ¢ : C,
#F (weta ¢) ;; Tau == weta _}.

When working exclusively with a special case of a more general definition, it is more
convenient to implement this special case as a separate definition: for two monads
P and @ over the same category C, a simple morphism of monads — as used in
Sect. 3.2 — is given by a family of morphisms 7. € C(Pc, Qc) that is compatible
with the monadic structure:
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Code 6.13. (Simple Monad Morphism, Def. 3.12):

Class Monad Hom _struct (Tau: forall ¢, Pc ———=> Q ¢) :={
monad _hom_kl: forall ¢ d (f: ¢ ———> P d),
kleisli f ;; Tau d == Tau c ;; kleisli (f ;; Tau d) ;
monad _hom _weta: forall c: C, weta ¢ ;; Tau ¢ == weta c }.

It follows from these commutativity properties that the family 7 is a natural trans-
formation between the functors induced by the monads P and ). Given a monad
P over C, a P-module with codomain D is formalized as follows:

Code 6.14. (Module, Def. 2.71):

Variable P : Monad C.
Class Module _struct (M : C —> D) :={
mkleisli: forall cd, (c —=——=>Pd) => (M ¢ ———> M d);
mkleisli _oid :> forall ¢ d, Proper (equiv ==> equiv) (mkleisli (c:=c)(d:=d));
mkl weta: forall ¢, mkleisli (weta ¢) ==id _;
mkl_mkl: forallcde (f:c ———=>Pd) (g:d ——> P e),
mkleisli f ;; mkleisli g == mkleisli (f ;; kleisli g) }.

For two modules S and T with codomain D over a monad P as above, a module
morphism from S to T is given by a family of maps, indexed by the objects of C,
commuting with module substitution:

Code 6.15. (Module Morphism, Def. 2.73):

Class Module  Hom _struct (N: forall x, S x ———> T x) :={
mod _hom_mkl: forall ¢ d (f: c ———> P d),
mkleisli f ;; N == N _ ;; mkleisli f }.

6.5 Relative Monads, Formalized

As opposed to (plain) monads, we have only one definition of relative monads
available. The implementation of this definition in Cogq is similar to that of monads
(cf. Code 6.10). Given a functor F : C — D, a relative monad is given by a map
T : C — D on the objects of the categories involved, and data analogous to that of
a monad:

Code 6.16. (Relative Monad, Def. 2.75):

Variables C D : Cat.
Variable F : Functor C D.
Class RMonad _struct (T : C —> D) :={

rweta: forallc: C, Fc ———> T c;

rkleisli: foralab: C,Fa——>Tb—->Ta—-———>Tb;

rkleisli _oid:> forall a b, Proper (equiv ==> equiv) (rkleisli (a:=a) (b:=b)) ;
reta_kl : forall a b: obC, forall f : Fa ———> T b, rweta a ;; rkleisli f == f ;
rkl _eta : forall a, rkleisli (rweta a) ==id _;

rdist: forallabc (f:Fa———>Thb) (g: Fb ———> T ¢),

rkleisli f ;; rkleisli g == rkleisli (f ;; rkleisli g) }.
Analogously to monads we define functoriality for a given relative monad P:
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Code 6.17. (Functoriality for Relative Monads, Rem. 2.80):

Variable P : RMonad C.
Definition rlift : foralla b (f:a ———>b),Pa ———>P b :=
fun a b f => rkleisli (#F f ;; rweta b).

In the following we consider morphisms of relative monads in varying generality: one
definition (Def. 4.3) is analogous to the simple morphisms of monads (cf. Code 6.13),
another implements the colax version of Def. 2.87. For the statement of the second,
general, definition, we place ourselves in the environment given in Def. 2.87. In
short, we have a natural transformation N : F'G = G'F : C — D’.

Code 6.18. (Colax Morphism of Relative Monads, Def. 2.87):

Variable N : NT (CompF G F') (CompF F G').
Class colax RMonad Hom _struct (tau: forall ¢ : C, G' (P ¢) ———> Q (G ¢)):={
gen_rmonad _hom _rweta : forall ¢ : C,
N ;; #G' (rweta c) ;; tau ¢ == rweta (G c) ;
gen _rmonad hom rkl: forall (cd : C) (f: Fc———> P d),
#G' (rkleisli f) ;; tau d == tau c ;; rkleisli (a:=G c) (Nc;; #G f;; tau ) }.

A module M over a relative monad P (on a functor F') is given by data similar to
that of a module over a monad, except for the insertion of applications of F' where
necessary.

Code 6.19. (Module over a Relative Monad, Def. 2.90):

Class RModule struct (M : C —> E) := {
rmkleisli: forallcd (f: Fc ———>Pd), Mc ———> M d;
rmkleisli _oid :> forall ¢ d, Proper (equiv ==> equiv) (rmkleisli (c:=c)(d:=d)) ;
rmkl_rweta: forall ¢ : C, rmkleisli (rweta ¢) == id (M c) ;
rmkl_rmkl: forallcde (f: Fc ———>Pd) (g: Fd ——> P e),
rmkleisli f ;; rmkleisli g == rmkleisli (f ;; rkleisli g) }.

Given two modules M and N with codomain D over a relative monad P, a module
morphism from M to N is given by a collection of maps (S. : Mc — N¢)eec
commuting with module substitution:

Code 6.20. (Morphism of Relative Modules, Def. 2.94):

Variables M N : RModule P D.
Class RModule__Hom _struct (S : forallc: C, Mc ———> N ¢) :={
rmod _hom _rmkl: forallcd (f: Fc ———> P d),
rmkleisli f ;; Sd == S ¢ ;; rmkleisli f }.

7. FORMALIZATION OF ZSIDO'S THEOREM

In this chapter we describe the formalization in the proof assistant Coq [Coql0] of
Zsid6’s initiality theorem presented in Sect. 3.2. In particular, we explain what we
omitted in the informal presentation — the construction of the initial representation
of a given simply—typed signature.
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7.1 Signatures & Representations

An arity determines the type and binding behaviour of a constructor, and a signa-
ture is a family of arities. A representation of a signature S is given by a monad
P (over a suitable category) and a morphism of P-modules for each arity « of S,
where the source and target module of this morphism are determined by a. Among
those representations the object of interest is the initial one, i.e. the representa-
tion from which there exists exactly one morphism of representations to any other
representation. The initial representation is called syntax generated by S.

7.1.1 Using Lists for Algebraic Arities & Signatures. For the formal definitions
let us fix a set T of object language types. As explained in Def. 3.20, an algebraic
arity over T is determined by a pair of a list of data and an element ¢ty € T, yielding
an efficient and concise way to specify algebraic arities. An algebraic signature could
thus be implemented — as in Def. 3.9 — as a pair consisting of a type sig_index
— which is used for indexing the arities — and a map from the indexing type to
the actual arity type, which is simply built using lists — for which we employ a
Haskell-like notation — and products:

Code 7.1. (Signature, Def. 3.9):

Notation "[ T ]" := (list T) (at level 5).
Record Signature : Type := {
sig_index : Type;
sig : sig_index —> [[T] « T] * T }.

However, a slight modification turns out to be useful. During the construction of the
initial representation, a universal quantification over arities of a signature S with a
given target type t € T is needed. Using the above hypothetical implementation,
this quantification could be achieved by using a sigma type:

Definition Signature_t (t: T) : Type := {s : sig_index S | snd (sig s) = t}.

This definition would be awkward to use since we would be obliged to handle
equality proofs when talking about indices, i.e. terms of sig_index S, with a specific
output type. We can in fact do better: while the propositional equality as used
above would need our intervention, definitional equality — conversion — is handled
by Coq. Hence we decide to implement a signature over a set of types T as a function
that maps each t : T to the collection of arities whose output type is the given t. In
other words, the parameter t of Signature t in the definition of signature replaces
the second component of the arities:

Code 7.2. (Signature, Def. 3.9):

Record Signature _t (t: T) : Type := {
sig_index : Type ;
sig . sig_index —> [[T] = T] }.

Definition Signature := forall t, Signature t t.

We discuss the formalization of the example signature of the simply—typed lambda
calculus (cf. Ex. 3.23). At first we define an indexing type TLC index_t for each
t: T. After that, we build an indexed signature TLC sig mapping each index to
its arity:
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Code 7.3. (Signature of TLC, Ex. 3.23):

Inductive TLC index : T —> Type :=
| TLC abs :forallst: T, TLC index (s ~> t)
| TLC app : forall st : T, TLC index t.

Definition TLC _arguments : forall t, TLC index t —> [[T] * T] :=
fun t' r => match r with
| TLC abs st => (s:nil,t):nil
| TLC app st => (nils ~> t)::(nil,s):nil
end.
Definition TLC sig t := Build_Signature _t t (QTLC _arguments t).

7.1.2  Modules and Morphisms for Arities. To any signature given as a depen-
dent function of type Signature as in Code 7.2 we associate the actual signature in
the sense of Def. 3.18. More precisely, for an arity s = ([(s1,t1), ..., (Sn, tn)], t0)
given by lists we define the functors dom(s) and cod(s), each of which, given a
monad P € Mon(Set”) (cf. Def. 3.13), yield a P-module with codomain Set. Note
that the bold face letters s; denote lists of sorts.

It would in principle be possible to build the module dom(s, P) associated to a
monad P using the category—theoretic machinery defined in Sects. 2.2.2 and 2.2.3,
i.e. by applying iteratively the derivation functor to the tautological module P
as often as indicated by the arity s and finally the suitable fibre functor, glueing
everything together via the product on module categories. However, we choose
not to, for reasons we explain now. Consider again the diagram of Disp. (3.3),
instantiated for the classic arity s:

QP

[Py, —————[Pls, (7.1)

n
=1

[T, fto

[ I11Q% s, W QI

n
i=1
This diagram actually makes use of many instances of the equalities mentioned in
Rem. 2.63, in order to justify composability of module morphisms. For instance,
in the lower right corner, the fact that pullback and fibre may be permuted, is
used. In Coq the aforementioned equalities of modules hold propositionally (if one
uses appropriate axioms, such as proof irrelevance), but not definitionally, i.e. the
modules are not convertible (see also Rem. 2.64). In order to be able to compose
a module morphism with target p*[M],, for instance, with a module morphism
with source module [p*M],, one needs to insert a suitable isomorphism of mod-
ules p*[M], = [p*M],. The carriers of these isomorphisms are families of identity
functions, respectively, since the carriers of the source and target modules are con-
vertible. In our formalization we would have to insert these isomorphisms (called
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PROD_PB, ITDER_PB and ITFIB_PB in our Coq library) in order to make some
compositions typecheck — as illustrated by the diagram in Disp. (7.2) — which in
turn would result in quite a cumbersome formalization with decreased readability.
Instead we decide to implement the left vertical morphism from scratch. For this

.ﬁl[P e - Py (7.2)

TL 50,

[T [ (@), o

[L2 £@%]e

1R

I TEl@ e — o 11Qlt ———— £l

(

to work it is most convenient to define the carrier of the product modules as an
inductive type, instead of applying the product in the module category recursively.
Hence also the product modules are built manually rather than using the categorical
devices of derivation, fibre and product.

7.1.2.1 Domain, Codomain, Representations. Given an arity
S = (Sl,tl)7 ey (Sn,tn) — to

(or shorter ¢ — tg) and a monad P, we have to construct the module

n

dom(s, P) = [[[P¥]:, =[] P -
14

i=1
Its carrier, being a kind of heterogeneous list, is given as an inductive type parame-
trized by a set family of variables and a list such as the list ¢ indicating the domain
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of an arity. In fact, for defining the carrier, only an object map M of the type
indicated below is necessary:

Variable M : (ITYPE T) —> (ITYPE T).
Inductive prod_mod _c (V : ITYPE T) : [[T] = T] —> Type :=
| TTT : prod _mod c V nil
| CONSTR : forall b bs,
M (V ** (fst b)) (snd b) —> prod_mod ¢V bs —> prod _mod c V (b::bs).

Now, for a list | : [[T]*T], if M is equipped with a module structure over a monad
P, we equip the map fun V => prod mod c V| with a module structure. Its
substitution is given by a function pm__mkl, which is defined by recursion on the
argument of type prod _mod c ... , applying the module substitution of M in each
component:

Fixpoint pm_mkl VW (f:V ———> P W) (X : prod mod cMVI):
prod_ mod ¢c MW |:=

match X in prod_mod ¢ | return prod _mod ¢ M W | with

| TTT=>TTTMW

| CONSTR b bs elem elems => CONSTR (M:=M) (V:=W)
(mkleisli (Module _struct := M) (Ishift f) (snd b) elem)
(pm_mkl f elems)

end.

Proving its module property — by induction on the argument X — yields a module
prod_mod | for each list | : [[T] *x T]. For s = ¢ — o, this defines the object
function of the functor dom(s). The object function of cod(s) is easy to define,
since it simply associates, to any monad P, the fibre module with respect to ¢y of
the tautological module P. Again, this is defined more generally for any P-module
M with codomain category Set”. Putting both domain and codomain together,
we associate, to any algebraic arity s and any P-module M, a type of module
morphisms

dom(s, M) — cod(s, M)

as in Code 7.4 below. Note that M is later instantiated by the tautological P-
module P.

Code 7.4. (Representation of an Arity, Def. 3.25):

Variable M : Module P (ITYPE T).
Definition modhom _from _arity (ar : [[T] = T] = T) : Type :=
Module  Hom (prod _mod M (fst ar)) (M [(snd ar)]).

where M[(s)] denotes the fibre of the module M over s. Finally a representation of
a signature S in a monad P is given by a module morphism for each arity i, i.e. by
specifying a function of type

Vs € S,dom(s, P) — cod(s, P) ,

where P denotes the tautological P-module. Since the set of arities is indexed
by the target type of the arities, the representation structure is indexed as well:
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Code 7.5. (Representation of a Signature, Def. 3.25):

Variable P : Monad (ITYPE T).
Definition Repr_t (t: T) :=

forall i : sig_index (S t), modhom _from arity P ((sig i), t).
Definition Repr := forall t, Repr_t t.

We bundle the data and define a representation as a monad together with a repre-
sentation structure over this monad?:

Record Representation := {
rep_monad :> Monad (ITYPE T);
repr : Repr rep_monad }.

7.1.2.2 Morphisms of Representations. The carrier of the domain module

dom(s, P) = H P
1

of a representation (cf. Disp. (7.1)) is defined as an inductive type. This suggests the
use of structural recursion for defining the left vertical morphism of the commutative
diagram of Disp. (7.1). Given a monad morphism f: P — @, we apply f to every
component of [], P:

Fixpoint Prod_mor_c (I : [[T] * T]) (V: ITYPET) (X : prod_mod P 1V) :
fx (prod_mod Q1) V :=
match X in prod_mod ¢ | return fx (prod_mod Q I) V with
| TTT =>TTT _ _
| CONSTR b bs elem elems =>
CONSTR (f _ _ elem) (Prod_mor_c elems)
end.

This function is easily proved to be a morphism of P-modules

dom(s, f) := Prod_mor: HP — f* HQ .
¢ ¢

We thus are able to avoid mentioning all those trivial isomorphisms in the defini-
tion of the arrow map of the functor dom(s) that are present in the diagram of
Disp. (7.2).

The codomain arrow cod(s, f) = fi, is obtained by taking the fibre module of the
module morphism induced by f, cf. Sect. 2.2.2. The Coq function PbMod _ind Hom
, which associates to any monad morphism the induced module morphism, can even
be declared as a coercion

Coercion PbMod _ind _Hom : Monad Hom >—> mor.

such that the abuse of notation introduced in the informal Def. 2.52 has a counter-
part in the formal development.

9 Here an example of coercion occurs. The special notation :> allows us to omit the projection
rep_monad when accessing the monad which underlies a given representation R. We can hence
also write R x for the value of the monad of R on an object x of the underlying category.
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The isomorphism in the lower right corner however remains in the formalization,
appearing as ITPB_FIB. Its underlying family of morphisms, however, is simply
a family of identity functions. For an arity a and module morphisms RepP and
RepQ representing this arity in monads P and Q respectively, the definition of the
commutative diagram reads as follows:

Code 7.6. (Commutative Diagram for Representation Morphism, Def. 3.26):

Definition commute f RepP RepQ : Prop :=
RepP ;; f [(snd a)] == Prod _mor (fst a) ;; fx RepQ ;; ITPB_FIBf

A morphism of representations from P to Q of the signature S is just a monad
morphism from P to Q together with the commutativity property for each arity.
More precisely, since arities are indexed by their target type, we have a commutative
diagram for any object type t : T and each arity (index) i in the indexing set of S t:

Code 7.7. (Morphism of representations, Def. 3.26):

Variables P Q : Representation S.
Class Representation Hom _struct (f : Monad_Hom P Q) :=

repr_hom s : forall t (i : sig_index (S t)), commute f (repr P i) (repr Q i).
Record Representation Hom : Type := {

repr _hom ¢ :> Monad Hom P Q;

repr _hom :> Representation Hom _struct repr_hom c }.

As mentioned in Sect. 3.2.2, representations of S and their morphisms form a cate-
gory REPRESENTATION S. Composition of representations is defined by composing
the underlying monad morphisms:

Program Instance Rep__comp _struct :
Representation  Hom _struct (Monad Hom comp f g).

where the commutation property is proved by some tactic defined beforehand. Ac-
cordingly, the identity morphism of representations is built upon the identity monad
morphism:

Program Instance Rep Id _struct :
Representation Hom _struct (Monad _Hom _id P).

Since equality on morphisms of representations is defined as equality of the underly-
ing monad morphisms, the properties of composition necessary for representations
to form a category are a consequence of those for the category MONAD (ITYPE T).
The construction of the initial representation (and hence the proof of Thm. 3.28)
is explained in the next section.

7.2 Construction of the Initial Object

The initial object of the category of representations of the signature .S is constructed
in several steps:

(1) the syntax associated to S as an inductive data type STS,
(2) definition of a monad structure STS _Monad on said data type,
(3) construction of the representation structure STSRepr on STS Monad,
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(4) for any representation R, construction of morphism init R from STSRepr to R,
(5) uniqueness of init R for any representation R.

7.2.1 The Terms Generated by a Signature. The first step is to define a map
STS:ITYPE T ———> ITYPE T — the monad carrier — mapping each type family
V of variables to the type family of terms with free variables in V. Since objects of
ITYPE T really are dependent Coq types (cf. Code 6.5), this map is implemented as
a Coq inductive family of types, parametrized by a context and dependent on object
types. Apart from the use of dependent types, the “data” parts of this section could
indeed be done in any programming language featuring inductive types.

Mutual induction is used, defining at the same time a type STS _list of heteroge-
neous lists of terms, yielding the arguments to the constructors of S. This list type
is indexed by arities, such that the constructors can be fed with precisely the right
kind of arguments.

Code 7.8. (Terms of the Initial Representation):

Inductive STS (V: ITYPET) : ITYPE T :=
| Var : forall t, Vt —> STS V t
| Build : forall t (i : sig_index (S t)), STS list V (sigi) —> STS V t
with
STS list (V:ITYPET) : [[T] * T] —> Type :=
| TT : STS_list V nil
| constr : forall b bs,
STS (V ** (fst b)) (snd b) —> STS list V bs —> STS_list V (b::bs).

The constructor Build takes 3 arguments:

—an object type t indicating its output type,
—an arity i (resp. its index) from the set of indices with output type t and
—a term of type STS_list V (sig i) carrying the subterms of the term to construct.

Note that Coq typing ensures the correct typing of all constructible terms of STS
, a techique called intrinsic typing. The Scheme command generates a mutual
induction scheme for the defined pair of types. The latter type is actually isomorphic
to the type prod mod ¢ STS. This duplication of data could hence have been
avoided by defining a nested inductive type as follows, instead of using mutual
induction.

Inductive STS (V: ITYPET) : ITYPE T :=
| Var : forall t, Vt —> STS V t
| Build : forall t (i : sig_index (S t)), prod _mod ¢ STSV (sigi) —> STSV t.

However, we use the mutual inductive version because it allows us to define functions
on those types by mutual recursion rather than by nested recursion; the latter are
significantly more difficult to reason about.

7.2.2  Monad Structure on the Set of Terms. We continue by defining a monad
structure on the map STS. Again, due to our choice of implementing sets as Coq
types (cf. Code 6.5), the maps we need really are Coq functions. As in the special
case of ULC (cf. Ex. 2.36) and TLC (cf. Ex. 2.37), the monadic map 7 is given by the
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variable—as—term constructor Var. The substitution map subst is defined using two
helper functions rename (providing functoriality, cf. Rem. 2.66) and _shift (used
when substituting under binders, cf. Ex. 2.74). Renaming and substitution are

implemented using mutual recursion on the mutually inductive data types STS and
STS _list:

Fixpoint rename VW (f : V ———> W) t (v: STS V t):=
match v in STS _ t return STS W t with
| Vart v => Var (f t v)
| Build t i | => Build (i:=i) (list_rename | f)
end
with
list_rename Vt (I:STS listVt)W (f:V ———>W):STS list Wt:=
match | in STS list _ t return STS_list W t with
[TT=>TTW
| constr b bs elem elems =>
constr (elem //— (f ~~ (fst b)))

(elems //—— 1)
end

where "x //— f" := (rename f x)
and "x //—— " := (list_rename x f).

(x a lot more code *)

Fixpoint subst (V W : ITYPET) (f: V ———>STSW) t (v:STSV t):
STS W t := match vin STS _ t return STS W t with
| Vartv=>ftv
| Build t i | => Build (I >>==f)
end
with
list_subst VWt (I:STS listVt)(f:V—-———>STSW):STS list Wt:=
match | in STS list _ t return STS_list W t with

| TT =>TTW
| constr b bs elem elems =>

constr (elem >== (_Ishift f)) (elems >>==f)
end

where "x >== f" := (subst f x)
and "x >>== f" := (list_subst x f).

The monadic properties that the substitution should satisfy, are similar to the lem-
mas one would prove in order to establish “programm correctness”. As an example,
the third monad law reads as

Lemma subst_subst Vt (v:STSVt)WX (f: V ———> STS W)
(g: W———>STSX):
v>==f>==g=v>==1; subst g.
Proof.
(* script omitted *)

Qed.
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Its proof script is a typical example; most of those lemmas are proved using the
induction scheme STSind — instantiated with suitable properties — followed by a
single custom tactic which finishes off the resulting subgoals, mainly by rewriting
with equalities proved beforehand. After a quite lengthy series of lemmas we obtain
that the function subst and the variable—as—term constructor Var turn STS into a
monad:

Program Instance STS monad : Monad _struct STS := {
weta := Var ;
kleisli := subst }.

7.2.3 A Representation in the Monad of Terms. The representational structure
on STS is defined using the Build constructor. For each arity i in the index set
sig_index (S t), we must give a morphism of modules from prod mod STS (sig i)
to STS [(t)]. Since the constructor Build takes its argument from STS_list and not
from the isomorphic prod _mod STS, we precompose with one of the isomorphisms
between those two types:

Program Instance STS arity rep (t: T) (i : sig_index (St)) :
Module  Hom _struct (S := prod _mod STS (sig i)) (T := STS [(t)])
(fun V X => Build (STSI_f pm X)).

The only property to verify is the compatibility of this map with the module sub-
stitution, which we happily leave to Coq. We obtain a representation of S:

Record STSRepr : REPRESENTATION S := Build_ Representation (@STSrepr).

7.2.4 Weak Initiality for the Representation in the Term Monad. In the intro-
duction, we gave the equations that a morphism of representations of the natural
numbers should satisfy. Reading those equations as a rewrite system from left to
right yields a way to define iterative functions on the natural numbers. This idea
is also used in order to define a morphism from STSRepr to any representation R
of the signature S: a term of STS, whose root is a constructor Build t i for some
object type t and an arity i, is mapped recursively to the image — of the recur-
sively computed argument — under the corresponding representation repr R i of R.
This definition for a morphism of representations will turn out to be the only one
possible, leading to uniqueness. Formally, the carrier init of what will be the initial
morphism from STSRepr to R is defined as a mutually recursive Coq function:

Fixpoint init V.t (v :STSVt): RVt:=
match v in STS _ t return R V t with
| Var t v => weta (Monad_struct := R) Vtv
| Build t i X => repr Ri V (init_list X)
end

with

init_list | (V:ITYPET) (s:STS list VI):prod mod RIV :=

match s in STS list | return prod _mod R | V with
| TT=>TTT _ _
| constr b bs elem elems => CONSTR (init elem) (init_list elems)
end.
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where the function init_list applies init to (heterogeneous) lists of arguments. We
have to show that this function is a morphism of monads and a morphism of repre-
sentations. A series of lemmas show that init commutes with renaming resp. lifting
(init_lift), shifting (init_shift) and substitution (init_kleisli):

Lemma init_lift Vtx W (f : V ———> W) :init (x //— ) = lift f t (init x).
Lemma init_shifta VW (f : V ———> STS W) : forall (t: T) (x : opt a V t),
init (x >>—f) = x>>— (f;; Qinit ).
Lemma init_kleisli Vt (v:STSVt)W (f: V ———> STS W) :
init (v >==f) = kleisli (f ;; @init _ ) t (init v).

The latter property is precisely one of the axioms of morphisms of monads (cf.
Def. 3.12, rectangular diagram). The second monad morphism axiom which states
compatibility with the ns of the monads involved is fulfilled by definition of init
— it is exactly the first branch of the pattern matching by which the function init
is defined. We hence have established that init is (the carrier of) a morphism of
monads:

Program Instance init_monadic : Monad Hom _struct (P:=STSM) init.
Record init_mon := Build _Monad Hom init_monadic.

Very much less work is then needed to show that init also is a morphism of repre-
sentations:

Program Instance init_representic : Representation Hom _struct init_mon.

7.2.5 Uniqueness and Initiality. Uniqueness of the morphism of representations
init_rep (obtained from packaging init_representic into a record instance) is ex-
pressed by the following lemma:

Lemma init_unique : forall f : STSRepr ———> R, f == init_ rep.

Instead of directly proving the lemma, we prove at first an unfolded version which
allows to directly apply the mutual induction scheme STSind:

Variable f : Representation Hom STSRepr R.
Hint Rewrite one way : fin.
Ltac ttt := tt;
(try match goal with [t:T, s : STS list  |— ] => rewrite <— (one_way s);
let H:=fresh in assert (H:=repr _hom f (t:=t));
unfold commute in H; simpl in H end);
repeat (app (mh_weta f) || tinv || tt).

Lemma init_unique prepa Vt (v:STSVt):fVtv=initv.
Proof.
apply (@STSind
(funVitv=>fVtv=initv)
(fun V1v =>Prod_mor flV (pm_f STSIv) = init_list v));
ttt.
Qed.
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Finally we declare an instance of the Initial type class for the category of represen-
tations REPRESENTATION S with STSRepr as initial object and init_rep R as the
initial morphism towards any other representation R.

Code 7.9. (Instance of Initial for Category of Representations):

Program Instance STS initial : Initial (REPRESENTATION S) := {
Init := STSRepr ;
InitMor R :=init_rep R }.

In this instance declaration, the proof field InitMorUnique is filled automatically by
the Program feature, using the preceding lemma init_unique.

7.3 Remarks

The nature of the theorem made it convenient for computer theorem proving: the
proofs are straightforward, carrying no surprises. Moreover, they are highly tech-
nical using (mutual) induction, something Coq offers good support for.

Some aspects remain unsatisfactory: using type classes and records simultane-
ously is at least confusing for the reader, even if there are reasons from the im-
plementor’s point of view to do so. Also, the weak support for nested induction
in Coq obliged us to use mutual induction instead, leading to some duplication of
data and hence another unnecessary source of confusion. Other aspects, such as
the implementation of syntax in an efficient way, i.e. without any extrinsic typing
device, could be done due to Coq’s good support for dependent types.

According to coqwc!? the Coq files that are specific to the proved theorem consist
of approximately 400 lines of specification and 600 lines of proof. The proofs are
done in a semi—automated way, employing a proof style promoted by Chlipala in his
online book [Chl], as well as in a published user tutorial [Chl10]. An earlier version
using a more standard proof style included about 900 lines of proof. This reduction
is mainly due to the fact that proof automation also stimulates reuse of code — here
reuse of proof code — similarly to how polymorphism does for data structures and
functions. However, we do not claim to be experts in proof automation, nor do we
have “one tactic to rule them all”.

8. INITIALITY FOR UNTYPED 2-SIGNATURES, FORMALIZED

In this chapter we present the formalization in the proof assistant Coq of Thm. 4.34
of Sect. 4. We first define arities and 1-signatures in terms of lists. Afterwards we
define representations for 1-arities and construct the initial such representation.
We then formalize inequations over 1-signatures and construct, for any suitable
2-signature, the initial representation. Finally we show how to specify the untyped
lambda calculus with beta reduction via a 2-signature.

8.1 Arities by Lists

According to Def. 4.1, a 1-signature consists of an indexing type and, for each index,
a list of natural numbers, indicating the number of arguments of a constructor, as
well as the number of variables bound in each argument. Formally, 1-signatures

10The tool coqwc, part of the standard Coq tools, counts the number of lines in a Coq source file,
classified into the 3 categories specification, proof and comment.
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are an untyped version of Code 7.1. In the formalization they are simply called
“signatures”

Code 8.1. (1-Signature, Def. 4.1):

Notation "[ T ]" := (list T) (at level 5).
Record Signature : Type := {
sig_index : Type ;
sig : sig_index —> [nat] }.

Next we formalize context extension according to a natural number, cf. Sect. 2.4.3.
These definitions are important for the definition of the module morphisms we
associate to an arity, cf. below. Context extension is actually functorial. Given a
natural number n and a set of variables V, we recursively define the set V ** n to
be the set V enriched with n additional variables.

Code 8.2. (Adding fresh variables):

Fixpoint pow (n : nat) (V : TYPE) : TYPE :=
match n with

[0=>V
| S n" => pow n' (option V)
end.

Notation "V ** n" := (pow n V) (at level 10).
Fixpoint pow _map (I:nat) VW (f: V ———> W) :

match | return V ** | ———> W ** | with
|0=>f
| Sn"=>pow_ map (" f)
end.
Notation "f ~~ I" := (pow_map (l:=l) f) (at level 10).

8.2 Representations of a 1-Signature

Given a classic arity s, i.e. a list of natural numbers s (cf. Code 8.1), and a relative
monad P on the functor A, we define the product module P* as in Rem. 4.9. More
generally, we define M*® for any P-module M with codomain Pre. Analogously to
the implementation of Sect. 7, we build this module from scratch instead of relying
on the category—theoretic constructions such as product and derivation functor for
the module categories, allowing us to omit the insertion of isomorphisms in the
style of Lem. 2.106 and 2.107. Given any module M over a monad P from sets
to preordered sets, we define the product type prod _mod c as a dependent type
parametrized by a set of variables and dependent on a list of naturals. Actually we
define at first the carrier depending not on a module, but just on a carrier function
M. The relation on the product is induced by that on M.
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Code 8.3. (Product Module, Carrier map):

Variable M : TYPE —> Ord.
Inductive prod_mod_c (V : TYPE) : [nat] —> Type :=
| TTT : prod_mod_c V nil
| CONSTR : forall b bs,
M (V ** b)—> prod_mod _cV bs —> prod_mod c V (b::bs) .
Notation "a —:— b" := (CONSTR a b) (at level 60).
Inductive prod_mod_c_rel (V: TYPE) : forall n, relation (prod _mod ¢ M V n):=
| TTT rel : forall xy : prod _mod ¢ M V nil, prod mod c rel xy
| CONSTR rel : forall n I, forall x y : M (V ** n),
forallab:prod mod cMVI x<<y—>
prod_mod c relab —> prod mod c_ rel (x —:—a) (y —:— b).

Note that the infixed “<<” is overloaded notation and denotes the relation of any
preordered set. For any given list a of naturals and any set V of variables, the
set prod_mod ¢ V a equipped with the relation prod _mod c_rel V a is in fact a
preordered set. For the proof of transitivity we rely on the Coq tactic dependent
induction, thus on the axioms

JMeq.JMeq_eq : forall (A : Type) (xy: A), x ~=y —>x=y
Eqdep.Eq rect eq.eq rect eq : forall (U : Type) (p : U)
(Q:U —> Type) (x: Qp)
(h:p=p),x=eq rectpQxph

from the Coq standard library.

Now, if M is not just a map of type TYPE —> Ord, but a module over some
relative monad P over Delta, we equip the product map with a modulic substitution
in form of a recursive function:

Code 8.4. (Product module, substitution):

Variable M : RMOD P Delta.
Fixpoint pm_mkl | VW (f: Delta V. ———> P W)
(X:prod_mod ¢ (funV=>MV)VI):prod mod ¢ WI:=

match X in prod_mod ¢ | return prod mod c (funV => M V) W |
with
[ TTT =>TTT _W
| elem —:— elems =>
rmkleisli (RModule struct := M) (Ishift _ f) elem —:— pm_mkl f elems
end.
(C D)

Definition prod _mod (a : [nat]) := Build RModule (prod _mod _struct a).

Afterwards we prove by induction that this map is indeed monotone with respect
to the preorder defined in Code 8.3. Altogether, Code 8.3 and 8.4 define a module
prod _mod M | for any module M : RMOD P Ord and any list of naturals I.

To any arity ar : [nat] and a module M over a monad P we associate a type of
module morphisms modhom from arity ar M. Representing ar in M then means
giving a term of type modhom from arity ar M. Note that in the corresponding
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Def. 4.13 we have defined representations in monads only. Indeed we instantiate M
with the tautological module later.

Code 8.5. (Type of Representations of an Arity, Def. 4.13):

Variable P : RMonad Delta.
Definition modhom _from _arity (M : RModule P Ord) (ar : [nat]) : Type :=
RModule Hom (prod _mod M ar) M.

For the rest of the section, we suppose a signature S to be given via a Coq section
variable, Variable S : Signature. As just mentioned, representing the signature S in
a monad P (cf. Def. 4.14) means providing a suitable module morphism for any
arity of S, i.e. providing, for any element of the indexing set sig_index S, a term of
type modhom_from _arity P (sig i):

Code 8.6. (Representation of 1-Signature, Def. 4.14):

Definition Repr (P : RMonad Delta) :=

forall i : sig_index S, modhom from arity P (sig i).
Record Representation := {

rep_monad :> RMonad Delta ;

repr : Repr rep_monad }.

The projecton rep _monad is declared as a coercion by using the special syntax :>.
This coercion allows for abuse of notation in Coq as we do informally according to
Def. 4.14. See the first paragraph of Sect. 8.6 for a use of this abuse.

8.3 Morphisms of Representations

A morphism of representations from P to @ ist given by a monad morphism f :
P — @ between the underlying monads such that a diagram commutes for any
arity, cf. Def. 4.17. The main task in the implementation is to define this diagram
for a given arity ¢, and, more specifically, the left vertical morphism

dom(¢, f) = f*: P* = Q" .

using the notation of Rem. 4.9. Since P’ is defined as an inductive type, it
makes sense to define f¢ by recursion on the inductive type underlying P, named
prod_mod c P V| (cf. Code 8.3):

Code 8.7. (Carrier of Domain Module Morphism of Def. 4.17):

Variables P Q : RMonad Delta.
Variable f : RMonad Hom P Q.
Fixpoint Prod _mor_c (I : [nat])(V : TYPE)(X : prod_mod c (fun V. => P V) V I):
(prod_mod ¢ VI):=
match X in prod _mod ¢ |
return fx (prod _mod Q 1) V with

| TTT =>TTT _ _
| elem — — elems =>f elem —:— Prod_mor_c elems
end.

Proving this map monotone is a simple exercise, as well as its commutation property
with substitution, yielding the aforementioned module morphism. Now we have all
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the ingredients we need in order to define the diagram of Def. 4.17. For an arity a
the diagram reads as follows:

Code 8.8. (Commutative Diagram of Def. 4.17):

Variable a : [nat].

Variable RepP : modhom_from _arity P a.

Variable RepQ : modhom_from arity Q a.

Notation "f x M" := (# (PbRMOD f _ ) M).

Definition commute := Prod _mor a ;; f x RepQ == RepP ;; f".

Here f~ denotes the module morphism induced by a monad morphism, cf. Def. 2.100.
Using the preceding definition, we define morphisms of representations of S:

Code 8.9. (Morphism of Representations, Def. 4.17):

Variables P Q : Representation.
Class Representation  Hom _struct (f : RMonad Hom P Q) :=
repr _hom s : forall i : sig_index S,
commute f (repr P i) (repr Q i).
Record Representation Hom : Type :={
repr_hom ¢ :> RMonad Hom P Q;
repr _hom :> Representation Hom struct repr _hom c }.

8.4 Category of Representations

In this section we describe in more detail the category of representations of a 1-
signature, cf. Def. 4.19. The composition of morpisms of representations f : P — Q
and g : Q — R is essentially done by composing the underlying monad morphisms.
One has to show that this morphism does indeed commute with the representation
morphisms of P and R. Similarly, the identity monad morphism of (the monad
underlying) a representation P yields a morphism of representations. Fed with
some suitable lemma, the Program framework does the job for us:

Code 8.10. (Composition and Identity of Representations):

Variables P Q R : Representation S.
Variable f : Representation Hom P Q.
Variable g : Representation _Hom Q R.
Program Instance Rep__comp _struct :
Representation Hom _struct (RMonad _comp f g).
Program Instance Rep Id struct : Representation Hom struct (RMonad_id P).

Since equality of morphisms of representations is defined as equality of the under-
lying monad morphisms, the categorical properties of compositition are established
already as part of the definition of the category RMONAD F for any functor F.
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Code 8.11. (Category of Representations, Def. 4.19):

Program Instance REP _struct : Cat_struct (ORepresentation Hom S) := {
mor_oid a c :=eq_Rep_oid a ¢
id a:=Rep_Id a;
compP QRfg:=Rep Compfg}.

Definition REP := Build _Cat REP _struct.

8.5 Initiality without Inequations

We construct the initial object of the category REP (cf. Code 8.11). In the informal
proof of Lem. 4.21 this initial object is the image under a left adjoint of the initial
object in a category of representations as defined in Sect. 3.2 with the set of object
sorts T' = {x}. For the formal proof we decide to implement the initial object
of REP directly, in order to obtain a compact formalization. However, the initial
object is constructed in a way similar to that of Sect. 7. The carrier of the initial
representation is just a simplified — because untyped — version of Code 7.8. The
ounly significant difference to Sect. 7 is that we equip the set of terms with the trivial
diagonal preorder by applying the functor A, in Coq called Delta:

Code 8.12.:

Inductive UTS (V : TYPE) : TYPE :=

| Var : V. —> UTS V

| Build : forall (i : sig_index S), UTS list V (sigi) —> UTS V
with
UTS list (V : TYPE) : [nat] —> Type :=

| TT : UTS_list V nil

| constr : forall b bs,

UTS (V ** b) —> UTS _list V bs —> UTS_list V (b::bs).

Notation "a —::— b" := (constr a b).
Definition UTS _sm V := Delta (UTS V).

We define renaming and, built on top of renaming, substitution:

Fixpoint rename (V W: TYPE ) (f: V ———> W) (v : UTS V):=
match v in UTS _ return UTS W with
| Var v => Var (f v)
| Build i | => Build (I //—— 1)

end
with
list_rename V t (1: UTS listVt) W (f: V ———> W) : UTS list W t :=
match | in UTS list _ t return UTS _list W t with
| TT=>TTW
| constr b bs elem elems => elem //—f ~~ b —::— elems //—— f
end
where "x //— f" := (rename f x)

and "x //—— f" := (list_rename x f).
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Fixpoint subst (V W : TYPE) (f : V ———=> UTS W) (v : UTS V) :
UTS W := match vin UTS _ return UTS _ with

| Varv =>fv
| Build i | => Build (I >>==f)
end

with
list_subst VWt (I:UTS listVit) (f:V—-———>UTSW):UTS list Wt:=
match | in UTS _list _ t return UTS _list W t with

| TT=>TTW
| elem —::— elems =>

elem >==_Ishift f —::— elems >>==
end

where "x >== f" := (subst f x)
and "x >>== f" := (list_subst x f).

Accordingly, the definition of a monadic structure on V +— A UTS(V) differs from
the monad STS monad of Sect. 7.2 only in the occasional use of the functor A
(Delta) on the morphisms — corresponding to the definition of the left adjoint for
Lem. 4.5:

Code 8.13. (Relative Monad Freely Generated by 1-Signature):

Program Instance UTS _sm_rmonad : RMonad _struct Delta UTS _sm := {
rweta ¢ := #Delta (@Var c);
rkleisli a b f := #Delta (subst f) }.

Canonical Structure UTSM := Build_ RMonad UTS_sm_ rmonad.

The monad UTSM is easily equipped with a representation of the signature S; the
carrier of the representation of i : sig_index S is given by the function

fun (X : prod_mod ¢ _ V (sigi)) => Build (i:=i) (UTSI_f pm (V:=V) X)

that is, by the constructor Build i of the type UTS, precomposed with an isomor-
phism UTSI _f pm from prod _mod ¢ UTS to UTS_list. We thus obtain a repre-
sentation UTSRepr of the signature S.

Given another representation, say, R, of S, the morphism init from UTSRepr to R
is defined by recursion:

Fixpoint init V (v: UTS V) : RV :=
match v in UTS _ return R V with
| Var v => rweta (RMonad _struct :== R) V v
| Build i X => repr Ri V (init_list X)
end

with

init_list | (V: TYPE) (s : UTS list VI) : prod mod RIV :=

match s in UTS list _ | return prod _mod R |V with

| TT =>TTT _ _
| elem —::— elems => init elem —:— init_list elems
end.
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This map init is compatible with lifting and substitution in UTSM and R, respec-
tively:

Lemma init lift VxW (f: V ———> W) :
init (x //— f) = rlift R f (init x).

Lemma init_kleisli V (v : UTS V) W (f : Delta V.———> UTS_sm W) :
init (v >==f) = rkleisli (f ;; Qinit_sm W) (init v).

where init_sm W is the (trivially) monotone version of init W — the adjunct of
init W under the adjunction of Lem. 2.18. The latter of those lemmas constitutes
an important part of the proof that init is the carrier of a module morphism from
UTSM to R. It is trivial to prove that init is also compatible with the representation
structure of UTSRepr and R, thus the carrier of a morphism of representations called
init_rep : UTSRepr ———> R. Afterwards uniqueness of init_rep is proved:

Lemma init_unique :forall f : UTSRepr ———> R, f == init_rep.
Finally we establish initiality by an instance declaration of the corresponding class:

Program Instance UTS _initial : Initial (REP S) := {
Init := UTSRepr ;
InitMor R := init_rep R }.

8.6 Inequations and Initial Representation of a 2-Signature

For a 1-signature S, an S-module is defined to be a functor from representations of
S to the category whose objects are pairs of a monad P and a module M over P, cf.
Def. 4.22. We do not need the functor properties, and use dependent types instead
of the cumbersome category of pairs, in order to ensure that a representation in a
monad P is mapped to a P-module.

The below definition makes use of two coercions. Firstly, we may write a : C
because the “object” projection of the category record (cf. Code 6.3) is declared
as a coercion. Secondly, the monad underlying any representation can be accessed
without explicit projection using the coercion in Code 8.6 we mentioned above.

Record S_Module := {
s_mod :> forall R : REP S, RMOD R wOrd ;
s_mod hom :> forall (R T : REP S)(f : R ———> T),
s mod R ———> PbRMod f (s_mod T) }.
Notation "U @ f" := (s_mod_hom U f)(at level 4).

Note that we write UGf for the image of the morphism of representations f under
the S—module U. Source and target module of f are implicit arguments in this
application.

A half-equation is a natural transformation between S-modules. We need the
naturality condition in the following. Since we have not formalized S-modules as
functors, we have to state naturality explicitly:
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Code 8.14. (Half-Equation, Def. 4.22):

Class half _equation_struct (U V : S_Module)
(half_eq:foral R: REP S, UR ———> V R) :={
comm _eq_s:forall (RT:REPS) (f: R ———>T),
U@f;; PboRMod Hom _(half eq T) ==half eqR;; V Of}.

Record half _equation (U V : S_Module) := {
half_eq:> foralR: REPS,UR ———> VR
half _eq s :> half _equation struct half _eq }.

We now formalize classic S—modules. Any list of natural numbers uniquely specifies
a classic S—module, cf. Def. 4.26. Given a list of naturals codl, we call this S—module
S Mod _classic codl. A classic half-equation is any half-equation with a classic co-
domain, and a classic inequation is a pair of parallel classic half-equations (cf.
Def. 4.33):

Definition half _eq classic (U : S_Module)(codl : [nat]) :=
half _equation U (S_Mod _classic codl).
Record ineq_classic := {
Dom : S_Module ;
Cod : [nat] ;
eql : half_eq classic Dom Cod ;
eq2 : half_eq_classic Dom Cod }.

Give a representation P and a (classic) inequation e, we check whether P satisfies e
by pointwise comparison (cf. Def. 4.31):

Definition satisfies_ineq (e : ineq_classic) (P : REP S) :=
forall ¢ (x : Dom e P ¢),
eql _ = x<<eq2 _ _ _ x
(* for a family of inequations indexed by a set A %)
Definition Inequations (A : Type) := A —> ineq_ classic.
Definition satisfies_inegs A (T : Inequations A) (R : REP S) :=
forall a, satisfies _ineq (T a) R.

We formalize sets of classic inequations as pairs of an indexing type A together with
a term of type Inequations A, that is, a map from A to the type of classic inequations
ineq_classic. The category of representations of (S, A) is obtained as a full subcat-
egory of the category of representations of S. The following declaration produces
a subcategory from predicates on the type of representations and on the (depen-
dent) type of morphisms of representations, yielding the category PROP _REP of
representations of (S, A):

Variable A : Type.

Variable T : Inequations A.

Program Instance Ineq_Rep : SubCat_compat (REP S)
(fun P => satisfies_ineqs T P) (fun a b f => True).

Definition INEQ _REP : Cat := SubCat Ineq_ Rep.
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We now construct the initial object of INEQ REP. The relation on the initial object
is defined precisely as in the paper proof, cf. Disp. (4.1):

Definition prop_rel ¢ X (xy : UTS S X) : Prop :=
forall R : PROP_REP, init (FINJ _ R) x << init (FINJ _ R)y.

Here, FINJ _ R denotes the representation R as a representation of S, i.e. the injec-
tion of R in the category REP S of representations of S. The relation defined above
is indeed a preorder, and we define the monad UTSP to be the monad whose un-
derlying sets are identical to UTSM, namely the sets defined by UTS, but equipped
with this new preorder. This monad UTSP is denoted by X 4 in the paper proof.

The representation module morphisms of the initial representation UTSRepr can
be “reused” after having proved their compatibility with the new order, yielding
a representation UTSProp. An important lemma states that this representation
satisfies the inequations of T:

Lemma UTSPRepr_sig prop : satisfies_ineqs T UTSProp.

We have to explicitly inject the representation into the category of representations

of (S, A):

Definition UTSPROP : INEQ REP :=
exist (fun R : Representation S => satisfies_ineqs T R) UTSProp
UTSPRepr_sig_prop.

For building the initial morphism towards any representation R : INEQ REP, we
first build the corresponding morphism in the category of representations of S:

Definition init_prop_re : UTSPropr ———> (FINJ _ R) := ...

which we then inject, analogously to the initial representation, into the subcategory
of representations of (S, A):

Definition init_prop : UTSPROP ———> R := exist _ (init_prop_re R) I.

Finally we prove Thm. 4.34: An initial object of a category is given by an object
Init of this category, a map associating go any object R a morphism InitMor R : Init
———> R, and a proof of uniqueness of any such morphism. We instanciate the
type class Initial for the category INEQ REP of representations of (S, A):

Program Instance INITIAL _INEQ _REP : Initial INEQ REP := {
Init := UTSPROP ;
InitMor := init__prop ;
InitMorUnique := init_prop _unique }.

We check its type after closing all the sections — and thus abstracting from the
section variables:

Check INITIAL _INEQ_REP.
INITIAL_INEQ_REP
: forall (S : Signature) (A : Type) (T : Inequations S A),
Initial (INEQ _REP (S:=S) (A:=A) T)

Journal of Formalized Reasoning Vol. 8, No. 2, 2015.



128 . B. Ahrens

8.7 Ap: Lambda Calculus with beta reduction

We implement the example 2-signature AS, cf. Ex. 4.38. Throughout this section,
we use use a custom notation in Coq for the datatype of lists:

Notation "[[ x ; .. ; y ]]" := (cons x .. (cons y nil) ..).

In order to specify the 1-signature A (cf. Def. 4.11, Ex. 4.2), we first define an
indexing set Lambda _index consisting of two elements, ABS and APP. This indexing
set reflects the fact that the signature A consists of two arities. The record instance
Lambda is a term of type Signature (cf. Code 8.1). The map sig Lambda then
associates the corresponding lists of naturals to each of these elements, according
to Ex. 4.2:

Inductive Lambda_index := ABS | APP.
Definition Lambda : Signature := {]
sig_index := Lambda_index ;
sig := fun x => match x with

| ABS => [ 1]]
| APP =>[[ 0 0]]
end |}.

The definition of the inequation S (cf. Ex. 4.32) is a more challenging task, since
a half-equation is not just an element of a simple datatype like a 1—arity, but given
by suitable module morphisms.

At first, we define the substitution of one variable (cf. Def. 4.27) as a half-
equation. The carrier subst carrier of the substitution is defined as in Def. 2.110.
Afterwards we prove that this carrier satisfies the properties of a module morphism,
that is, is compatible with substitution in the source and target modules. After
abstracting from the section variable R, we obtain a function subst module mor
which, given any representation R of S, yields the substitution module morphism
associated to (the monad underlying) R.

Variable S : Signature.
Variable R : REP S.
Definition subst _carrier :
(forall ¢ : TYPE, (S_Mod classic_ob [[1; 0]] R) ¢ ———>
(S _Mod classic_ob [[0]] R) ¢) = ...
Program Instance sub_struct : RModule Hom _struct
(M:=S_Mod _classic_ob [[1; 0]] R) (N:=S_Mod_classic_ob [[0]] R)
subst_carrier.
Definition subst _module mor := Build RModule Hom (sub _struct R).

The last step is to prove “naturality”, that is, the commutativity of the family of
diagrams of Code 8.14. We recall that we do not implement S—modules as functors,
but just as the data part of functors. This is why we put the word naturality in
quotes. After the proof we define our first half-equation, subst _half eq.

Program Instance subst _half s : half _equation _struct
(U:=S_Mod _classic [[1; 0]]) (V:=S_Mod _classic [[0]]) subst _module mor.
Definition subst _half eq := Build _half _equation subst half s.
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The definition of the second half-equation of Ex. 4.28 is possible for any 1-
signature with abstraction and application, such as the 1-signature A. To keep
the example simple, we only define the half-equation for A. The needed steps
are precisely the same as for the substitution half-equation, so we just give the
statements.

Definition beta _carrier :

(forall ¢ : TYPE, (S_Mod _classic_ob [[1; 0]] R) ¢ ———>
(S_Mod classic_ob [[0]] R) ¢) := ...

Program Instance beta struct : RModule  Hom _struct
(M:=S_Mod _classic_ob [[1; 0]] R)
(N:=S_Mod_classic_ob [[0]] R)

beta carrier.

Definition beta _module mor := Build RModule Hom beta _struct.

Program Instance beta half s : half equation _struct
(U:=S_Mod _classic Lambda [[1 ; 0]])

(V:=S_Mod _classic Lambda [[0]])
beta _module mor.
Definition beta half _eq := Build _half equation beta half s.

In the end we package both half—equations into one inequation specifying the beta
rule of Ex. 4.32.

Definition beta rule : ineq_classic Lambda := {|
eql := beta_half _eq;
eq2 := subst_half _eq Lambda |}.

We can now associate a short name to the category of representations of A3, where,
for increased clarity, we specify the implicit arguments:

Definition Lambda beta Cat := INEQ_REP
(S:=Lambda)(A:=unit)(fun x : unit => beta_rule).

Note that our formal definition allows that an inequation appears multiple times
in a 2-signature, whereas in the informal definition we have sets of inequations.
Unlike for arities, having several copies of the same inequation does not change the
resulting category neither the initial object, of course. The initial representation is
obtained via the specification

Definition Lambda beta := @lnit
(INITIAL_INEQ REP (fun x : unit => beta_rule)).

9. A FAITHFUL TRANSLATION OF PCF TO ULC

In this chapter we describe the implementation of the category of representations of
PCF, equipped with reduction rules — we refer to it as semantic PCF from now on
— as described informally in Sect. A.2. We state the reduction rules more precisely
later. This theorem is an instance of Thm. 5.21 proved in Sect. 5. However, for the
implementation in Coq of this instance we make several simplifications compared
to the general theorem:
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—we do not define a notion of 2-signature, but specify directly a Coq type of
representations of semantic PCF;

—we use dependent Coq types to formalize arities of higher degree (cf. Def. 5.3),
instead of relying on modules on categories with pointed index sets. A repre-
sentation of an arity of degree n is thus given by a family of module morphisms
(of degree zero), indexed n times over the respective object type as described in
Rem. 5.6;

—the relation on the initial object is not defined via the formula of Disp. (5.2),
but directly through an inductive type, cf. Code 9.9, and various closures, cf.
Code 9.10.

9.1 Representations of PCF

In this section we explain the formalization of representations of semantic PCF.
According to Def. 5.10 and Def. 5.20, such a representation consists of

(1) a representation of the types of PCF (in a Coq type U), cf. Ex. 3.4,
(2) a relative monad P over the functor AY (in the formalization: IDelta U) and

(3) representations of the arities of PCF (cf. Ex. 3.48), i.e. morphisms of P-modules
with suitable source and target modules such that

(4) the inequations defining the reduction rules of PCF are satisfied.

A representation of PCF should be a “bundle”, i.e. a record type, whose components
— or “fields” — are these 4 items. In order to ease the definitions, we first define
what a representation of the term signature of PCF in a monad P is, in the presence
of an Spcp—monad (cf. Def. 5.1). Unfolding the definitions, we suppose given a type
Sorts, a relative monad P over IDelta Sorts and three operations on Sorts: a binary
function Arrow — denoted by an infixed “~~>” — and two constants Bool and
Nat.

Variable Sorts : Type.

Variable P : RMonad (IDelta Sorts).

Variable Arrow : Sorts —> Sorts —> Sorts.

Variable Bool : Sorts.

Variable Nat : Sorts.

Notation "a ~~> b" := (Arrow a b) (at level 60, right associativity).

In this context, a representation of PCF is given by a bunch of module morphisms
satisfying some conditions. We split the definition into smaller pieces. Note that
M][t] denotes the fibre module of module M with respect to t, and d M // u denotes
derivation of module M with respect to u. The module denoted by a star * is the
terminal module, which is the constant singleton module.
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Code 9.1. (1-Signature of PCF):
Class PCFPO _rep_struct := {

app : forall u v, (P[u ~~> v]) x (P[u]) ———> P[v];

abs : foralluv, (d P // u)[v] =———> Plu ~~> v];

rec : forall t, P[t ~~> t] ———> PJt];

tttt : ¥+ ———> P[Bool[;

ffff : * ———> P[Bool];

nats : forall m:nat, x ———> P[Nat];

Succ : x ———> P[Nat ~~> Nat];

Pred : * ———> P[Nat ~~> Nat];

Zero : ¥ ———> P[Nat ~~> Bool];

CondN: ¥+ ———> P[Bool ~~> Nat ~~> Nat ~~> Nat];
CondB: * ———> P[Bool ~~> Bool ~~> Bool ~~> Booll;
bottom: forall t, x ———> P[t]; (* continued later *)

These module morphisms are subject to some inequations specifying the reduction
rules of Sect. A.2, or, equivalently, Ex. 5.19. The beta rule reads as

Code 9.2. (Beta Rule for Representations of PCF):
beta red : forallrsVyz apprsV (absrsVy, z) << y[x:=2z]; (* tbc *)

where y[*:= z] is the substitution of the freshest variable (cf. Def. 2.111) as a special
case of simultaneous monadic substitution. The rule for the fixed point operator

says that Y(f) ~ f (Y(f)):
Code 9.3. (Inequation for Fixedpoint Operator):
Rec_A:forallVtg rec _g<<appttV (g rec _ g); (x the

The other inequations concern the arithmetic and logical constants of PCF. Firstly,
we have that the conditionals reduce according to the truth value they are applied
to:

Code 9.4. (Logic Inequations of PCF Representations):
CondN _t: forall V n m,

app _ _ _(app _ _ _
(app _ __ (CondN V tt, tttt _ tt), n), m) << n;
CondN _f: forall V. n m,
app _ _ _(app _ _ _
(app _ _ _ (CondN V tt, ffff _ tt), n), m) << m;
CondB _t: forall V u v,
app _ _ _(app _ _ _
(app _ __ (CondB V tt, tttt _ tt), u), v) << u ;
CondB_f: forall V u v,
app _ _ _(app _ _ _
(app _ _ _ (CondB V tt, ffff _ tt), u), v) << v ; (* tbe *)

Furthermore, we have that succ(n) reduces to n + 1 (which in Coq is written S n),
reduction of the zero? predicate according to whether its argument is zero or not,
and that the predecessor is post—inverse to the successor function:
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Code 9.5. (Arithmetic Inequations of PCF Representations):

Succ_red: forall V n,

app __ (Succ V tt, natsn _ tt) << nats (Sn) _ tt;
Zero_t: forall V,
app __ _ (ZeroV tt, nats 0 _ tt) << tttt  tt;
Zero_f: forall V n,
app _ _ _(Zero V tt, nats (S n) _ tt) << ffff _ tt;
Pred Succ: forall V n,
app __ (Pred Vtt,app _  (Succ Vtt, natsn _tt)) << natsn _ tt;
Pred Z: forall V,
app _ _ _(Pred Vtt, nats 0 _ tt) << nats 0 _ tt }.

Unfortunately, at this stage of the definition, we were not able to introduce a more
convenient notation for application, neither to omit the arguments denoted by an
underscore as instances of implicit arguments. After abstracting over the section
variables we package all of this into a record type:

Record PCFPO _rep := {

Sorts : Type;

Arrow : Sorts —> Sorts —> Sorts;

Bool : Sorts ;

Nat : Sorts ;

pcf _rep _monad :> RMonad (IDelta Sorts);

pcf _rep_struct :> PCFPO_rep struct pcf rep monad Arrow Bool Nat }.
Notation "a ~~> b" := (Arrow a b) (at level 60, right associativity).

The type PCFPO _rep later constitutes the type of objects of the category of rep-
resentations of semantic PCF.

9.2 Morphisms of Representations

A morphism of representations (cf. Def. 5.11) is built from a morphism ¢ of type
representations and a colax monad morphism over the retyping functor associated
to the map g. The implementation of retyping is explained in Code 6.6. In the
particular case of PCF, a morphism of representations from P to R consists of a
morphism of representations of the types of PCF — with underlying map Sorts _map
— and a colax morphism of relative monads which makes commute the diagrams
of the form given in Def. 5.11. We first define the diagrams we expect to commute,
before packaging everything into a record type of morphisms. The context is given
by the following declarations:

Variables P R : PCFPO _ rep.
Variable Sorts _map : Sorts P —> Sorts R.
Variable HArrow :
forall u v, Sorts_map (u ~~> v) = Sorts_map u ~~> Sorts_map v.
Variable HBool : Sorts _map (Bool ) = Bool
Variable HNat : Sorts _map (Nat ) = Nat _ .
Variable f : colax_RMonad Hom P R
(G1:=RETYPE Sorts_map) (G2:=RETYPE_PO Sorts_map)
(RT_NT (fun t => Sorts_map t)).
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We explain the commutative diagrams of Def. 5.11 for some of the arities. For the
successor arity we ask the following diagram to commute:

Code 9.6. (Commutative Diagram for Successor Arity):

Program Definition Succ_hom' :=
Succ ;; f [(Nat ~~> Nat)] ;; Fib_eq RMod __ ;; IsoPF ==
x———>x% ;; f ** Succ.

Here the morphism Succ refers to the representation of the successor arity either
of P (the first appearance) or R (the second appearance) — Coq is able to figure
this out itself. The domain of the successor is given by the terminal module x.
Accordingly, we have that dom(Suce, f) is the trivial module morphism with domain
and codomain given by the terminal module. We denote this module morphism
by *———>x%. The codomain is given as the fibre of f of type ¢+ = «. The two
remaining module morphisms are isomorphisms which do not appear in the informal
description. The isomorphism IsoPF is needed to permute fibre with pullback (cf.
Lem. 2.108). The morphism Fib_eq RMod M H takes a module M and a proof
H of equality of two object types as arguments, say, H : u = v. Its output is an
isomorphism M[u] ———> M|v]. Here the proof is of type

Sorts_map (Nat ~~> Nat) = Sorts_map Nat ~~> Sorts_map Nat

and Coq is able to figure out the proof itself. We expand on this kind of modules
in Sect. 9.3 The diagram for application uses the product of module morphisms,
denoted by an infixed X:

Code 9.7. (Commutative Diagram for Application Arity):

Program Definition app_hom’ := forall u v,
appuv;; f[(_)]; IsoPF ==
(f [(u ~~> V)] ;; Fib_eq_RMod _ (HArrow _ );; IsoPF )
X
(f [(u)] :; 1soPF ) ;; IsoXP ;; f ** (app _ ).

In addition to the already encountered isomorphism IsoPF we have to insert an
isomorphism IsoXP which permutes pullback and product (cf. Lem. 2.106). As a
last example, we present the property for the abstraction:

Code 9.8. (Commutative Diagram for Abstraction Arity):

Program Definition abs_hom' := forall u v,
absuv i f[(_ )] ==
DerFib_ RMod Hom . IsoPF ;;

f** (abs (_ u) (_ v)) : IsoFP ;;
Fib_eq RMod (eq _sym (HArrow ).

Here the module morphism DerFib_ RMod Hom f u v corresponds to the morphism
dom(Abs(u,v), f) = [f“]», and IsoFP permutes fibre with pullback, just like its
sibling IsoPF, but the other way round.

We bundle all those properties into a type class:
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Class PCFPO _rep Hom _struct := {
CondB _hom : CondB_hom’ ;
CondN_hom : CondN_hom’ ;
Pred _hom : Pred hom’ ;
Zero_hom : Zero _hom' ;
Succ_hom : Succ_hom' ;
fff_hom : fff _hom' ;
ttt_hom : ttt_hom’ ;
bottom hom : bottom hom’ ;
nats_hom : nats_hom’ ;
app_hom : app _hom’ ;
rec_hom : rec_hom’ ;
abs _hom : abs hom’ }.

Similarly to what we did for representations, we abstract over the section variables
and define a record type of morphisms of representations from P to R :

Record PCFPO_rep_Hom := {
Sorts_map : Sorts P —> Sorts R ;
HArrow : forall u v, Sorts map (u ~~> v) = Sorts_map u ~~> Sorts_map v;
HNat : Sorts_map (Nat _ ) = Nat R ;
HBool : Sorts _map (Bool _ ) = Bool R ;
rep_Hom_monad :> colax_ RMonad _Hom P R (RT _NT Sorts_map);
rep_colax Hom monad_struct :> PCFPO_rep Hom_ struct
HArrow HBool HNat rep_ Hom _monad }.

9.3 Digression on Equal Fibre Modules in Coq

Suppose @ is a relative monad on some functor F': C — D and M is a Q—module
with codomain Pre”. Let u,t € T and suppose given a proof H of the proposition
u = t. We can now prove [M], = [M];, but unfortunately this is not sufficient for
composing a morphism with codomain [M],, with one whose domain is [M]; in Coq
(cf. Sect. 6.3.1). Indeed, the problem we encounter here is even worse than that of
permutation of pullback with fibre, derivation and products (see e.g. Sect. 7.1.2),
since not even the carriers of [M], and [M]; are convertible. This means that
the isomorphism we have to insert does not even allow for an underlying family of
identity maps as carriers, but instead is a transport of the form eq_rect.

In more detail, the carrier of M is a map from the objects of C to Pre’, that
is, for each ¢ € C, its image Mc € Pre’ is basically a dependent type (with some
structure). The fibre is then simply computed by application. The carrier of a
module morphism p : [M],, — [M]; thus consists of a family of maps of sets indexed
by objects ¢ € C,

pe: M(c)(u) = M(c)(t) -

In intensional type theory, we have an explicit cast operator eq rect which allows
the definition of precisely such a map:

eq_rect : forall (A : Type) (x : A) (P : A —> Type),
Px—>forally: A, x=y—>Py
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Note that this operator is equivalent to the operator J in Hofmann’s PhD thesis
[Hof95], whose typing rule is called ID-ELiM-J.

Here we instantiate A by set of object types T" and the dependent type P by
M (c), allowing us to define a map transport from M (c)(u) to M(c)(t):

Variable T : Type.
Variablesu t : T.
Variable M : RMOD Q (IPO T).
Hypothesis H : u = t.
Definition transport (c: C) - Mcu —> Mct =
fun (s:Mcu)=>eq rectu (funt: T =>(Mc)t)stH.

Fortunately it is possible to get rid of the transport via a computation rule equiva-
lent to a rule named ID-CoMP in Hofmann’s thesis. In Coq this rule says that the
term

eq _rectu P aaeq_ refl

reduces to — and thus in particular is provably equal to — the term a itself. Thus
a considerable part of proof code in the following is about elimination of explicit
casts. Indeed, the scheme is as follows: we start with a goal

such that G contains a subterm eq rect u P a b H, i.e. with H:a =b. We then
generalize H, yielding the goal

After introducing H, we can rewrite H in the goal into eq refl using the axiom
UIP _refl which says that any proof of a = a is equal to eq_refl. Thus the goal G
contains the subterm eq_rect u P a a eq_ refl, which simplifies to a — the transport
has disappeared. Note that for the rewrite of forall H : a = b into forall H : a = a
in the goal, many other terms from the context have to be generalized, as well as
structures broken into their constituent pieces, in order to obtain sufficient flexibility
in the goal for the rewrite to result in a well-typed term.

9.4 Equality of Morphisms, Category of Representations

We have already seen how some definitions that are trivial in informal mathematics,
turn into something awful in intensional type theory. Equality of morphisms of
representations is another such definition. Informally, two such morphisms a,c :
P — R of representations are equal if

(1) their map of object types f, and f. (Sorts map) are equal and
(2) their underlying colax morphism of monads — also called a and ¢ — are equal.
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In our formalization, the second condition is not even directly expressable, since
these monad morphisms do not have the same type: we have, for a context V €
Set?,
av : fa(PV) = R(faV)
and
v : fo(PV) = R(f.V) .
where Set®” is a notation for contexts typed over the set of object types the rep-
resentation P comes with, formally the type Sorts P. We can only compare ay
to ¢y by composing each of them with a suitable transport transp again, yielding
morphisms
R(transp) o ay : fo(PV) = R(f.V) = R(f.V)
and
cy otransp’ : f,(PV) — fo(PV) — R(f.V) .

As before, for equal fibres [M],, and [M]; with u = ¢, the carriers of those transports
transp and transp’ are terms of the form eq_rect ~ H, where H is a proof term
which depends on the proof of

forall x : Sorts P, Sorts _map ¢ x = Sorts_map a x

of the first condition. Altogether, the definition of equality of morphisms of repre-
sentations is given by the following inductive proposition:

Inductive eq_ Rep (P R : PCFPO _rep) : relation (PCFPO_rep Hom P R) :=
| eq_rep : forall (a c: PCFPO_rep Hom P R),

forall H : (forall t, Sorts _map c t = Sorts_map a t),

(forall V, a V ;; rlift R (Transp H V)

Transp_ord H(P V) ;;cV) —>eq _Repac.

The formal proof that the relation thus defined is an equivalence is inadequately long
when compared to its mathematical complexity, due to the transport elimination.

Composition of representations is done by composing the underlying maps of
sorts, as well as composing the underlying monad morphisms pointwise. Again, this
operation, which is trivial from a mathematical point of view, yields a difficulty in
the formalization, due to the fact that in the formalization

FfV) £ (go )V .

More precisely, suppose given two morphisms of representations a : P — @ and
b:Q — R, given by families of morphisms indexed by V resp. W,

ay : PV — Q(V%) and
b : QW — ROV) |

where we write V¢ for f_(;V. The monad morphism underlying the composite mor-
phism of representations is given by the following definition:
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boa boay

PV R(VPoa)
match R(=)
—~b
PV R (V“ )
ctype bya

PV = Q(V*) ——— Q(V9)

ctype
or, in Coq code,

Definition comp_rep_car : (forall ¢ : ITYPE U,

RETYPE (funt => f (ft)) (P c) ———>

R ((RETYPE (fun t => f' (f t))) ¢)) :=
fun (V- ITYPE U) t (y : retype (funt =>f" (ft)) (P V) t) =>
match y with ctype z =>
lift (M:=R) (double retype 1 (f:=f) (f:=f") (V:=V)) _
(b (ctype (funt =>f"1t)
(a _ _ (ctype (funt=>ft)z))))

end.

137

where double retype 1 denotes the isomorphism in the upper right corner. The
proof of the commutative diagrams for the composite monad morphism is lengthy
due to the number of arities of the signature of PCF. Definition of the identity
morphisms is routine, and in the end we define the category of representations of

semantic PCF:

Program Instance REP_s:
Cat_struct (obj := PCFPO_rep) (PCFPO_rep Hom) := {
mor_oid P R:=eq Rep oid PR
id R:= Rep_id R;
compabcfg:=Rep compfg}.

9.5 One Particular Representation

We define a particular representation, which we later prove to be initial. First of

all, the set of object types of PCF is given as follows:

Inductive Sorts :=
| Nat : Sorts
| Bool : Sorts
| Arrow : Sorts —> Sorts —> Sorts.

For this section we introduce some notations:

Notation "' TY'" := PCF.Sorts.
Notation "'IT"" := (ITYPE TY).
Notation "a '~>" b" := (Arrow a b) (at level 69, right associativity).
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We specify the set of PCF constants through the following inductive type, indexed
by the sorts of PCF:

Inductive Consts : TY —> Type :=

| Nats : nat —> Consts Nat

| ttt : Consts Bool | fff : Consts Bool

| succ : Consts (Nat ~> Nat) | preds : Consts (Nat ~> Nat)
| zero : Consts (Nat ~> Bool)

| condN: Consts (Bool ~> Nat ~> Nat ~> Nat)

| condB: Consts (Bool ~> Bool ~> Bool ~> Bool).

The set family of terms of PCF is given by an inductive family, parametrized by a
context V and indexed by object types:

Inductive PCF (V: TY —> Type) : TY —> Type:=

| Bottom: forall t, PCF V t

| Const : forall t, Consts t —> PCF V t

| Var : forallt, Vt —> PCF V t

| App : forall ts, PCFV (s ~>t) —> PCF Vs —> PCF V t
| Lam : forall t s, PCF (opt t V) s —> PCF V (t ~> s)

| Rec : forall t, PCF V (t ~>t) —> PCF V t.
Notation "a @ b" := (App a b)(at level 43, left associativity).
Notation "M " := (Const _ M) (at level 15).

Monadic substitution is defined recursively on terms:

Fixpoint subst (V W: TY —> Type)(f: forall t, V t —> PCF W t)
(t:TY)(v:PCFVt):PCFWt =
match v with
| Bottom t => Bottom W t
|c'=>c¢’
| Vartv=>ftv
lu@v=>u>>=fQv>>=Hf
| Lam t s u => Lam (u >>= shift f)
| Rec t u => Rec (u >>=)
end
where "y >>=f":= (@subst  f ).

Here shift f is the substitution map f extended to account for an extended context
under the binder Lam. It is equal to the shifted map of Def. 2.102.
Finally, we define a relation on the terms of type PCF via the inductive definition
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Code 9.9. (Reduction Rules for PCF):

Inductive eval (V : IT): forall t, relation (PCF V t) :=
| app_abs : forall (s t:TY) (M: PCF (opt s V) t) N,
eval (Lam M @ N) (M [+x:= NJ)
| condN t: forall n m, eval (condN "@ ttt '@ n @ m) n
| condN _f: forall n m, eval (condN '@ fff ' @n @ m) m
| condB _t: forall u v, eval (condB " @ttt ' @ u @ v) u
| condB_f: forall u v, eval (condB "’ @ fff '@ u @ v) v
| succ_red: forall n, eval (succ ' @ Nats n ') (Nats (S n) ")
| zero t: eval ( zero’ @ Nats 0 ') (ttt ")
| zero_f: forall n, eval (zero " @ Nats (S n)’) (fff )
| pred_Succ: forall n, eval (preds ' @ (succ ' @ Nats n ")) (Nats n ')
| pred z: eval (preds ' @ Nats 0 ') (Nats 0 ")
| rec_a: forall t g, eval (Rec g) (g @ (Rec (t:=t) g)).

which we then propagate into subterms (cf. Code 9.10) and close with respect to
transitivity and reflexivity:

Code 9.10. (Propagation of Reductions into Subterms):

Reserved Notation "x :> y" (at level 70).

Variable rel : forall (V:IT) t, relation (PCF V t).

Inductive propag (V: IT) : forall t, relation (PCF V t) :=

| relorig : forall t (vv': PCFV t), relvv —> v >V

| relAppl: forallst (M M : PCFV (s ~>t)) N M:>M —>M@N:> M @N
| relApp2: forallst (M: PCFV (s~>t)) NN, N:>N —>M@N:>MQN
| relLam: forall s t (M M":PCF (opts V) t), M :> M" —> Lam M :> Lam M’

| relRec: forall t (M M" : PCF V (t ~> t)), M:> M' —> Rec M :> Rec M
where "x ;> y" := (@propag __ xy).

The data thus defined constitutes a relative monad PCFEM on the functor ATecr
(IDelta TY). We omit the details.

Now we need to define a suitable morphism (resp. family of morphisms) of PCFEM
—modules for any arity (of higher degree). Let o be any such arity, for instance the
arity App. We need to verify two things:

(1) we show that the constructor of PCF which corresponds to « is monotone with
respect to the order on PCFEM. For instance, we show that for any two terms
rs:TY and any V : IDelta TY, the function

funy => App (fst y) (snd y): PCFEM V (r~>s) x PCFEM V r —> PCFEM V s

is monotone.

(2) We show that the monadic substitution defined above distributes over the con-
structor in the sense of Ex. 2.74, i.e. we prove that the constructor is the carrier
of a module morphism.

All of these are very straightforward proofs, resulting in a representation PCFE _rep
of semantic PCF:
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Program Instance PCFE_rep struct :
PCFPO _rep_struct PCFEM PCF.arrow PCF.Bool PCF.Nat := {
app rs:= PCFApprs;
abs rs:= PCFAbs r s;
rect := PCFRec t ;
tttt := PCFconsts ttt ;
ffff := PCFconsts fff;
Succ := PCFconsts succ;
Pred := PCFconsts preds;
CondN := PCFconsts condN;
CondB := PCFconsts condB;
Zero := PCFconsts zero ;
nats m := PCFconsts (Nats m);
bottom t := PCFbottom t }.
Definition PCFE_rep : PCFPO _rep := Build PCFPO _rep PCFE rep_struct.

Note that in the instance declaration PCFE_rep_struct, the Program framework
proves automatically the properties of Code 9.2, 9.3, 9.4 and 9.5.

9.6 Initiality

In this section we define a morphism of representations from PCFE rep to any
representation R : PCFPO _rep. At first we need to define a map between the un-
derlying sorts, that is, a map Sorts PCFE_rep —> Sorts R. In short, each PCF type
goes to its representation in R:

Fixpoint Init_Sorts_map (t : Sorts PCFE_rep) : Sorts R :=
match t with
| PCF.Nat => Nat R
| PCF.Bool => Bool R
| u~>v=> (Init_Sorts map u) ~~> (Init_Sorts_map v)
end.

The function init is the carrier of what will later be proved to be the initial mor-
phism to the representation R. It maps each constructor of PCF recursively to its
counterpart in the representation R:
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Fixpoint init V t (v: PCF V t) :
R (retype (fun t0 => Init_Sorts _map t0) V) (Init_Sorts _map t) :=
match v with
| Vartv=>rweta R (ctype V)
|[lu@v=>app _ _ (initu, init v)
| Lam _ _v=>abs __ _ (riftR
(@der_comm TY (Sorts R) (fun t => Init_Sorts_mapt) V) _ (initv))
| Rec  v=>rec _ (initv)
| Bottom _ => bottom _ _ tt
| y ' => match y in Consts tl return
R (retype (fun t2 => Init_Sorts _map t2) V) (Init_Sorts map t1)
with
| Nats m => nats m _ tt
| succ => Succ _ tt
| condN => CondN _ tt
| condB => CondB _ tt
| zero => Zero _ tt
| ttt => titt  tt
| fff => fHE _ tt
| preds => Pred _ tt
end
end.

We write iy for init V and ¢ for Init_Sorts map. Note that iy : PCF(V) —
g* (R(gV)) really is the image of the initial morphism under the adjunction ¢ of
Def. 2.22. Intuitively, passing from init V= iy to its adjunct ¢ ~!(iy/) is done by
precomposing with pattern matching on the constructor ctype (cf. Rem. 2.25). We
informally denote ¢! (iy) by init V o match.

The map init is compatible with renaming and substitution in PCF and R, respec-
tively, in a sense made precise by the following two lemmas. The first lemma states
that, for any morphism f : V — W in Set’? the following diagram commutes:

PCF(V) PCFL) PCF(W)
init Vl linit w
G RGV) s g RGW).

Lemma init lift (V:IT)t(y: PCFVt)W (f: V ———> W) :

init (y //— f) = rlift R (retype_map f) _ (init y).
The next commutative diagram concerns substitution; for any f : V. — PCF(W),
the diagram obtained by applying ¢ to the diagram given in Disp. (5.5) — i.e. the
diagram corresponding to Disp. (5.6) —, commutes:
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UPCF(f)
PCF(V) PCF(W)
init V Jinit w
g R(V) g*R(W).

g™ (¢ (init W)o(g" f))
In Coq the lemma init_subst proves commutativity of this latter diagram:

Lemma init_subst V t (y : PCF Vt) W (f : IDelta _ V ———> PCFE W):
init (y >>=1f) =
rkleisli (RMonad _struct := R)
(SM_ind (V:= retype (funt => t) V)
(W:= R (retype (funt => _t) W))
(fun t v => match v with ctype t p => init (f t p) end))
_ (inity).

This latter lemma establishes almost the commutative diagram for the family
@ 1(iy) to constitute a (colax) monad morphism, which reads as follows:

§(PCF(V)) 7D) G (PCF(W)) (9.1)
init Vo matchl J{init W o match
R(gV) R(GW).

o (init o match o(gf))

Before we can actually build a monad morphism with carrier map init V o match,
we need to verify that init — and thus its adjunct — is monotone. We do this in 3
steps, corresponding to the 3 steps in which we built up the preorder on the terms
of PCF:

(1) init monotone with respect to the relation eval (cf. Code 9.9):
Lemma init_eval Vt (vv' : PCF V t) :eval v v —> init v <<< init v'.
(2) init monotone with respect to the propagation into subterms of eval;
Lemma init_eval star Vit (yz:PCFVt):eval staryz —> inity <<< init z.
(3) init monotone with respect to reflexive and transitive closure of above relation.
Lemma init_monoct(yz:PCFEct):y <<<z —> inity <<< init z.
We now have all the ingredients to define the initial morphism from PCF to R.
As already indicated by the diagram Disp. (9.1), its carrier is not given by just
the map init, since this map does not have the right type: its domain is given, for
any context V € Set’P by PCF(V) and not, as needed, by §(PCF(V)). We thus

precompose with pattern matching in order to pass to its adjunct: for any context
V', the carrier of the initial morphism is given by
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fun t y => match y with
| ctype p => init p
end
retype  (PCF V) ———> R (retype _ W)

We recall that the constructor ctype is the carrier of the natural transformation
of the same name of Rem. 2.23, and that precomposing with pattern matching
corresponds to specifying maps on a coproduct via its universal property.

Putting the pieces together, we obtain a morphism of representions of semantic
PCF:

Definition initR : PCFPO_rep_Hom PCFE_rep R :=
Build_ PCFPO_rep Hom initR_s.

Uniqueness is proved in the following lemma:
Lemma initR_unique : forall g : PCFE_rep ———> R, g == initR.

The proof consists of two steps: first, one has to show that the translation of sorts
coincide. Since the source of this translation is an inductive type — the initial rep-
resentation of the signature of Ex. 3.4 — this proof is done by induction. Afterwards
the translations of terms are proved to be equal. The proof is done by induction on
terms of PCF. It makes essentially use of the commutative diagrams (cf. Def. 5.11)
which we exemplarily presented for the arities of successor (Code 9.6), application
(Code 9.7) and abstraction (Code 9.8). Finally we can declare an instance of Initial
for the category REP of representations:

Instance PCF _initial : Initial REP := {
Init := PCFE_rep ;
InitMor R := initR R ;
InitMorUnique R := @initR _unique R }.

Checking the axioms used for the proof of initiality (and its dependencies) yields the
use of non-dependent functional extensionality (applied to the translations of sorts)
and uniqueness of identity proofs, which in the Coq standard library is implemented
as a consequence of another — logically equivalent — axiom eq_rect eq:

Print Assumptions PCF _initial.
Axioms:
CatSem.AXIOMS functional _extensionality.functional _extensionality :
forall (A B : Type) (fg: A —> B),
(forall x : A, fx=gx) —>f=g
Eq_rect_eq.eq_rect_eq : forall (U : Type) (p: U) (Q: U —> Type)
(x:Qp)(h:p=p).x=eq rectpQxph

9.7 A Representation of PCF in the Untyped Lambda Calculus

We use the iteration principle explained in Rem. 5.23 in order to specify a transla-
tion from PCF to the untyped lambda calculus which is compatible with reduction
in the source and target. According to the principle, it is sufficient to define a
representation of PCF in the relative monad of the lambda calculus (cf. Exs. 1.2
and 2.85) and to verify that this representation satisfies the inequations of Fig. 7,
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formalized in the Coq code snippets 9.2, 9.3, 9.4 and 9.5. The first task, specifying
a representation of the types of PCF, in the singleton set of types of ULC, is trivial.
We furthermore specify representations of the term arities of PCF, presented in
Code 9.1, by giving an instance of the corresponding type class.

Program Instance PCF_ULC rep_s:
PCFPO _rep_struct (Sorts:=unit) ULCBETAM (fun _  => tt) tt tt := {

apprs:=ulc_apprs;

absrs:=ulc_absrs;

rect :=ulc_rect;

tttt = ulc_ ttt ;

fHf .= ulc_fff ;

nats m:=ulc_ Nm;

Succ := ulc_succ ;

CondB := ulc_condb ;

CondN := ulc_condn ;

bottom t := ulc_bottom t ;

Zero := ulc_ zero ;

Pred := ulc_pred }.

Before taking a closer look at the module morphisms we specify in order to represent
the arities of PCF, we note that in the above instance declaration, we have not given
the proofs corresponding to code snippets 9.2 to 9.5. In the terms of Rem. 5.23,
we have not completed the third task, the verification that the given representation
satisfies the inequations. The Program feature we use during the above instance
declaration is able to detect that the fields called beta _red, rec A, etc., are missing,
and enters into interactive proof mode to allow us to fill in each of the missing fields.

We now take a look at some of the lambda terms representing arities of PCF.
The carrier of the representations ulc_app is the application of lambda calculus, of
course, and similar for ulc _abs. Here the parameters r and s vary over terms of type
unit, the type of sorts underlying this representation. We use an infixed application
and a de Bruijn notation instead of the more abstract notation of nested data types:

Notation "a @ b" := (App a b) (at level 42, left associativity).
Notation "'1'" := (Var None) (at level 33).
Notation "2 := (Var (Some None)) (at level 24).

The truth values T and F are represented by

Eval compute in ULC_ True.
= Abs (Abs 2)

Eval compute in ULC_False.
= Abs (Abs 1)

Natural numbers are given in Church style, the successor function is given by the
term Anfz.f(n f x). The predecessor is represented by the constant

anfr.n (Agh.h(g f))(Au.z)Au.w),

and the test for zero is represented by An.n(Ax.F)T, where F and T are the lambda
terms representing F and T, respectively.
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Eval compute in ULC_Nat 0.

= Abs (Abs 1)
Eval compute in ULC _Nat 2.

= Abs (Abs (2 @ (Abs (Abs (2 @ (Abs (Abs 1) @ 2@ 1))) @ 2 @ 1)))
Eval compute in ULCsucc.

= Abs (Abs (Abs (2 @ (3@ 2 @ 1))))
Eval compute in ULC _pred.

= Abs (Abs (Abs (3 @ Abs (Abs (1 @ (2 @ 4))) @ Abs 2 @ Abs 1)))
Eval compute in ULC zero.

= Abs (1 @ Abs (Abs (Abs 1)) @ Abs (Abs 2))
The conditional is represented by the lambda term Apab.p a b:

Eval compute in ULC _cond.
= Abs (Abs (Abs (3 @ 2 @ 1)))

The constant arity 1 4 is represented by 2:

Eval compute in ULC _omega.
= Abs (1@1) @ Abs (1 @ 1)

The fixed point operator Fix (rec) is represented by the Turing fixed—point combi-
nator, that is, the lambda term

Eval compute in ULC _theta.
= Abs (Abs (1@ (2 @2 @ 1))) @ Abs (Abs (1@ (2@ 2 Q@ 1)))

The reason why we use the Turing operator instead of, say, the combinator Y,

Eval compute in ULC Y.
= Abs (Abs (2 @ (1 @ 1)) @ Abs (2 @ (1 @ 1)))

is that the latter does not have a property that is crucial for us: It is

o(f) ~" f ()
but only
Y(f) & f(Y(f))

via a common reduct. Thus if we would attempt to represent the arity rec by the
fixed—point combinator Y, we would not be able to prove the condition expressed
in Code 9.3. A way to allow for the use of Y as representation of rec would by
to consider symmetric relations on terms, e.g., relative monads into a category of
setoids.

As a final remark, we emphasize that while reduction is given as a relation in our
formalization, and as such is not computable, the obtained translation from PCF to
the untyped lambda calculus is executable in Coq. For instance, we can translate
the PCF term negating boolean terms as follows:

Code 9.11.:

Eval compute in
(PCF_ULC_c ((fun t => False)) tt (ctype _
(Lam (condB * @@ x_bool @@ fff ' @O ttt ')))).
= Abs (Abs (Abs (Abs (3 @2 @ 1))) @ 1 @ Abs (Abs 1) @ Abs (Abs 2))
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Here we use infixed “@@” to denote application of PCF, and x_bool is simply a
notation for a de Bruijn variable of type Bool of the lowest level, i.e. a variable that
is bound by the Lam binder of PCF in above term.

10. CONCLUSIONS AND FURTHER WORK

We summarize the contributions of this thesis and discuss further work.

10.1 Contributions

We have proved an initiality result for simply—typed syntaxr equipped with reduc-
tion rules. The category—theoretic iteration principle obtained through the uni-
versal property of initiality is sufficiently general to allow for the specification of
translations from the term representation to languages typed over different sets of
sorts.

We have characterized binding syntax with a reduction relation — for instance
the lambda calculus with beta reduction — as a relative monad over the functor
A (cf. Ex. 2.85), encoding not only commutativity properties of substitution, but
also its monotonicity in the first—order argument. By a suitable strengthening of
the definition of relative monad in a 2—categorical context, an additional mono-
tonicity property for the higher—order argument of substitution can be assured, cf.
Rem. 2.86. We have also carried the definition of module over a monad and several
constructions of modules over to modules over relative monads.

We then have proved several theorems in the proof assistant Coq: firstly, we
implemented Zsid¢’s initiality theorem [Zsi10, Chap. 6], summed up in this work as
a reference in Sect. 3.2. Secondly, we have proved the initiality theorem of Sect. 4,
yielding a tool, which, when fed with a 2-signature (5, A), provides the syntax
associated to S equipped with the reduction relation generated by the inequations
of A. Thirdly, we have proved an instance of our main theorem, Thm. 5.21 of
Sect. 5, for the particular 2—signature of the programming language PCF equipped
with reduction rules as in Fig. 7. The representation of the signature of PCF in the
monad of the untyped lambda calculus with beta reduction results in an executable
translation from PCF to ULC which is certified to be compatible with substitution
and reduction in the source and target languages.

10.2  Further Work

In the future, we hope to prove and implement initiality theorems for richer type
systems. In particular, dependent types and polymorphism, two important steps
towards certified programs and code reusability, respectively, should be accounted
for.

Furthermore, the modelling of semantics should be improved to allow reasoning
about important properties such as termination.

As mentioned before, the implementation of initiality results in a proof assistant
may serve as a framework for research about programming languages and logics.
For this reason we envisage the implementation in a proof assistant of Thm. 5.21
in its full generality.

We present these points in detail:

Fine—grained modelling of reduction. For a given 2-signature (a signature to-
gether with a set of inequations), models of this 2-signature so far were basically
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functors which associate, to any set “of variables”, a preordered set — intuitively

a model of “terms” over the set of variables''. The preorder < on such a model

corresponds to the reduction relation on the term model, i.e. the “term” ¢ reduces

to ¢’ if and only if ¢t <¢'.

The modelling of reductions via preorders may be considered too coarse in several
aspects:

—different reductions might lead from one term to another. However, the use of
preorders to model reduction does not allow to distinguish two reductions with
the same source and target.

—The hard—coded reflexivity rule makes reasoning about normalization — in par-
ticular termination — difficult.

Instead of considering preordered sets (indexed by sets of free variables) as models
of a 2-signature, it would thus be interesting to consider a structure which allows
for more fine—grained treatment of reduction, such as graphs or categories. In
other words, we might build models of 2—signatures from relative monads into the
category of graphs or (small) categories. Using this new definition of model, one
might then envisage to prove an initiality theorem analogous to the one already
proven, and to use the additional structure obtained by switching to graphs or
categories to reason about the aforementioned properties.

Inequations, Syntactically. Fiore and Hur [FH10] develop a syntactic theory of
equations over a higher—order signature, allowing for proofs of soundness and com-
pleteness with respect to the models of the signature and the equations. Similar
techniques should allow for a syntactic presentation of our inequations. Apart
from the obvious goal of soundness and completeness, such a syntactic presentation
would also facilitate the specification of reductions in the computer implementation
in Coq: in particular, it would make it possible to specify reductions without any
knowledge about category—theoretic concepts.

A minimal goal would be to have a data type — dependent on a 1-signature —
which allows to specify the usual half-equations, mainly obtained from substitution
and from composition of arities, e.g., app o (abs x id). To a term of this data type,
on could associate a family of morphisms of modules which constitutes the carrier
of a half-equation: the algebraic properties (being a morphism of modules, which
corresponds to the compatibility of substitution with meta—substitution in [FH10],
could be proved once and for all by induction.

More sophisticated type systems. New programming languages tend to be equip-
ped with more and more sophisticated type systems: dependent types allow to
ensure properties of function output and thus secure plugging together of functions.
Polymorphism allows for the reuse of code in various situations. An algebraic
characterization of such sophisticated type systems with variable binding via a
universal property is still missing. We hope to extend initiality results to encompass
these type systems.

A wider class of arities. The present initiality theorems encompass arities, i.e.
term constructors, of quite simple nature: the only operations considered are prod-

HWe ignore the typed case for the moment, which is analogous.
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uct — for constructors with multiple arguments — and context extension, for mod-
elling variable binding.

It would be desirable to consider more general term formers. Hirschowitz and
Maggesi [HM12] have introduced a notion of strengthened arity which allows, for
instance, to treat a term former of explicit flattening p : T'o T — T. Ultimately,
we hope to find a very general simple criterion for arities and signatures for which
an initial model can be provided.

A certified research tool. The obtained results should — as we have already done
for untyped syntax with reductions — be implemented in a theorem prover such as
Coq. In this way, an initiality theorem may be used as a practical tool for easily
experimenting with different languages. Changing a language would be done by
simply changing its specifying signature, whereas all necessary data and properties
such as certified substitution and iteration, but also reductions, would be provided
by the system. For this computer implementation and suitable reduction rules, it
would also be desirable to obtain automatically a reduction function r in addition
to the reduction relation. This reduction function might be validated against the
relation in the sense that one may prove that for any term ¢, one has ¢ < r(¢).

A. SYNTAX AND SEMANTICS OF LAMBDA CALCULUS AND PCF

The following section informally introduces the syntax and semantics of PCF and
ULC, as it might be introduced in some computer science textbook. Our presen-
tation of the lambda calculus is inspired by Barendregt and Barendsen’s course
[BB94], and that of PCF by Hyland and Ong’s paper [HOO00].

A.1 Syntax of Lambda Calculus and PCF
Let V' be a countably infinite set (of variables). The syntax of ULC is given by
A = v|AGQA| A

where v € V varies over variables.

The programming language PCF is a typed language, more precisely a simply—
typed language. It is given by
—a set of sorts,
—a set of terms and
—a typing map associating a sort to any term.

We take the presentation of PCF from Hyland and Ong’s paper on full abstraction
[HOO00]. The sorts of PCF are constructed from two base sorts and a function type
constructor:

Teck == t|o|Tpcr = TpcF -

The terms of PCF are defined in two steps: at first, we define a set of raw terms,
which actually contains more elements than we want. Afterwards, we define a
welltypedness predicate on those raw terms. The terms of PCF then are the well-
typed raw terms. The raw terms of PCF are given by the grammar of Fig. 4.

Note that we use the same infix notation _@ for application in PCF and ULC.
We also write f(z) for f@x when no confusion can arise. The constants c4 of sort
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Az : A.s  abstraction
Fix4(s) fixed point operator

s u= 14 undefined
| ca constant
| TA variable
| s@s application
|
|

Fig. 4. Grammar of PCF

A are the basic constants from logic and arithmetic, i.e. booleans T and F, natural
numbers n, successor and predecessor as well as test for zero, and conditionals.
They are listed in Fig. 5.

noo:ou naturals (for n € N)
T, F : o boolean constants
S : 1= successor
pred : (=1 predecessor
zero? 1 1= o0 test on zero
cond, 0= L= L= conditional for naturals
condo : o= o0=o0= o0 conditional for booleans

Fig. 5. Constants of PCF

Instead of all raw terms from the definition of Fig. 4 we only consider well-typed
terms, that is, those raw terms that are typable according to the typing judgements
of Fig. 6.

ca: A la: A
M:A= A M:AQ M:A1=>A2 N:A1
FiXA(M):A )\x:Al.M:Al :>A2 M@N:A2

Fig. 6. Typing rules of PCF

A.2 Semantics of Lambda Calculus and PCF

Functional programming languages such as PCF and ULC allow for computation by
reduction, as explained in Sect. 1.2.6. The prime example of reduction rule is the
beta rule of ULC,

(Ae.M)N ~»3 M|z := N] , (A1)

where M|z := N] denotes the term M where free occurrences of the variable x have
been replaced by N in a capture—avoiding manner.

The above rule may be considered to “generate” beta reduction in the sense that
we also consider

(1) reductions in subterms such as in Az.(Ay.M)N and
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Az : AM(N) ~ M[z := N]
Fix(g) ~ g(Fix(g))
S(n) ~»n+1
pred(0) ~ 0
pred(S(n)) ~n
zero?(0) ~ T
zero?(S(n)) ~ F
cond, (T)(M)(N) ~ M (o € {o,t})
cond, (F)(M)(N) ~ N (o € {o,t})

Fig. 7. Reduction rules of PCF

(2) chains of reductions, that is, reductions consisting of multiple steps.

Thus, to be more precise, what is usually called “beta reduction”; is in fact the
closure of the relation specified by the rule given in Disp. (A.1) under propagation
into subterms as well as transitivity and reflexivity, denoted by — 3 in Barendregt
and Barendsen’s course [BB94]. In general we associate three different relations to
any set of reduction rules, see Sect. 1.2.6.

Reduction in PCF is given by a beta rule similar to Disp. (A.1) and several
additional reduction rules concerning the fixed point operator and the logical and
arithmetic constants. We list them in Fig. 7 using a small-step semantics as given
in [HOO0] or in Pitts’ lecture notes on denotational semantics [Pit99]. Analogously
to the lambda calculus with beta reduction, we denote by “—»pcg” the reduction
relation obtained as closure under propagation into subterms as well as reflexivity
and transitivity.
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