
Proof Auditing Formalised Mathematics

Mark Adams

Proof Technologies Ltd, UK, and Radboud University, Nijmegen, The Netherlands

The first three formalisations of major mathematical proofs, all in the last decade, have heralded

a new era in formalised mathematics, establishing that informal proofs at the limits of what can
be understood by humans can be checked by machine. However, formalisation itself can be subject

to error, and yet there is currently no accepted process of checking, or even much concern that

such checks have not been performed. In this paper, we explain why formalisation proofs should
be checked, and propose rigorous and independent proof auditing. We discuss the issues involved

in performing an audit, and propose an effective auditing process. We use the Flyspeck project,

one of the major formalisations, to illustrate our point, and subject it to a partial audit.

1. INTRODUCTION

In 2005, Georges Gonthier announced that he had successfully completed his project
to formally prove the Four-Colour Theorem using a theorem prover [4]. This was a
ground-breaking moment in the history of mathematics formalisation, representing
the first time a major mathematical proof had been mechanically checked. Within
a decade, two more major formalisation projects would be complete, first the Feit-
Thompson Lemma,1 again by Gonthier [5], and then the Kepler Conjecture, by
Tom Hales [11].

The original, informal proofs of these theorems are of giant proportion, each
running to dozens of pages of mathematical text and, in the case of the Four-Colour
Theorem and the Kepler Conjecture, at least a few thousand lines of computer
source code. Their formalisations were also major projects, each involving several
man years of expert effort and resulting in several tens of thousands of lines of proof
script (see Table I). These projects have significantly increased confidence in the
original mathematical results.

The informal proofs are each considered important mathematical results in their
own right. The Four-Colour Theorem was conjectured in the 19th Century, had
a false proof that escaped notice for 11 years, and its eventual first proof in 1976
sparked much philosophical debate [20] for its use of computers, although the con-
troversy died down a little when a shorter version, based on the original and still
using computers, was found in 1996. The Feit-Thompson Lemma is a crucial lemma
in the classification of finite simple groups, which underpins much of group theory,
and its proof from 1962 relies on a large amount of supporting theory. And a so-
lution to the Kepler Conjecture had eluded mathematicians for almost 400 years
until its proof in 1998, which, due to its overwhelming complexity, was in the un-
usual situation of its referees finding no error but holding back from giving their
full endorsement. By adding to the confidence in these proofs, the formalisations
have themselves become important mathematical artefacts.

1Also known as the Odd Order Theorem.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016 Pages 3–32.



4 · Mark Adams

Theorem Informal Proof Formal Proof

Year Text Program Year Script Theorem Prover
(pages) (lines) (lines)

Four-Colour 1996 43 2,500 2005 50,000 Coq

Feit-Thompson 1962 250 - 2012 130,000 Coq

Kepler 1998 300 40,000 2014 500,000 HOL Light,
Isabelle/HOL

Table I. The three formalisations and the informal proofs they are based upon. Program and

script lines refer to the number of non-comment, non-blank lines.

However, despite the importance of these formalisations, and despite their com-
plexity and thus scope for error, they have so far undergone little, if any, inde-
pendent scrutiny. Certainly their proof scripts are freely available for download
(at [31], [32] and [33]) for inquisitive users who wish to replay them through a
theorem prover, but watching hundreds of screenfuls of output whizz past a com-
puter screen hardly constitutes a thorough check that a theorem has been formally
proved. There are a multitude of things that can go wrong in a formalisation, rang-
ing from simply formalising the wrong theorem to unknowingly exploiting bugs in
the theorem prover, and it is a valid question to ask whether a given formalisation
project has indeed established its claimed result, rather than simply trust that this
is the case.

In this paper, we propose rigorous independent assessment of formalisation proofs
by an expert, that is as objective as possible and suitably sceptical, not assuming
anything about the reputation of the team carrying out the formalisation, and
taking into account the weaknesses of the theorem prover(s) being used. We call
this activity proof auditing. We illustrate the issues involved by looking in some
detail at the Flyspeck project, that formalises the Kepler Conjecture proof.

In Section 2, we give some background about theorem provers and the Flyspeck
project. In Section 3, we classify the reasons why a sceptic might doubt the claimed
results of a formalisation project, and cover some concerns with specific theorem
provers. In Section 4, we discuss the issues involved in proof auditing, suggest an
efficient process for performing an audit and look at potential tool support. In
Section 5, we look at how Flyspeck could be audited, and carry out a partial audit
using our proposed process. In Section 6, we discuss related work. In Section 7, we
present our conclusions.

2. BACKGROUND

2.1 Theorem Provers used in Formalisation

A theorem prover2 is a tool for performing mechanised formal proof, rigidly adhering
to the deductive system of a given formal logic. There are dozens of contemporary
theorem provers,3 but only four are prominent in the formalisation of mathematics.
HOL Light [12] and Isabelle/HOL [22] are two of various members of the HOL
family of theorem provers that implement the HOL logic, a classical higher-order
logic with a simple polymorphic type system. Coq [3] implements the Calculus of

2Also known as a proof assistant.
3For two excellent comparisons of the most widely used, see [27] and [28].
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Constructions, an intuitionistic higher-order logic with a dependent type system.
Mizar [25] implements Jaskowski-style natural deduction, a classical first-order logic
with set theory. Unlike the other systems, rather than having its deductive system
“hardwired” as source code, Isabelle/HOL is an instantiation of the Isabelle generic
theorem prover [26], which provides a logical framework within which the primitive
inference rules for HOL are encoded as meta-level axioms. HOL Light, Isabelle
and Coq are all implemented in dialects of the ML programming language, whereas
Mizar is implemented in Pascal.

Implementing a sound theorem prover is notoriously susceptible to error, and
virtually all theorem provers, including the above four, have suffered from logi-
cal unsoundness in a previous version. There are various approaches to avoiding
unsoundness, but the LCF approach [6] has become predominant over the years,
and is used in HOL Light, Isabelle and Coq. This involves using a software ar-
chitecture based around an inference kernel of primitive inference rules and theory
extension commands. The programming language’s type system is used to ensure
that theorems can only be constructed via this kernel, through use of strongly en-
forced abstract datatypes. Thus all routines implemented outside the kernel have
a reassuring soundness “safety net” that they cannot introduce unsoundness to the
system. Another aspect of the LCF approach is that the user can extend the sys-
tem with their own source code defining new proof commands, using the system’s
implementation language, and that these extensions also enjoy the soundness safety
net, although this user extendibility can be restricted by the system’s user interface.

The logical core of a theorem prover is the implementation of its formal logic,
which in LCF-style systems consists of the inference kernel plus code defining the
logic’s initial theory. Regardless of the software architecture used, an error in the
logical core can potentially give rise to unsoundness. We use the term core system
to mean the logical core plus other basic functionality such as a parser and a pretty
printer for expressions in the logic’s formal language. In LCF-style systems, the
core system encompasses the trusted source code.

All four of the above theorem provers are essentially interactive, rather than
automated, systems, where a user guides a proof by issuing a series of proof com-
mands in a proof session (although these commands are often submitted in batch
mode). In such systems, there are typically some proof commands that correspond
to basic inferences of the logic,4 and some that are high-level instructions that get
unravelled by the theorem prover into a series of basic inferences, often hundreds
or even thousands of basic inferences long. A proof script is the series of proof com-
mands used to perform a formal proof. Note that for user-extendible LCF-style
systems, proof scripts may include their own user extensions, and we count all of
this as proof script of a project, even project-specific supporting script files that
only define proof commands rather than actually formally prove anything.

A proof object captures the basic inferences actually used in a formal proof, so
that they could feasibly be imported and replayed in a different system. A proof
checker is a tool for checking that the inference steps performed in a proof object
correctly adhere to a formal logic’s deductive system. A theorem prover could act

4By basic inference we mean either a primitive inference or the composition of a few primitive

inferences.
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` A/B ≤ π/
√

18

where A is the volume occupied by a packing of same-sized
spheres within a containing sphere of volume B, as the radius

of B tends to infinity.

Fig. 1. The informal statement of the Kepler Conjecture.

as a proof checker, but the term is usually used to mean a simple tool dedicated
purely to checking proof objects rather than also being able to interactively or
automatically create formal proofs.

2.2 The Flyspeck Project

2.2.1 History. The Kepler Conjecture (see Figure 1) states that there is no
packing of same-sized spheres in infinite three-dimensional space denser than the
face-centred cubic packing, i.e. the pyramid-shaped arrangement commonly used
by grocers to stack oranges, which has density π/

√
18 (approximately 74.0%). This

was first posited by Johannes Kepler in 1611, and was one of the longest unsolved
problems in mathematics until 1998, when Tom Hales announced his completed
proof and submitted it for publication.

The text of Hales’ original proof [7] was around 300 pages long and used the
results of three bespoke computer programs written in C++, Java and Mathematica
totalling a few tens of thousands of lines of computer source code. The first program
generated and classified an exhaustive list of planar graphs satisfying a condition
that Hales called tameness, the second solved linear inequalities, and the third
solved non-linear inequalities.

However, the proof became controversial after its referees, exhausted after five
years of reviewing its mass of detail, found no error but could only say they were
“99% certain” of its correctness, although they agreed to publish. This was most
unusual because, of course, referees of mathematical journals only normally publish
proofs that they are 100% certain about.

In response to this state of limbo, Hales instigated the Flyspeck project [8] in
2003, to formalise his proof. His motivation was not only to remove any doubt
about his own proof. He had also become an enthusiastic proponent of the QED
agenda [1], seeing formal proof as being “fundamental to the long-term growth of
mathematics”, given the increasing difficulty in refereeing ever longer and more
complicated proofs, and saw Flyspeck as demonstrating its feasibility.

Hales subsequently considerably revised his informal proof [9] since its first pub-
lication. Better techniques were used that simplify the overall proof, explanation
and transparency were improved in the text, and the computer programs were ad-
justed and/or reimplemented. These changes improved the proof itself, but the
main motivation was to make it more amenable to formalisation. Included in the
changes were the use of hypermaps to replace planar graphs, and the use of a differ-
ent geometric partition of space. The changes also included corrections to various
small errors that existed in the original proof (that had no overall effect on the
proof’s correctness) that were found during the process of formalisation. It is al-
most inevitable that formalisation of a large and complex proof roots out various
errors of this kind. The resulting updated main text of the proof is now available
as [10].

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.
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Hales used an international team of mathematicians and computer scientists to
work on Flyspeck. Considerable work on formalising the linear and non-linear in-
equalities results was done in Isabelle/HOL and Coq respectively, but both ended
up being reworked and completed in HOL Light for the final proof. The clas-
sification of tame planar graphs was undertaken in Isabelle/HOL. However, the
bulk of the Flyspeck effort was concerned with formalising the main mathematical
text, which was done in HOL Light. It was broken down into around 700 lemmas,
each with a cash bounty attached that was awarded on completion of its formal
proof. Hales was willing to consider contributions from anyone interested in taking
part, and assigned lemmas upon request. Contributors submitted their completed
formal proofs as HOL Light proof script files, which were rerun by Hales before
being incorporated into the project repository. Around 10 contributors succeeded
in having their work incorporated. By using this system of bounty payments, Hales
was effectively outsourcing the main text formalisation and reducing the risk of
overspending.

The Flyspeck project was completed in 2014. It had consumed around 20 man
years of effort, which was remarkably the same as Hales had predicted in 2003.

2.2.2 Overview of the Formal Proof. The Flyspeck formal proof breaks down
into four parts, corresponding to the four parts of the informal proof: one for the
main text, and one for each of the three computer programs. We provide a brief
overview here. A more extensive overview can be found in [11]. The entire project,
including the informal and formal versions of the proof, is downloadable as an
SVN repository [33]. The project files we refer to in this paper are all from the
text formalization directory of the repository root directory.

The formalisation of the main text builds on HOL Light’s standard theory and
Multivariate libraries. Its 700 lemmas and final theorem are formally proved in
around 280 ML proof scripts (including supporting scripts), with a total of around
450,000 non-comment/blank lines of ML, resulting in about 1.3 billion HOL Light
primitive inference steps.5 Together with the formalisation of the linear inequalities,
it executes in around 5 hours of processing.6 Within the proof scripts, anything was
acceptable for it to be incorporated into the project, so long as no new axioms7 were
added and a pre-arranged ML identifier was assigned the theorem stating the pre-
arranged lemma result. See Figure 2 for a typical fragment of proof script. Various
supporting scripts defined project-specific ML utility functions or bespoke tactics,
such as in Figure 3, and many proof scripts freely interspersed such definitions
amongst actual tactic proofs.

The program for generating tame graphs is formalised using Isabelle/HOL’s pro-
gram extraction capability. This involves expressing the specification of the pro-
gram (i.e. that it produces an exhaustive list of tame graphs) as a statement in HOL,
transforming this over a series of steps into an executable specification, justifying

5This total includes around 8 million steps for the standard theory library, and around 175 million
steps for the Mulitvariate library.
6This time is from Hales [11], using a 2.0 GHz CPU, and includes the time to process the standard

theory and Multivariate libraries.
7In this paper, by axiom we mean theory extension by a general extension command that does
not enforce conservative extension.
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let MUL_POW2 = REAL_ARITH‘ (a*b) pow 2 = a pow 2 * b pow 2 ‘;;

let x = Some(0, ‘x pow 4 = x pow 2‘) ;;

let COMPUTE_SIN_DIVH_POW2 = prove(‘! (v0: real^N) va vb vc.

let betaa = dihV v0 vc va vb in

let a = arcV v0 vc vb in

let b = arcV v0 vc va in

let c = arcV v0 va vb in

let p =

&1 - cos a pow 2 - cos b pow 2 - cos c pow 2 +

&2 * cos a * cos b * cos c in

~collinear {v0, vc, va} /\ ~collinear {v0, vc, vb} ==>

( sin betaa ) pow 2 = p / ((sin a * sin b) pow 4) ‘,

REPEAT STRIP_TAC THEN MP_TAC (SPEC_ALL RLXWSTK ) THEN

REPEAT LET_TAC THEN SIMP_TAC[SIN_POW2_EQ_1_SUB_COS_POW2 ] THEN

REPEAT STRIP_TAC THEN REPLICATE_TAC 2 (FIRST_X_ASSUM MP_TAC) THEN

NHANH (NOT_COLLINEAR_IMP_NOT_SIN0) THEN

EXPAND_TAC "a" THEN EXPAND_TAC "b" THEN PHA THEN

SIMP_TAC[REAL_FIELD‘ ~( a = &0 ) /\ ~ ( b = &0 ) ==>

&1 - ( x / ( a * b )) pow 2 = (( a * b ) pow 2 - x pow 2 ) / (( a * b ) pow 2 )‘;

eval "x"] THEN

ASM_SIMP_TAC[] THEN STRIP_TAC THEN

MATCH_MP_TAC (MESON[]‘ a = b ==> a / x = b / x ‘) THEN

EXPAND_TAC "p" THEN SIMP_TAC[MUL_POW2; SIN_POW2_EQ_1_SUB_COS_POW2] THEN

REAL_ARITH_TAC);;

Fig. 2. An extract from a typical Flyspeck proof script, trigonometry/trig2.hl.

let GMATCH_SIMP_TAC thm gl =

let w = goal_concl gl in

let lift_eq_thm =

MESON[] ‘! a b c. (a ==> ((b:B) = c)) ==> (!P. a /\ P c ==> P b)‘ in

let lift_eq t = GEN_ALL (MATCH_MP lift_eq_thm (SPEC_ALL t)) in

let thm’ = hd (mk_rewrites true thm []) in

let t1 = fst (dest_eq(snd (dest_imp(concl(thm’))))) in

let matcher u t =

let m = term_match [] t1 t in

let _ = subset (frees t) (frees u) or failwith "" in

m in

let w’ = find_term (can (matcher w)) w in

let var1 = mk_var("v",type_of w’) in

let vv = variant (frees w) var1 in

let athm = REWRITE_CONV[ ASSUME (mk_eq (w’,vv))] w in

let bthm = (ISPECL [mk_abs(vv,rhs (concl athm));w’] BETA_THM) in

let betx = SYM(TRANS bthm (BETA_CONV (rhs (concl bthm)))) in

(ONCE_REWRITE_TAC[betx] THEN MATCH_MP_TAC (lift_eq thm’) THEN

BETA_TAC THEN REWRITE_TAC[]) gl;;

Fig. 3. A bespoke Flyspeck tactic from general/hales tactic.hl.
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|- import_tame_classification /\ the_nonlinear_inequalities

==> the_kepler_conjecture

Fig. 4. The final theorem of the main text and linear inequalities.

the transformation by proving its correctness condition using Isabelle/HOL, and
then extracting the executable specification as ML source code. This ML source
code is then executed to produce a text file, referred to as the archive, detailing an
exhaustive list of around 20,000 tame graphs. The archive is used by HOL Light
to generate the linear inequalities.

The program for proving the linear inequalities is not itself formalised. Instead
the results it proves are formalised in HOL Light using a bespoke automatic proof
procedure. This is implemented in a few thousand lines of ML. It executes in the
same HOL Light session as the main text formalisation.

The program for proving the non-linear inequalities, again, is not formalised but
has the results it proves formalised in HOL Light using a bespoke automatic proof
procedure. This is implemented in 25,000 lines of ML. There are around 23,000
non-linear inequalities, which it proves in around 5,000 hours of processing, spread
across approximately 600 parallel HOL Light sessions.

The separate parts of the project are brought together in the final build file,
general/the kepler conjecture.hl. The main text final theorem and the lin-
ear inequalties, which execute in the same HOL Light session, are used to prove
a final theorem for the combination of these two parts, stating the Kepler Conjec-
ture assuming the classification of tame graphs and the non-linear inequalities (see
Figure 4). These two antecedents are not actually discharged, but the non-linear
inequalities are effectively assumed as a single axiom by a routine that rigorously
checks that these have been proved using theory contexts that are not conflicting
with each other or the main HOL Light session. Thus the Kepler Conjecture is
formally proved, albeit assuming results established by around 600 separate HOL
Light sessions and an ML program generated in an Isabelle/HOL session.

3. REASONS TO BE DOUBTFUL

In this section, we discuss concerns that a sceptic might reasonably hold about the
correctness of a claimed formalisation proof. We first classify these concerns, and
then examine concerns related to specific theorem provers.

3.1 Classification of Concerns

We consider here only issues we view as standing a realistic chance of causing
problems in large formalisation projects employing contemporary theorem provers,
not assuming anything about how a project is organised or the people involved.
Note that we further discuss issues in Section 4.1.

3.1.1 Unreproducible Results. The source components of the project might fail
to combine to prove the final formal theorem when processed. This may be because
processing fails, perhaps due to software version control issues, or due to the final
version of the project not being tested to iron out last-minute changes. Or it may
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be because, even though processing completes, the claimed result is nowhere to be
seen. How do we know that the final theorem was actually proved?

3.1.2 The Wrong Formal Statement. The formal statement of the final theorem
might not accurately capture the intended meaning of the statement of the informal
theorem. This may be due to a subtle problem in the way the statement has been
formalised, or similarly in the definition of one of the constants used in the formal
statement, or in the definition of one of the constants used in one of the definitions.
In large projects, there will be a dependency graph of definitions used in the formal
statement, and furthermore these may rely on substantial supporting theory with
its own definitions. A problem in any of these definitions will mean that the project
is not proving what it is claiming to prove. How do we know the right final theorem
was proved?

3.1.3 Theory Inconsistency. Axioms might have been added to the theorem
prover’s theory that render the logic inconsistent, thus invalidating the formalisa-
tion. This may be due to an axiom contradicting an inference rule, a definition or
another axiom. Such inconsistency may be extremely subtle. How do we know that
the theory has not become inconsistent?

3.1.4 Unsound Inference. The theorem prover might be susceptible to making
unsound inferences. This may be because its logical core has been incorrectly imple-
mented. For example, a subtle error in the implementation of variable substitution
could mean that a primitive inference rule is unsound. It may also be because its
software architecture fails to prevent unsound extensions to its logical core. For
example, if the statement of a theorem can be altered after it is proved, or if a
“trojan horse” is installed to replace an original trusted component of the system.
How do we know that the inferences performed in the formal proof were sound?

3.1.5 Misinterpreted Display of Formulae. The final theorem, or its supporting
definitions, might be displayed by the system’s pretty printer in a way that gets
misinterpreted. Some theorem provers are susceptible to ambiguous display of for-
mulae, as in Pollack-inconsistency [29]. For example, irregular or overloaded names
may be displayed in a way that naturally gets interpretted as meaning something
quite different. Also, theorem provers have display settings that can alter the in-
terpretation of what is being displayed, and unconventional settings may have been
used. For example, the precedence and associativity of infix operators may be con-
figurable, which can affect how a formula involving a mix of infix operators gets
interpreted. Also, a theorem prover’s software architecture may allow uncontrolled
adaption to the way formulae are displayed, for example allowing an alternative
pretty printer to be installed. How can we know the true syntax of the results that
get displayed?

3.1.6 Multiple Sessions. The formalisation project may be split across more
than one theorem prover session, or may even be split across more than one theorem
prover (as in Flyspeck). If this is the case, then it is of crucial importance that
the separate parts fit together in a logically coherent way so that the final theorem
is correctly deduced. Theorems proved in one session might have been established
in an incompatible theory context to those proved in another session of the same
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# let t = fst (dest_const (concl TRUTH)) in

let () = t.[0] <- ’F’ in

let FALSE = EQ_MP (REFL ‘F‘) TRUTH in

let () = t.[0] <- ’T’ in

FALSE;;

val it : thm = |- F

Fig. 5. Exploiting OCaml string mutability to prove false in HOL Light without leaving a trace.

theorem prover, for example if a constant is given a different definition in each
session. When bringing together results from different theorem provers, the risks
are greater still. Incompatible theory context is much more likely, and there is the
additional risk of incorrect translation between formal languages or intermediate
notations used to pass results, whether performed by hand or by machine. If the
theorem provers implement different formal logics, then these risks are even greater.
How do we know that a proof spread across multiple sessions is logically equivalent
to the proof done in a single session?

3.2 Theorem Prover Concerns

Here we discuss trustworthiness-related issues with specific theorem provers. It is
perhaps surprising to those outside the field of theorem proving that most theorem
provers, including those prominent in the formalisation of mathematics, have known
trustworthiness issues that are allowed to persist. This is not to say, of course, that
large proofs performed in these systems are necessarily wrong, but it does raise
concerns. We look at the four main formalisation theorem provers, and put the
spotlight on HOL Light in particular because it is the main system used in the
Flyspeck project, the focus of this article.

3.2.1 HOL Light. The HOL Light system8 has an LCF-style architecture, a
core system of just 2,300 lines9 of OCaml code, including a simple and well-studied
logical core of only 900 lines,10 and implements one of the most simple and widely-
understood formal logics, HOL. There has also been a formal verification of the
correct implementation of its deductive system [13]. In these respects, HOL Light
is very highly regarded for its trustworthiness.

However, there are various known trust-related concerns with the system. Firstly,
although it captures all axioms and constant definitions, it does not capture type
definitions in its state. This means that it is not possible to perform a simple
query of the system state to find the definition of a type constant, and instead
examination of the proof script must be used.

Secondly, HOL Light’s software architecture has vulnerabilities. Most signifi-
cantly, its LCF-style kernel is not completely watertight: it is possible to process
proof script that will result in unsound deduction. This is due to HOL Light not
addressing dangerous aspects of its implementation language, a dialect of ML called

8Our observations relate to recent versions of HOL Light, including SVN revisions 197 and 210.
9In this paper, when counting lines of source code, we count non-blank, non-comment lines, and

include supporting bespoke library code but exclude all module interfaces.
10We consider the HOL Light logical core to consist of the build files up to fusion.ml, and the

core system to extend to parser.ml but excluding nets.ml.
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# let v1 = mk_var ("x",‘:num‘) in

let v2 = mk_var ("!y. y",‘:num‘) in

let tm = mk_exists (v1, mk_eq (v2,v1)) in

EXISTS (tm,v2) (REFL v2);;

val it : thm = |- ?x. !y. y = x

Fig. 6. Exploiting irregular variable names in a misleadingly displayed theorem in HOL Light.

OCaml, which is also the language its proof scripts are written in. One vulnerabil-
ity is that HOL Light does not protect against OCaml’s mutable strings, and so the
name of a HOL constant can be altered by the user simply by altering the string
storing the name (see Figure 5). Another is that OCaml has an (undocumented)
function called Obj.magic, which subverts the OCaml type system to return its
argument typecasted according to type context, and so can be used to bypass the
LCF-style inference kernel and create arbitrary theorems.

Another architecture-related vulnerability is that there is nothing to stop the
HOL Light user overwriting the inference kernel with a “trojan horse” one, with a
new theorem datatype that has the same name as the real theorem datatype but
allowing arbitrary theorems to be constructed. Similarly there is nothing to stop the
pretty printer being overwritten with a bogus one, displaying theorems unfaithfully.
These trojan horse problems are essentially an unavoidable consequence of the user-
extendible LCF-style architecture without explicit support from the implementation
language to prevent overwriting of key components.

Thirdly, there are various flaws in the display of HOL concrete syntax that make
it ambiguous and potentially misleading for the user. One such flaw is that type
annotation is never used, so that, for example, a theorem may appear to be uni-
versally true for variables of any type when it has actually only been proved for
variables of a specific type (e.g. a type with just one element). Another flaw is in
the display of irregular or overloaded names, so that, for example, a variable with
a name involving space characters may give the impression that a formula has a
completely different syntactic form from its true form (see Figure 6). Wiedijk [29]
provides further examples.

3.2.2 Isabelle. The trustworthiness credentials of Isabelle11 lie in its LCF-style
architecture, the relative simplicity of its meta logic, its relatively wide user base
and its use of the SML dialect of ML as its implementation language. SML is
more precisely defined than OCaml and does not have dangerous features such as
arbitrary typecasting or mutable strings.

The main concern for Isabelle arises from the richness of its features, which
include: constant overloading, axiomatic type classes, multi-threading, the Isar
language with embedded ML and a jEdit IDE. All these features are supported
in the Isabelle core system, which has a relatively complicated implementation in
perhaps around 18,000 lines of SML code.12 There are very few people that fully
understand the implementation of this core system.

11Our observations relate to Isabelle2014.
12We consider the Isabelle core system to approximately consist of the build files in its Pure

directory up to thm.ML, but find it difficult to determine its or the logical core’s precise extent.
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Kuncar [19] discovered logical inconsistency in Isabelle2013-2’s treatment of con-
stant overloading, which itself incorporated an adaption in attempt to correct a
previous inconsistency in Isabelle2005. This has now been corrected in Isabelle2014,
but a nagging question for the inquisitive mind is what other, unknown unsound-
nesses are lurking in the core system or will get introduced as more features are
added.

In addition, there are known trustworthiness issues with Isabelle’s display of
formulae. These are similar to some of the problems suffered by HOL Light, and
concern issues such as irregular or overloaded names. Wiedijk [29] provides some
examples.

3.2.3 Coq. The Coq system13 has the safety net of an LCF-style inference ker-
nel, and has a relatively wide user base (making the discovery of any existing
soundness flaws more likely). Furthermore, it is able to output proof objects that
can be replayed by a separate program called Coqchk (see Section 4.5.6) to check
that the inferences performed are correct.

Coq’s logical core implements a logic that is considerably more complex than
HOL, and as part of this performs various automated tasks, including reflective
proof, normalisation of formulae, establishing termination for recursive function
definitions and checking correct universe chain ordering. Its core system is imple-
mented in around 45,000 lines of OCaml and 1,600 lines of C code, including a
logical core of around 11,500 lines of OCaml and 1,600 lines of C.14 The chief con-
cern for Coq is that its relatively complicated logical core, which is fully understood
by very few people, may have unknown soundness flaws lurking.

Logical inconsistencies have been uncovered in Coq 8.4 in recent years, including
in its treatment of types with more than 255 constructors [34], termination analy-
sis [35], De Bruijn indices used in the representation of terms [36] and coinductive
fixed points [37]. These soundness flaws don’t always make it to public releases,
and are usually addressed within a few weeks, but the frequency of their discovery
is unnerving for such a mature system.

Coq is implemented in OCaml, and there is nothing to prevent user-programmed
LCF-style extensions from exploiting mutable strings and arbitrary typecasting
(see Section 3.2.1), although in normal usage proof scripts are written in Coq’s
dedicated language Ltac, rather than ML, and cannot exploit these vulnerabilities
other than by calling user-programmed commands that do. Coq’s display of formu-
lae also suffers from ambiguity in various scenarios, and again Wiedijk [29] provides
examples.

3.2.4 Mizar. Unlike the other three main formalisation systems, the source code
of Mizar is relatively closed, only being available to members of the Association of
Mizar Users. This opaqueness makes it more difficult for outsiders to understand
the implementation of Mizar and discover new problems, making it more likely that
undiscovered problems exist. A few unsoundnesses have been uncovered over the

13Our observations relate to Coq 8.4.
14We consider the Coq logical core to consist of the files from the kernel build directory plus
those files it uses from the lib directory, and the core system to approximately consist of the files

from the directories lib, kernel, library, interp, parsing and pretyping.
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years, including one in Mizar 6.3 in 2003 [38]. Also, the display of formulae suffers
from similar problems to the other systems, as shown by Wiedijk [29].

3.3 Puzzle

Now it is time for us to come clean. We have doctored the example code fragment
in Figure 2 to exploit one of the HOL Light trustworthiness issues mentioned in
Section 3.2.1. The statement of theorem COMPUTE SIN DIVH POW2 has been changed
to something that is not true, but has been proved in HOL Light using the proof
script we show. This is potentially catastrophic for the project, since this false
theorem could be used to obtain an invalid formal proof of the final theorem. We
challenge readers familiar with HOL Light to solve the puzzle of how we managed
to prove the false statement. Our hint is that it is sufficient to consider only the
code fragment shown and the effect of processing the (undoctored) project build
initialisation file, strictbuild.hl. We supply the solution in Section 5.3.

4. PROOF AUDITING

We propose the activity of proof auditing to independently assess a formalisation
and convincingly address the sceptic’s concerns elaborated in Section 3. An audit
should aim to establish a correctness case for the proof, in much the same way
as a safety case is established for the certification of safety-critical equipment in
engineering. This would be a robust argument that a complete and correct formal
proof of the original informal theorem had been performed, backed up with strong
evidence showing that the risks had been sufficiently mitigated. The correctness
case could be suggested by the formalisation team, or created by the auditor.

In the rest of this section, we discuss the various issues involved in proof auditing,
suggest an effective process for this activity and consider potential tool support.

4.1 Philosophical Issues

We first discuss some philosophical points about proof auditing.

4.1.1 Small Errors. Note that the ultimate question is whether a formal proof
has been performed, not whether the formalisation team’s formal proof is correct in
every last detail. It is sufficient if the auditor can establish their own formal proof
by filling in the gaps and correcting small mistakes in the original. In the same way
that the original formal proof may involve various small corrections to the original
informal proof, the auditor should be aiming at establishing a robust correctness
case, if this is within easy reach, rather than rejecting the formalisation for a small
problem that can be easily fixed.

4.1.2 Simplicity. The auditor should aim to make the correctness case as simple
as possible, relying on as few assumptions as possible. Straightforward arguments
are more convincing than complicated ones. If it is possible, it is better to avoid
reliance on a flawed or untrusted software tool altogether, for example, than to
produce complex arguments that attempt to justify why it has been used in a safe
way.

4.1.3 Innocent Error vs Malicious Intent. The auditor should not assume the
competence or good intentions of the project team. Teams are composed of human
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beings who make mistakes, and who are not always motivated purely by the desire
to act in a conscientious and truthful manner. If an unscrupulous team member
knew about a back door to creating theorems, perhaps they would be tempted to
subtly exploit this to boost their recognition or pay. Or perhaps the team manager
might be tempted to exploit a flaw in order to get the project completed on time
or on budget. The risk is greater still if parts of the project are outsourced, as in
Flyspeck, which is a trend that is likely to grow in the future. In their review, the
auditor should pessimistically assume malicious intent, rather than use arguments
about the improbability of innocent error.

4.1.4 The Dangers of LCF-Style Extensions. It should be noted that use of a
user-extendible LCF-style architecture, although generally greatly aiding the trust-
worthiness of formal proofs, carries with it its own risks when used with systems that
suffer from trustworthiness flaws, however minor or obscure those flaws might seem.
Given that users are allowed to program their own extensions, a poorly-programmed
automatic proof routine might unwittingly make an obscure flaw much more likely
to occur than in interactive proof. For example, the routine might accidentally gen-
erate variable names that have irregular lexical syntax or that are overloaded with
constant names, and such variable names could make it through to the statement
of the final theorem or of one of its dependent definitions and result in confusingly
displayed formulae. Or, for example, the routine may use clumsy string manipu-
lation and unknowingly exploit the string mutability problem in HOL Light (see
Section 3.2.1). Arguments based on the improbability of innocent error exploiting
known flaws are weakened further in the context of thousands of lines of LCF-style
user extensions of unknown quality.

4.1.5 Inclusive vs Exclusive Auditing. The auditor should not be placing unnec-
essary restrictions on how the formalisation project is done in order to make their
job easier. A theorem prover that happens to suffer from some trustworthiness flaws
may be the best system to use as the project theorem prover, and just because it
has flaws does not mean these will necessarily get exploited. Likewise, techniques
such as LCF-style user extension can be extremely effective (it is no coincidence
that all three major formalisation projects made heavy use of the technique), and
the associated dangers might not materialise in practice. Formalisation of large
proofs is an extremely challenging process, and the project team should be allowed
to use the tools and techniques that they feel appropriate, so long as auditing is
feasible.

4.1.6 Lesser Concerns. Of lesser concern than the issues discussed in Section 3
are various small risks that we view as extremely unlikely to cause a problem in
practice, even on large projects. However, if these concerns can be addressed by an
auditing process for little cost, then all the better.

Such lesser concerns include the risk of error in the supporting software and hard-
ware stack15 affecting the correctness of the formal proof. For example, an error in
the programming language’s type system might compromise the architecture of an

15The supporting software/hardware stack is the software and hardware relied upon by the project
theorem prover, such as the theorem prover’s programming language, the computer’s operating

system and the computer’s memory chips and processor.
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LCF-style theorem prover, or the operating system may overwrite the area of RAM
used by the theorem prover in a way that doesn’t crash the system and happens to
allow an unsound deduction to take place. Component failure in hardware may also
happen in a way that looks like the hardware is still functioning normally but that
appears to allow unsound deduction, for example in a pixel on the display screen,
or in the RAM or CPU chips. Malicious external influence may conceivably disrupt
computation and appear to allow unsoundness, for example due to a computer virus
infecting the software stack, or the display signal being intercepted and adjusted.

4.1.7 Mitigation through Diversity. It is valid for the auditor to use arguments
about diversity to help mitigate concerns. For example, the lesser concerns in Sec-
tion 4.1.6 could be effectively mitigated by running the formal proof using different
variants of the theorem prover’s implementation language, different operating sys-
tems and different machines. However, the auditor must be careful not to rely too
heavily on such arguments when true diversity does not exist. For example, per-
forming the formal proof on two different theorem provers helps mitigate the risk of
unknown flaws in the theorem prover, but the benefit is somewhat reduced if both
were implemented by the same team or if both shared some of the same critical
source code.

4.2 Practical Issues

We now discuss various practical issues that should be taken into consideration
when designing a proof auditing process.

4.2.1 Efficiency. It is highly desirable that the proof auditing process is fairly
quick and easy to carry out. A process that requires years of computing time or
months of man power when applied to major projects is much less likely to ever get
used on such projects, and yet these are the very projects that most need auditing.

4.2.2 Concrete Syntax vs Primitive Syntax. For theorem provers used in non-
trivial applications, the ability of the pretty printer to display formal language at a
concrete syntax level is a practical necessity. Expressions would otherwise become
almost unreadable due to excessive type annotation, bracketing and lack of everyday
shorthand (consider the small example in Figure 7, and how much worse it could
get for expressions spanning many lines). Similarly, it is highly desirable for the
auditor to be able to view formulae displayed in concrete syntax, so that they can
concentrate on whether the formulae are correct rather than being distracted by
interpreting their structure. The audit would be greatly slowed down and carry
its own risk of error if primitive syntax or, worse still, syntax destructor functions
were required to view formulae, whether this was because the system being used
did not support concrete syntax or because its display of concrete syntax could not
be trusted.

4.2.3 Session Final State vs Proof Script. As can be seen from the formalisa-
tions in Table I (see Section 1), a project’s proof scripts can run into hundreds
of thousands of lines. Any problems with the formalisation, if they exist in the
project, will ultimately be evident by considering just these scripts together with
the project theorem prover. However, establishing the absence of problems by trawl-
ing through every line of every proof script would be tortuously slow and tedious
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‘!(x:num) y. x < y ==> x <= y‘

‘((!):(num->bool)->bool)

(\(x:num).

(((!):(num->bool)->bool)

(\(y:num). (((==>):bool->bool->bool)

((<) (x:num) (y:num))

((<=) (x:num) (y:num))))))‘

Fig. 7. Concrete and primitive syntax for the same expression in HOL Light.

for large projects. This is especially the case if user-extendible LCF-style systems
are being used, where free-form ML can obscure what a proof script is really doing.

It is clearly preferable if the absence of problems can be established by examining
the theorem prover’s final state instead. For example, to determine whether any
axioms have been added, it is clearly better to print a complete list of axioms
from the final state, rather than look for lines in the proof scripts that directly
or indirectly result in an axiom being added. Another advantage of examining the
final state is that the auditor avoids having to trust the system’s parser to faithfully
read in syntax from the proof scripts, and instead only relies on its pretty printer
to faithfully and unambiguously display syntax.

However, obviously just querying the final state does not work for information
that is not captured in the state, or, to be precise, not reliably captured in the
state. Neither does it work if the theorem prover has trustworthiness flaws. For
example, the code for exploiting string mutability in HOL Light (see Figure 5
from Section 3.2.1) could be embedded anywhere in the proof scripts, or worse still
obfuscated and spread over several proof scripts, and querying the HOL Light final
state would not shed any light on this.

4.2.4 Proof Porting. It is not necessary to limit the audit to using the project
theorem prover, or to using it in the same way as it was used in the project. An
alternative approach is to use proof porting to recreate the formal proof in a separate
target session of a target system. This involves using an export-adapted version
of the project theorem prover to record the formal proof steps performed as the
proof scripts are processed and export these to disk as proof object files, and then
using an import-adapted target system to read in these proof objects and replay
the proof steps in the target session. The target system can be the same system as
the project theorem prover, or can be a different theorem prover, or a proof checker.
If it is a different system, it would normally be dedicated to the same formal logic
as the project theorem prover, since porting to a different logic involves significant
extra challenges to accurately capture the original proof without an explosion in
proof object size.

There are various reasons why proof porting can be useful for proof auditing.
Firstly, any flaws or shortcomings in the project theorem prover, including any
unknown flaws, can be avoided by porting to a system that is trusted not to suffer
from such problems. So, for example, proofs performed in a system that does not
capture all required information in its state can be ported to a system that does,
to enable the audit to be performed by examining final state rather than the proof
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scripts (see Section 4.2.3). And, for example, concerns about a system’s logical
soundness can be addressed by porting the proof to a system that is trusted to be
sound.

Secondly, porting to a different system gives diversity that helps mitigate un-
known errors in the project theorem prover, as well as the “lesser concerns” (see
Section 4.1.6), even if the target system itself is not trusted.

Thirdly, the dangers of LCF-style user extensions for theorem provers with flaws
(see Section 4.1.4) can be avoided if proof objects, rather than proof scripts, are
used to recreate the formal proof without extending the theorem prover with user
source code. This is true even if the project theorem prover is used as the target
system.

Fourthly, the formal proof may not have been originally proved in one session, or
even in the same theorem prover, but with proof porting the various sessions can
be consolidated into a single coherent target session.

Note that it is of significant advantage if the target system can display information
about what it has replayed, such as the final theorem and any extensions made to
the theory. This removes the need to trust the proof exporting mechanism, which
may otherwise be subject to the risk of exporting a correct proof but of the wrong
theorem. It is of little use for the auditor to be informed that the exported proof
object successfully replayed on the target system, if they do not know what was
replayed or in what context.

4.3 Suggested Proof Auditing Process

We now outline our suggested process for proof auditing. We presuppose the ex-
istence of a proof porting capability that works for massive formal proofs, and a
highly trustworthy target system that can be relied upon to perform sound deduc-
tion, to faithfully and unambiguously display concrete syntax and to capture all
relevant information in state. We describe an ideal capability in more detail in
Section 4.4.

The process breaks down into three main stages as follows:

(1) Replay the original project using the project theorem prover(s):
(a) Run each of the sessions of the project’s formal proof;
(b) Identify the final theorem.

(2) Port the project to a trusted target system:
(a) Use proof porting software to rerun each session and export proof objects;
(b) Consolidate the proof objects into a single session of a trusted target.

(3) Examine the final state of the target system:
(a) Examine the display settings;
(b) Examine the list of axioms;
(c) Review the statement of the final theorem, and its dependency graph of

supporting definitions.

By porting the proof to a trusted target system, the concerns enumerated in
Section 3.1 can all be addressed. Replaying the proof objects in the target system
establishes that the final theorem is formally proved (see 3.1.1). The target system
can be trusted to reliably hold in its state complete and queriable lists of axioms,
definitions and display settings, allowing the formal statement of the final theorem
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(3.1.2) and the axioms (3.1.3) to be reviewed without concern that information is
missing or wrongly recorded, and the system’s display of formulae in these reviews
can be trusted so that it is not liable to being misinterpreted (3.1.5). The target
system can also be relied upon not to perform unsound inference in deducing the
final theorem (3.1.4). Finally, if the original formal proof is proved over numerous
sessions, these can all be imported into a single session in the target system to check
the coherence of the separate sessions (3.1.6).

As well as addressing the concerns, the process is also relatively quick and easy to
perform. Porting to a trusted target system means that it is only necessary to ex-
amine the final state of the target system, rather than to examine the project proof
scripts. This avoids the painful process of wading through tens (or even hundreds)
of thousands of lines of proof script, trying to work out whether a subtle problem
exists that invalidates the entire project. Examining proof scripts would be par-
ticularly problematic for projects split over multiple sessions, where the coherence
of the sessions and their interfacing would need to be established. Given a proof
that replays in the trusted target system, the auditor need not be concerned with
the contents of the proof scripts, the correctness of the project theorem prover, the
correctness of the proof porting capability or the contents of the proof object files.
All that matters is the resulting target session state.

To gain maximum assurance from an audit, the formal proof should be ported to
more than one target system, ideally using different software and hardware stacks.
In this case, Stage 3 would need to be repeated for each target. Arguments about
diversity could then be employed in the correctness case. This would be especially
useful if a fully-trusted target system could not be used in the audit, although the
targets would have to be very carefully considered to not exhibit the same risks
(such as the same propensity to display ambiguous concrete syntax for a given
formula). The correctness case could then argue that the diversity of using more
than one target could be considered as effectively equivalent to using a trusted
target. Note that it is proof porting that allows the auditor the luxury of using
diverse theorem provers.

4.4 Ideal Proof Auditing Capability

Here we describe desirable qualities for tools that could support our suggested proof
auditing process, to enable them to be trusted and applied in practice.

4.4.1 Ideal Proof Porting Capability. There are various desirable qualities for
the capability for exporting and importing proof objects.

Reliability. It should port proofs reliably and faithfully, so that the formal proof
recreated in the target system accurately corresponds to the formal proof performed
in the original system. Otherwise the proof auditor may be wasting their time
reviewing the wrong formal proof, or checking that they are reviewing the right
formal proof.

Modularity. It should be capable of exporting proof objects in a modular fashion,
so that exporting can be split up into separate sessions and yet produce coherent
proof objects that can be imported into a single session. Projects that are originally
proved in many separate sessions (such as Flyspeck), cannot otherwise be ported.
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Even if a project is proved in a single session, modular exporting can be used to
avoid the risk that the exporter finds the session too big to export in a single session.

Ease of Use. It should not require special preparation to export a proof. Having
to adjust proof scripts to work with the exporter, or adjust the exporter to work
with the proof scripts, can significantly add to the effort and expertise required to
audit a proof.

Common Format. Ideally, it should export proof objects in some common format
that can be imported by various systems. This enables the proof to be diversely
checked on more than one system.

Scalability. It should be able to handle recording, exporting and importing mas-
sive formal proofs without excessive demands on RAM usage, execution time or
storage size. Large formalisation projects can involve hundreds of millions of prim-
itive inferences. The more reliable and efficient the capability, the less effort the
auditor needs to spend making the proof porting work.

4.4.2 Ideal Target System. There are various desirable qualities for the target
system into which the proof objects are imported to check the proof.

Trustworthiness. It should be easy to trust for its logical soundness. It should
have simple and well-documented implementation of its trusted core. If it is a theo-
rem prover, it should have an LCF-style architecture with a small inference kernel,
and this kernel should be watertight, so it cannot be circumvented or subverted.
Ideally the system will be formally verified to correctly implement its formal logic.

Feedback. It should capable of providing to the user all information about the
checked proof that is relevant for proof auditing, i.e. the statement of the final
theorem, whether the final theorem was successfully checked, the state of the theory
(its axioms, declarations and definitions), and the display settings.

Display of Formulae. It should reliably, unambiguously and faithfully display
formulae in easy-to-read concrete syntax at a suitably high level. Ideally its pretty
printer will be formally verified to be unambiguous and faithful.

Scalability. It should be capable of replaying massive formal proofs without ex-
cessive demands on RAM usage or execution time. Execution time should ideally
be significantly less than the time to build the project on the source system, so that
it is feasible to replay projects that have been split up over many sessions.

Open Source. Finally, the system should be open source, widely used and widely
scrutinised, to minimise the risk of there being unknown flaws.

4.5 Potential Proof Auditing Tools

Here we consider various existing tools that could potentially support our suggested
proof auditing process. These are considered with respect to the ideal tools we
describe in Section 4.4.

4.5.1 OpenTheory. The OpenTheory project [14] is for enabling portability of
proofs between HOL theorem provers, via the export of proof objects. It is based
around the basic theory commands and inference rules of HOL Light. Exporters
and importers for the OpenTheory proof object format have been implemented for
HOL Light, HOL4 and ProofPower, and an importer also exists for Isabelle/HOL.
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Projects can be exported in a modular fashion as collections of proof objects. HOL
Light proof scripts need annotation before they can be recorded and exported, and
so far this has been done for only about a third of the HOL Light standard theory
library, which records and exports with an execution time overhead of about 140%,
into a 5 MB .tgz file.

4.5.2 Common HOL. The Common HOL project [40] is for enabling portability
of source code and proofs between HOL theorem provers. It is based around a
platform [2] of basic theory, inference rules and utilities that is more-or-less common
to all HOL systems. For source code portability, it provides an API of around
450 basic components, including, amongst other things, theory commands, basic
inference rules and theorems.

For proof portability, Common HOL provides a proof object file format based
on the API inference rules. An exporter for this format has been written for HOL
Light, and importers for HOL Light and HOL Zero. Projects can be exported in
a modular fashion as collections of proof objects, called proof modules. A proof
module for the HOL Light standard theory library is recorded and exported with
an execution time overhead of about 55%, into a 2.6 MB .tgz file, which can be
read in and replayed in an import-adapted HOL Light core system in about 20%
of the time it would normally take to build the library. The system is able to
handle very large proofs, such as the main text part of the Flyspeck project, which
it records and exports with an execution time overhead of about 100% into about
160 MB of .tgz files.16 The import-adapted versions of HOL Zero and HOL Light
are open source, but the export-adapted HOL Light is proprietary.

4.5.3 ProofCert. The ProofCert project [21] aims to enable checking of proofs
from different proof systems and formal logics, via the export of proof objects.
It involves designing a suitably generic proof object format and building a proof
checker for this format. This project has the ambitious target of being able to
use the same proof checker to check proofs from a diverse array of proof systems,
including all kinds of theorem provers, dedicated SAT solvers and model checkers.
The project is currently underway, and it is not yet clear whether it will deliver
tools capable of checking large mathematics formalisation projects.

4.5.4 Kaliszyk and Krauss. Kaliszyk and Krauss [15] implemented a capability
for porting proof objects from HOL Light to Isabelle/HOL. This exports a single
monolithic proof object file for an entire session. The HOL Light standard theory
library can be imported into Isabelle/HOL in about 40% of the time it would
normally take to build in HOL Light. The system is also able to handle very
large proofs, such as the main text part of an incomplete version of the Flyspeck
project, with a recording and export execution time overhead of about 275% into
about 180 MB of .gz file,17 although the exporter used a bespoke adaption for
Flyspeck to reduce the size of the exported proof objects and the replay time in
Isabelle/HOL.

16Statistics are for HOL Light SVN release 197 and Flyspeck SVN release 3692, November 2014.
17Statistics are for HOL Light and Flyspeck SVN versions from July 2012.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.



22 · Mark Adams

4.5.5 Other Proof Porting Tools. Wong [30] implemented proof exporters for
the HOL88 and hol90 theorem provers, and a proof checking tool for the exported
proof objects. The proof checker is not a theorem prover, and just reads in a proof
object file and checks that each step’s output conforms to its inputs, outputting
an overall “yes” or “no” for each proof object. Although able to work on proofs
of several thousand steps, this was about the limit of its capability, and it was
not maintained. The proof object files occupied considerably more disk space than
corresponding files exported from the other proof porting capabilities we describe.

Obua and Skalberg [23] implemented a capability for porting proof objects from
HOL4 and HOL Light to Isabelle/HOL. This exported proof objects as separate
files but only for the entire session. The HOL4 and HOL Light standard theory
libraries could be exported in 13 MB and 21 MB of .tgz file respectively, but
the system struggled with significantly larger proofs such as Hales’ formal proof of
the Jordan Curve Theorem in HOL Light, and was not maintained.18 Keller and
Werner [16] used the Obua-Skalberg HOL Light exporter as the basis for porting
proofs to Coq. This had the extra challenge of translating between logics, and also
struggled with larger proofs.

4.5.6 Coqchk. Coqchk is a proof checking tool for Coq proofs that comes bun-
dled with the Coq toolset. It has a separate implementation from the Coq theorem
prover itself, although is developed by the same team. Coq is able to export proof
objects (as .vo files), and these can be read in by Coqchk, which outputs an overall
“yes” or “no” for each proof object. It is not capable of taking queries from the
user about the state of the system, other than printing a list of the names of the
axioms that have been assumed. It displays the names of the theorems that have
been checked, but is not capable of displaying the statements of these theorems.

The proof objects exported by Coq are expressed at a relatively high level, and
Coqchk must fill out reasoning gaps in formula normalisation, recursive function
termination and universe chain ordering checks that are performed automatically
by Coq’s logical core. This makes Coqchk’s implementation relatively complicated
for a proof checker, and despite not supporting parsing or pretty printing of concrete
syntax, it stretches to 4,500 lines of OCaml code plus over 3,000 lines of bespoke
library and kernel OCaml code shared with Coq. Another problem is that Coqchk
is known to struggle with checking some very large proofs.

4.5.7 HOL Zero. The HOL Zero system19 [41] is a basic theorem prover for the
HOL logic, developed mainly for checking formal proofs originally performed on
other HOL systems. It has poor support for interactive and automated theorem
proving, but has been carefully designed to excel at trustworthiness. It has simple
and well-commented source code, that is intended to be as easy to review as possible,
and robustly implements an LCF-style architecture. It has a queriable state for all
axioms, definitions and display settings. It supports display of concrete syntax,
but unlike the other HOL systems this display is unambiguous. Its core system is
implemented in around 3,900 lines of OCaml, including around 1,250 lines for is

18Statistics are for unstated versions of HOL4 and HOL Light circa 2005.
19Our observations relate to HOL Zero version 0.6.2.
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logical core.20

Although HOL Zero is implemented in OCaml, it manages to address the asso-
ciated vulnerabilities that HOL Light suffers from, for example it protects against
mutable strings by making copies at suitable points. There is also a bounty reward
of $100 for discovering trustworthiness-related flaws (flaws in logical soundness or
the display of formulae), and a list of exposed flaws is published on the HOL
Zero homepage (the most recent flaw was in 2011). There are currently no known
trustworthiness-related flaws other than its vulnerability to having trojan horses
overwriting trusted components of the core (see Section 3.2.1).

4.5.8 CakeML. The CakeML project [39] is for building a verified software stack
for a HOL theorem prover, involving a verified version of HOL Light [17] and a
verified compiler for CakeML [18], a new dialect of ML based on SML. This project
is producing trustworthy components that can be relied upon in future formalisation
projects. The results have not yet filtered through to tools that can be used on
actual projects, but the prospect is not far off.

5. AUDITING FLYSPECK

In this section, we show how the proof auditing process described in Section 4.3
can be applied by performing a partial audit of the Flyspeck formal proof. A full
audit, covering all parts of Flyspeck, would be beyond the scope of this paper, for
reasons discussed in Section5.2. Rather, the aim is to give the reader a flavour of
what is involved, and to discuss how a full audit might be performed.

Because the bulk of Flyspeck is done in HOL Light, we chose a tool capability
capable of exporting from HOL Light. We chose to use the Common HOL proof
porting tools, since these currently have the best performance for porting very large
proofs, and there is already an importer into HOL Zero, which we wanted as our
target system because we view it as the most trustworthy HOL system.

Note that we have had some involvement in the Flyspeck project ourselves, and
so our audit cannot constitute a proper audit because it is not independent.

5.1 The Partial Audit

5.1.1 Replaying the Original Project. Because the four parts of Flyspeck (the
main text formalisation, the classification of tame graphs, the linear inequalities
and the non-linear inequalities) are formalised across two theorem provers and a
multitude of sessions, totalling around 5,000 hours of processing, replaying the
project is not an easy exercise.

Instead, our partial audit concentrated on just the main text formalisation, which
is meant to process in a single HOL Light session. Using modest hardware,21 the
processing completed in around 3.5 hours. We used HOL Light SVN release 197,
OCaml version 3.12.1 and Flyspeck SVN release 3692. The project build file for
this part of Flyspeck is text formalization/build.hl. However, note that this
build file also incorporates the linear inequalities, so we did not need to process
every line in this file, and the final file general/the kepler conjecture.hl only

20We consider the HOL Zero logical core to consist of the build files up to thm.ml excluding

reader.ml but including corethry.ml, and its core system to consist of all files up to store.ml.
21We used a 2.5 GHz Intel Core i5 CPU with 8 GB RAM running 64-bit Linux.
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|- !a. tame_classification a /\

good_linear_programming_results a /\

the_nonlinear_inequalities

==> the_kepler_conjecture

Fig. 8. The final theorem for the main text.

needed processing up until the theorem kepler conjecture with assumptions,
i.e. the final theorem for the main text formalisation.

The processing completed successfully with the proof of the final theorem. This
theorem states that the Kepler Conjecture holds assuming some tame graph classi-
fication and linear inequalities for this classification and the non-linear inequalities
(see Figure 8).

5.1.2 Porting the Project. To port the proof, we used Common HOL’s export-
adapted HOL Light to export the proof objects as proof modules each corresponding
to a block of lines in the Flyspeck main text formalisation build file. Total processing
time, including the time for exporting the proof modules, took around 7 hours,
about twice the time for processing the scripts with unadapted HOL Light. The
exported proof objects, compressed as .tgz files, occupied 159 MB on disk.

We then imported the proof objects into a single session of import-adapted ver-
sions of HOL Zero and HOL Light. For HOL Zero, this took around 6 hours for the
entire main text formalisation. For HOL Light, import was much quicker, taking
just over 30 minutes. Even though there are no known flaws in HOL Zero, we used
the diversity of two target systems to give us added assurance that no unknown
flaws were being exploited.

The exported proof modules, together with import-adapted versions of HOL
Light and HOL Zero, are available for download from the Flyspeck homepage on
the Proof Technologies website [42].

5.1.3 Examining the Target Systems’ Final State. We first examined the HOL
Zero target session.

The HOL Zero display settings had numerous extra fixities declared, which we
took into account when reviewing the statement of the final theorem and its sup-
porting definitions.

HOL Zero’s list of axioms was not added to by importing the main text formal-
isation, confirming that the theory had not been made inconsistent as part of the
formal proof.

Reassuringly, HOL Zero displayed precisely the same final theorem as the project
version of HOL Light (see Figure 8). In our review of the meaning of this final the-
orem in HOL Zero, we only examined its consequent, i.e. the formal statement of
the Kepler Conjecture, because the antecedents, once instantiated with the tame
graph classification, are intermediate results that would be discharged when replay-
ing the entire project. In any case, these instantiated antecedents expand into huge
expressions, and reviewing them would be a mammoth task.

The formal statement of the Kepler Conjecture is defined as a constant called
the kepler conjecture (see Figure 9). Bound variable V in this definition repre-
sents a set of points in 3-dimensional space, corresponding to the centres of unit-
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|- the_kepler_conjecture <=>

(!V. packing V

==> (?c. !r. real_of_num 1 <= r

==> real_of_num (CARD (V INTER ball (vec 0, r)))

<= pi * r pow 3 / sqrt (real_of_num 18) +

c * r pow 2))

Fig. 9. The formal statement of the Kepler Conjecture.

|- !S. packing S <=>

(!u v. S u /\ S v /\ ~ (u = v)

==> (real_of_num 2 <= dist (u,v)))

Fig. 10. The definition of packing.

radius spheres. The statement says that if V is a sphere packing, then there exists
a constant c such that, for any radius r, the number of spheres from V with centres
inside a containing sphere of radius r is no greater than πr3/

√
18 + cr2.

Although the formal statement does not transparently correspond to the infor-
mal statement (see Figure 1), it is fairly straightforward to see why the two are
equivalent, assuming appropriate definitions of the constants used in the formal
statement. By dividing both sides of the inequality by r3, we can see that right-
hand side is π/

√
18 plus an error term of c/r.22 This error term tends to 0 as

radius r tends to infinity. The left-hand side of the inequality is then a quotient,
and multiplying top and bottom by 4/3 π respectively gives the total volume of
the packing’s spheres that lie inside the containing sphere,23 and the volume of the
containing sphere, i.e. the density A/B from the informal statement. Finally, we
can generalise the result for packings of unit-sized spheres to packings of same-sized
spheres and any size.

We next shifted our attention to the definition of the constant packing (see
Figure 10), used in the above definition. Here S is a set of points, represented as a
predicate on points. From the formal definition we can see that S is deemed to be
a packing if any two distinct points are at least two units apart. This corresponds
to our expected notion of a sphere packing, because the spheres in the formal
statement are of unit radius.

It is possible to see how this audit in HOL Zero would continue. The full de-
pendency graph of constant definitions for all constants featured in the statement
of the final theorem would need examination, including vec, ball, dist, CARD and
real of num.

We then examined the final state of the HOL Light target session. Reassuringly,
this gave identical results to the HOL Zero session.

22The need for the error term is most obvious when radius r is small. If r is 1, for example, then

the density of the packing can be 100%.
23More precisely, it gives the total volume of the packing’s spheres with centres that lie inside the
containing sphere, but as r tends to infinity, this gives the same result. The justification that this

gives the same result is not addressed in this partial audit.
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5.2 Auditing the Whole of Flyspeck

Using our process to audit the whole of Flyspeck, which would involve incorporating
the entire formalisation into a single theorem prover session, would be more difficult
than auditing just the main text formalisation. This is because it presents various
technical challenges for tool support.

Ideally, the replaying of the formal proof in a target system would rely on just
the core system of the target system, and not on a program extraction facility that
carries its own risks of flaws. For this, the formalisation of the classification of tame
graphs would need to be reworked so as to prove the archive as a HOL theorem, and
to export the proof of this theorem as a Common HOL proof module. This theorem
could be proved in HOL Light or Isabelle/HOL. It might be easier to perform this
proof by adapting the existing work done in Isabelle/HOL, but it would require an
Isabelle/HOL Common HOL proof exporter.

Porting the linear inequalities may cause problems for the HOL Light Common
HOL exporter due to the large size of the terms involved.

Porting each of the 600 or so sessions for solving the non-linear inequalities may
also present challenges. HOL Light Common HOL proof exporting tends to take
about twice the time to prove, record and export as it does to just prove, and so
it should not be a major problem to rerun each of the sessions in parallel with
proof exporting turned on. However, importing these proof modules into a single
consolidated HOL session might cause problems for the target system. The current
version of HOL Zero would probably struggle to process everything in reasonable
time. Import into a HOL Light session looks more promising, given that the text
formalisation imported and replayed in HOL Light seven times faster than running
the proof scripts. This could feasibly be achieved with a month of processing
time, but it would be necessary to somehow mitigate HOL Light’s trustworthiness
concerns.

An alternative approach to the above is to use Isabelle/HOL as the target sys-
tem. It may be simpler to keep the classification of tame graphs in Isabelle/HOL
and port the rest of Flyspeck from HOL Light into Isabelle/HOL. This could be
done using Kaliszyk and Krauss’s existing porting capability or OpenTheory, al-
though implementing a Common HOL proof importer for Isabelle/HOL looks like
the most likely to succeed given the sheer size of the HOL Light proof. Mitigation
of Isabelle/HOL’s trustworthiness concerns, including any concerns about its pro-
gram extraction facility (unless the proof were reworked to avoid this), would be
necessary.

It may be technically unachievable to incorporate the whole of Flyspeck into
a single session of a theorem prover, at least with current technology. If this is
the case, the human aspect of the audit would have to take on a much greater
role, expanding to include review of the interfaces between the proof sessions. The
greatest focus here would need to be on the correctness of translation of results
between systems.

5.3 Puzzle Solution

The root of the problem in Figure 2 is the innocuously named eval function de-
fined in the three lines in Figure 12 from update database 310.ml (loaded from
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let MUL_POW2 = REAL_ARITH‘ (a*b) pow 2 = a pow 2 * b pow 2 ‘;;

let COMPUTE_SIN_DIVH_POW2 = prove(‘! (v0: real^N) va vb vc.

let betaa = dihV v0 vc va vb in

let a = arcV v0 vc vb in

let b = arcV v0 vc va in

let c = arcV v0 va vb in

let p =

&1 - cos a pow 2 - cos b pow 2 - cos c pow 2 +

&2 * cos a * cos b * cos c in

~collinear {v0, vc, va} /\ ~collinear {v0, vc, vb} ==>

( sin betaa ) pow 2 = p / ((sin a * sin b) pow 2) ‘,

REPEAT STRIP_TAC THEN MP_TAC (SPEC_ALL RLXWSTK ) THEN

REPEAT LET_TAC THEN SIMP_TAC[SIN_POW2_EQ_1_SUB_COS_POW2 ] THEN

REPEAT STRIP_TAC THEN REPLICATE_TAC 2 (FIRST_X_ASSUM MP_TAC) THEN

NHANH (NOT_COLLINEAR_IMP_NOT_SIN0) THEN

EXPAND_TAC "a" THEN EXPAND_TAC "b" THEN PHA THEN

SIMP_TAC[REAL_FIELD‘ ~( a = &0 ) /\ ~ ( b = &0 ) ==>

&1 - ( x / ( a * b )) pow 2 = (( a * b ) pow 2 - x pow 2 ) / (( a * b ) pow 2 ) ‘

] THEN

ASM_SIMP_TAC[] THEN STRIP_TAC THEN

MATCH_MP_TAC (MESON[]‘ a = b ==> a / x = b / x ‘) THEN

EXPAND_TAC "p" THEN SIMP_TAC[MUL_POW2; SIN_POW2_EQ_1_SUB_COS_POW2] THEN

REAL_ARITH_TAC);;

Fig. 11. The undoctored extract from trigonometry/trig2.hl.

let eval n =

exec ("let buf__ = ( " ^ n ^ " );;");

Obj.magic (Toploop.getvalue "buf__");;

Fig. 12. The eval function from general/update database 310.ml.

strictbuild.hl). This uses Obj.magic and can be used to construct arbitrary
theorems (see Section 3.2.1). We inserted into the Figure 2 code fragment a defi-
nition for an ML value named x, that can be typecasted to a theorem (in OCaml,
integer 0 has the same representation in memory as an empty list of HOL terms,
and likewise Some has the same representation as Sequent, used to construct the-
orems). We embedded a call to eval in a rewrite list in the proof script, so that x
becomes a theorem for rewriting x pow 4 to x pow 2, which gets applied to (sin

a * sin b) pow 4 to prove the unprovable (the statement of the theorem should
read pow 2 instead of pow 4 in the last line). See Figure 11 for the real original
Flyspeck code fragment.

This puzzle underlines how difficult it can be to discover subtle problems by
examining the project proof scripts. Would the project’s manager, or an auditor
for that matter, really notice such a problem buried in one of many 5,000 line proof
scripts? Note that, even if the auditor were aware of eval, they might miss its
usage here, given that that there are over 30 other occurrences of the ML binding
name in the Flyspeck proof scripts, all of which have nothing to do with the eval
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defined in update database 310.ml. However, using our suggested proof auditing
process, of porting the proof to another session and examining the resulting system
state, would uncover the problem. In this particular example, trig2.hl would fail
to build in the export-adjusted HOL Light, due to the implicit typecast failing.

6. RELATED WORK

Wong [30] advocated checking formal proofs by porting them to a trustworthy proof
checker, and, as described in Section 4.5.5, developed proof exporters for HOL88
and HOL90 and a HOL proof checker. This capability has been demonstrated
to work on proofs of several thousand inference steps. However, the aim of such
checking was purely to address the concern of whether the formal proof is a correct
derivation, and the proof checker just outputted an overall “yes” or “no” for each
proof object. This is more limited than our notion of a proof audit, which includes
review of the axioms and final theorem of a formal proof project, and consideration
of how a project split over several sessions fits together.

Pollack [24] wrote a paper on the philosophy of trusting formalisation proofs. He
stated two main concerns: whether the formal proof constitutes a correct derivation,
and whether the right theorem has been proved. To address the first, he advocated
porting the proof to a trustworthy proof checker. To address the second, he advo-
cated using the proof checker to review the axioms, definitions and statement of
the final theorem. Pollack states similar concerns to our sceptic, and advocates an
appraoch to proof auditing similar to ours. However, he concentrates on use of a
logical framework as the basis for providing a trustworthy proof checker, and gives
little detail on justifying the auditing approach or the practicalities of carrying it
out. Also, if only due to the lack of available technology and sizeable formalisations
at the time of writing, he does not use detailed motivating examples.

7. CONCLUSIONS

The formalisation of mathematics by use of theorem provers has reached the stage
where previously questioned mathematical proofs have now been formalised. Scep-
tics, however, have good reason to doubt that nowhere in these large projects are
lingering subtle problems that render the formalisation invalid. There are various
pitfalls of formalisation, ranging from knowingly or unknowingly exploiting flaws
in the theorem provers being used (and such flaws do exist) to simply proving the
wrong theorem. It is certainly not satisfactory to rely on reputation to answer
the sceptics, since project teams are composed of human beings who may become
motivated by things other than veracity, especially when outsourcing is used.

However, despite the complexity of the major formalisations, and despite their
mathematical and historical importance, they have not yet been subject to com-
prehensive, independent scrutiny. This sits uncomfortably with the mathematical
certainty that these projects are supposed to establish. To address this situation,
we propose the activity of proof auditing, to independently assess a formalisation.

In order to avoid the risk of proof auditing itself being a long and error prone
activity, we propose a process based around proof porting technology with a trust-
worthy target system. This sidesteps any flaws that may exist in the project the-
orem prover, and means that the auditor only needs to review the target system’s
final state, rather than the project proof scripts and the project theorem prover.
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This makes it possible to effectively audit a large project with minimal effort, and
yet achieve the highest levels of assurance.

This approach will work for any project provided that sufficiently strong tool
support exists. Proof importers and exporters capable of porting large proofs are
being written for the various HOL systems as part of both the OpenTheory and
Common HOL projects, and HOL Zero is a suitable blank canvas to act as a
trustworthy target system. Coq already supports export of proof objects, but its
dedicated checker Coqchk falls short of our criteria in some respects, although these
issues could be addressed in a future version. For Mizar we know of no system for
porting proof objects, and considerable investment may be required. Overall, the
biggest technical challenge for tool support for our process is handling import into
a single consolidated session of a target system for projects that involve a multitude
of computationally-intensive parallel sessions, such as Flyspeck.

We demonstrate the feasibility of our approach by carrying out a partial audit
of Flyspeck, using Common HOL proof porting to export a significant proportion
of the formal proof, and importing and reviewing it in both a skeleton HOL Light
system and HOL Zero. As far as we are aware, this is the first large-scale deploy-
ment of proof auditing on a major formalisation project. We also demonstrate the
effectiveness of the process by showing how it can easily detect an obscure malicious
piece of code, which exploits a weakness in HOL Light, that would otherwise typi-
cally evade detection. It is technically feasible that the whole of Flyspeck could be
audited using the same simple process, although this would first require significant
rework to get the Isabelle/HOL portion of the proof expressed in HOL Light, and
with current tools the auditor would have to wait for perhaps a month whilst the
consolidated 600 sessions import into a single target session.

Fast and effective auditing of large formalisation projects is within reach, and
the mathematics formalisation community should seize this opportunity to banish
all reasonable doubt about the correctness of their work.
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