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Proposed in 1994, the “QED project” was one of the seminally influential initiatives in automated

reasoning: It envisioned the formalization of “all of mathematics” and the assembly of these
formalizations in a single coherent database. Even though it never led to the concrete system,

communal resource, or even joint research envisioned in the QED manifesto, the idea lives on and

shapes the research agendas of a significant part of the community
This paper surveys a decade of work on representation languages and knowledge management

tools for mathematical knowledge conducted in the KWARC research group at Jacobs University

Bremen. It assembles the various research strands into a coherent agenda for realizing the QED
dream with modern insights and technologies.

1. INTRODUCTION

Even though short-lived and ultimately unsuccessful, the QED project and man-
ifesto [Ano94] of 1994 were enormously influential on automated reasoning. The
QED manifesto urged the automated reasoning community to work towards a uni-
versal, computer-based database of all mathematical knowledge, strictly formalized
in logic and supported by proofs that can be checked mechanically. The QED
database was intended as a communal resource that would guide research and al-
low the evaluation of automated reasoning tools and systems. This database was
never realized – not even started as a concrete collection or system – but the dis-
cussion about it influenced a whole generation of researchers and practitioners in
the automated reasoning and formal methods communities. Indeed the QED idea –
if not the system and project – is very much alive in the community today. On the
twentieth anniversary of the QED manifesto we survey the state of formalization
and proving and the chances of realizing the twenty-year-old dream after all.

We find that many of the problems that prevented the QED project from suc-
ceeding were already part of the initial discussion on the QED mailing list. The
pertinent topics were i) the choice of the root logic, its calculi and proof formats,
in particular regarding types and partial functions, ii) the question whether math-
ematics truly needed formalization and consequently the acquisition of funding.
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While the latter point was probably the main practical obstacle, the former was
and still is arguably the biggest theoretical stumbling block for a universal library
of formalized mathematics. There was a consensus that a root logic was needed,
i.e., a logic in which all of mathematics would be formalized. But most groups
only advocated the logic of their own system as the most feasible candidate. The
discussion ended in a proposal by Bob Boyer – the driving force behind QED – to
use Primitive Recursive Arithmetic [Sko67] (PRA), a quantifier-free formalization
of the natural numbers. But while PRA is a canonical choice of root logic due
to its extreme simplicity, it was generally regarded as insufficiently expressive for
practical formalization. For example, in the recollection of the first author, Peter
Andrews expressed this sentiment with the sarcastic comment that “if PRA, then
we should gödelize it first!”.

Actually, Andrews’ position in the discussion was much more constructive than
this quote suggests and has motivated much of the authors’ research. In one
post [And94] to the QED mailing list, he advocated to “accept diversity”: a li-
brary organization that accepts theorems and proofs in any logic after that logic
has itself been submitted to the database. The reasoning behind this is that the
differences between root logics (then and now) have evolved for good reasons: Ev-
ery such system caters to a different aspect of formalization or area of application.
However, at the time of QED the development of logical frameworks [Pfe01], which
can give a theoretical basis for this vision, had just begun.

Since then, the plurality of logic designs and of the corresponding theorem proving
technologies has become even more formidable. Today there are about half-a-dozen
libraries with ∼ 105 formalized mathematical theorems, such as the ones of Mizar
[TB85], Coq [Tea], and the HOL systems [Har96]. These include deep theorems
such as the Odd-Order Theorem [GA+13] or the Kepler Conjecture [HA+15]. But
each library is based on a separate root logic, all of which are mutually incompatible,
which leads to duplication of work and missed opportunities for knowledge transfer.

In his post [And94], Andrews argues for another so far-unrealized goal: “I envision
the QED library as a vast database and a large number of associated utilities for ac-
cessing, displaying, translating, manipulating, and using the items in the database”
(emphasis ours). This places the utilities at the same level as the formalizations
and not at the level of the individual systems contributing to the QED database.
This makes sense if we consider the need for additional tools that integrate formal-
ization systems with symbolic computation and large scale knowledge management
systems – a very real need as evidenced by the formation of the CALCULEMUS
and MKM (Mathematical Knowledge Management) communities, respectively, in
the last two decades.

In 2007, Freek Wiedijk identified two further reasons for the failure of QED
[Wie07]. Firstly, even though expressivity was an important factor in choosing the
root logics, they still lack practical expressivity in comparison with conventional
mathematics. He gives four deep but conventionally non-problematic mathemati-
cal theorems from calculus, abstract algebra, category theory, and set theory and
concludes that no system allows proving all of them based on natural definitions
and notations. This is compatible with the observation that each root logic has
particular strengths and no single root logic can be satisfactory for all applications.

Secondly, the large libraries that have been developed lack library organization
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strategies to keep them coherent in the presence of many contributors. Wiedijk
observes that today’s large libraries are either well-curated and integrated or have
a large number of contributors. Naturally, while it is possible to develop library
management support such as refactoring and dependency tracking, it would sig-
nificantly ease the implementation burden on each system if these features were
provided generically by the QED database.

Contribution and Overview. We begin with a thorough review of the state of the
art in Section 2. We describe the existing tools, their root logics, and their libraries,
focusing on the integration problems caused by the plurality of root logics.

Our contribution is a novel design that we propose for a universal community-
driven QED database. Contrary to all existing large QED-style databases, ours
is systematically pluralistic: We build the diversity of root logics into the rep-
resentation language from the beginning. This is a key step towards solving the
problem of incompatible root logics.

A pluralistic QED database must include the definitions of the various root logics
(and their semantics) and understand formalizations in any of them. Therefore, we
use logical frameworks in which the root logics are to be formalized. Moreover, we
complement logical frameworks with a concrete meta-language that allows repre-
senting both these logic definitions and the libraries. We use our OMDoc/Mmt
language as this meta-language, which we present in Section 3.1. OMDoc/Mmt
also acts as a pluralistic deduction system, which can be used to implement dif-
ferent logical frameworks, check the definitions of the root logics, and to support
the QED database with knowledge management services. We present this in Sec-
tion 3.2. We do not, however, anticipate that such a single pluralistic system will
replace existing ones — instead, we see our database as a uniform archiving and
integration platform for formalizations obtained in a variety of deductions systems,
each optimized for a different root logic.

On top of OMDoc/Mmt, we have built the MathHub.info system as a proto-
typical QED database infrastructure, which we describe in Section 4. It provides
user management, a repository manager, a web interface for trans-library naviga-
tion, and a mathematical search engine. Going beyond the goals of QED, it also
includes support for informal mathematical documents.

We have already started building a nucleus of a pluralistic QED database on
top of MathHub.info, and we report on our current state in Section 5. Presently,
it includes several major mathematical libraries including those of two QED-style
proof assistants. Section 5.1 and 5.2 describe how we can represent the root logics
and their respective libraries uniformly. Section 5.3 discusses the most promising
methods for using our database to integrate these libraries with each other.

Throughout the article, we point out open problems that still remain despite
these promising prototypes, and we conclude in Section 6.

2. STATE OF THE ART IN FORMALIZATION AND DEDUCTION

The systematic formalization of mathematical knowledge and its semantics go back
at least to the seminal work by Russell and Whitehead [WR13]. The use of computer
systems started in the 1950s and 1960s focusing on designing foundations (see
Section 2.2) that combine human and machine-friendliness. Automated theorem
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proving, going back to ideas by Newell, Simon, and Davis, has been most successful
for first-order predicate logic and related languages. For more expressive languages
that more adequately model mathematical knowledge, best results were reached
in the automated interactive verification of human-written proofs, going back to
ideas McCarthy, de Bruijn, Milner, and Martin-Löf. Modern QED-style deduction
systems usually follow the interactive approach and employ automation support
where possible.

Formalization pays off most at large scales due to the high level of theoretical
understanding and practical investment that it requires from both developers and
users. Therefore, today’s flagship projects are built on double-digit person years
of investment. (However, small formalizations are increasingly used to support in-
dividual papers at, e.g., the POPL or RDP conferences.) Even though this would
naturally call for a community effort, the last few decades have seen increasing spe-
cialization into isolated, mutually incompatible systems and incompatible
overlapping libraries of formal knowledge.

Moreover, during that time the advances in computer and internet technology
have dramatically changed our expectations regarding scalability. Many require-
ments have become critical that are not anticipated in the designs of deduction
systems such as system interoperability and massively-multi-user collaboration.

2.1 Deduction Systems

Source (external)
• text files
• human-readable

OMDoc

Data structures (internal)
• logical: declarations,

theorems, terms,
proofs, . . .

• extra-logical: no-
tations, rewrites,
coercions, unification
hints, tactics, . . .

Interpretation
• parsing
• type checking
• disambiguation
• reconstruction

Computation
• definition

expansion
• normalization,

rewriting
• induction,

recursion

Deduction
• theorem

proving
• decision

procedures
• model finding

references export

processes
generates

proof obligations

theorems

uses uses

Fig. 1. Typical Architecture of a Deduction System

Even though there are different possible architectures for QED-style deduction
systems, some recurring features can be identified. We survey a typical architecture
(see Figure 1) in order to introduce names for the important concepts.

Formalizations are written in text files using concrete source syntax optimized
for fast and convenient writing by human users. These differ from the abstract
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internal data structures, which model the logical foundation of the system. The
most important work flow is the transformation of the source into logically verified
data structures. Typically, three components are involved.

Firstly, a lot of the intelligence lies in the interpretation component, which
bridges the representational gap between source and data structures. It is often
split into parsing and type/proof checking, but these may also be intertwined. In-
terpretation must mimic mathematical practices such as abuse of notation, context-
sensitive disambiguation, omission of inferable parts, sloppy handling of undefined-
ness, or silent use of coercions. Typically, this makes substantial use of extra-logical
data structures that maintain notations, overloading, implicit argument declara-
tions, type coercions, etc. A promising recent trend, e.g., heavily used in [GA+13],
is the use of extra-logical data structures that trigger certain computations and
controlled search procedures so that users can flexibly guide the interpretation pro-
cess.

Secondly, the deduction component is traditionally the central part of the sys-
tem. It employs complex decision and search procedures to discharge the proof
obligations generated during interpretation and records the proved theorems in the
data structures.

Thirdly, the computation component implements decidable normalization algo-
rithms, user-configurable rewrite systems, or Turing-complete recursive functions.
A major challenge is to understand when and which computations should be trig-
gered during interpretation and deduction.

We also already indicate in gray the export of the data structures into our OM-
Doc interchange language. Its main purpose is to permanently store the otherwise-
transient internal data structures and trace their origin from the sources. We will
get back to that in Sect. 2.3.

2.2 Foundations

Overview. The notion of a foundation comes from the debate about the foun-
dations of mathematics at the beginning of the 20th century. This tried to find a
logical basis for mathematics and came up with first-order logic + set theory as one
answer. Philosophically, a foundation should be very simple because we cannot de-
termine the consistency of the foundation itself (except by reasoning in some other
foundation). Practically, on the other hand, a foundation should be very expressive
in order to allow structurally adequate and convenient formalizations. Tradition-
ally, the implementation of a deduction system started with and centered around
the data structures representing the foundation. The diverse group of foundations
in today’s QED-motivated systems are the result of trying to optimize the above
simple-expressive trade-off.

It is crucial to observe that all of these systems are based on a fixed founda-
tion, i.e., a fixed root logic in which all formalizations in that system are stated.
Most of these derive from constructive type theories, higher-order logic, or first-
order set theory. The constructive type theories are mostly based on Martin-Löf
type theory [ML74] or the calculus of constructions [CH88] and make use of the
Curry-Howard correspondence [CF58; How80] to treat propositions as types (and
proofs as λ-terms). Systems include Nuprl [CA+86], Agda [Nor05], Coq [Tea], and
Matita [ACTZ06]. The second group of systems go back to Church’s higher-order
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logic [Chu40]. Systems include HOL4 [HOL4], ProofPower [Art], Isabelle/HOL
[NPW02], and HOL Light [Har96]. Notably, only Mizar [TB85], Isabelle/ZF [PC93],
and Metamath [MeMa] are based on variants of axiomatic set theory and thus most
similar to the foundation of conventional mathematics. The foundation of the PVS
system [ORS92] includes a variant of higher-order logics but with a significantly
extended type system inspired by set theory. The IMPS system [FGT93] is based
on a variant of higher-order logic with partial functions. The foundation of ACL2
[KMM00] is an untyped language based on Lisp.

Heterogeneous Reasoning. In principle – and according to mathematical folklore
– most of mathematics can be formalized homogeneously in a giant collection
of first-order formulas based on a small collection of set-theoretic axioms. Here
all mathematical knowledge is formalized using only conservative extensions (e.g.,
definitions, theorems) of the fixed foundation.

A major drawback of this approach is that a lot of expensive formalization work is
needed just to build the setting of interest (e.g., the real numbers) as a conservative
extension of the fixed foundation. Moreover, this monolithic formalizations lack the
structuring devices needed for coping with the size and complexity of the collec-
tion, with development workflows, and with the constantly changing presentation of
mathematical knowledge. Therefore, conventional mathematics uses what we call
the heterogeneous method. Going back to the works by Bourbaki [Bou64], this
method focuses on defining axiomatic theories and stating every result in the small-
est possible theory. This allows using theory morphisms to move results between
theories in a truth-preserving way [FGT92]. Consequently, while all mathematics
can be reduced to first principles, it is usually carried out in highly abstracted
settings that hide the foundation. This approach has been applied successfully in
software engineering and algebraic specification, where formal module systems are
used to build large theories out of little ones, e.g., in SML [MTHM97] and ASL
[SW83].

QED systems support heterogeneity in various ways.
Several systems allow heterogeneity explicitly by introducing abstract theories,

e.g., locales in Isabelle, parametric theories in PVS, modules in Coq, or structures
in Mizar. IMPS [FGT93] even uses the heterogeneous method systematically as a
central design feature.

Moreover, in all systems, one can apply the heterogeneous style implicitly. For
example, one first introduces a new construct (e.g., the real numbers) by defining
it in terms of existing ones (e.g., Cauchy sequences). Then one expands the defi-
nition while proving the characteristic theorems about the new construct. Finally,
afterwards only those theorems are used, and the definitions are never expanded
again. In particular, it becomes irrelevant, which out of several possible definitions
(e.g., Dedekind cuts) was used. We call this implicit heterogeneity because this
irrelevance is not made explicit (e.g., by introducing the second-order theory of the
real numbers) in a way that would allow easy reuse across deduction systems.

Many systems provide special support for implicit heterogeneity by using defi-
nition principles. Here the interpreter elaborates high-level axiomatic declarations
into conservative extensions. Example extension principles are type definitions in
the HOL systems, provably terminating functions in Coq or Isabelle/HOL, or prov-
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ably well-defined indirect definitions in Mizar. Often elaboration-based approaches
have the effect that heterogeneity becomes quite explicit in the source syntax while
remaining implicit in the data structures.

Finally, several data types provide a systematic way of using heterogeneity implic-
itly. (Co)inductive types are theory-like abstraction mechanisms because they are
also described by a set of declarations – the constructors and selectors, respectively
– and axioms for (co)induction. They have the advantage that they additionally al-
low performing computations in the underlying foundation. Similarly, record types
can be used as an alternative to theories, e.g., as done by Mizar structures and with
Coq records in the Mathematical Components project [MC]. This has the major
advantage that no meta-formalism is needed for heterogeneous reasoning: Theory
morphisms become first-class functions between record types. Naturally, any such
data types make the foundation and its meta-logical analysis more complex. Thus,
they are inadequate solutions where a minimally complex type theory with support
for heterogeneity is needed.

The Incompatibility Problem. The combination of fixed foundations and implicit
heterogeneity has become the dominant approach in the QED area. This has several
reasons. Firstly, it allows integrating computation into deduction by evaluating
terms in the foundation. This makes proofs much simpler because it eliminates
the tedious step-wise application of axioms to reason about equality. Secondly,
the homogeneous method avoids adding axioms, which would end up growing the
untrusted code base when using code extraction. Thirdly, in some domains like
code certification, it is hard to be sure that all the invariants are respected unless
every single detail is formalized homogeneously.

But the resulting formalizations are not easily reusable across systems. Firstly,
implicit heterogeneity makes it difficult to systematically identify the heteroge-
neous structure of a library, which would be necessary to guide reuse. Secondly,
the foundation-specific features used to obtain heterogeneity in one system may
not be present in another system. Therefore, it is today virtually impossible to ex-
ploit heterogeneity when moving theorems across systems or even across different
libraries of the same system. Therefore, almost all current systems and libraries
are mutually incompatible, with only a few ad hoc translations between them (e.g.,
[KW10; KS10]).

In principle, highly reusable formalizations can be developed best with the hetero-
geneous method. It maximizes the level of abstraction for each result, and theories
can be understood uniformly in all foundations. But it remains an open question
how to combine the best of both worlds. One option may be to write heterogeneous
theories in richer logics that induce computations, e.g., by using rewrite rules.

In any case, while a fixed foundation may be reasonable for an individual deduc-
tion system, it is counter-productive for a universal library of mathematics because
different domains may require different foundations. Similarly, different commu-
nities involved in the formalization effort may favor different foundations (maybe
only because of the formalization styles or workflows they support). Thus the li-
brary level of QED would profit from foundational pluralism, i.e., the ability to
support multiple foundations in a single universal library.
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2.3 Formal Libraries

Overview. All major deduction systems provide support for managing formaliza-
tions in “libraries” (usually sets of source files) and collect some kind of library of
formalizations. Often a certain basic library is loaded upon startup, and the user
can load additional libraries on demand. The library mechanism can be decentral-
ized with users developing and/or hosting individual libraries or centralized with a
committee collecting and possibly curating the library.

A very sensitive issue here is backwards compatibility, i.e., the question whether
a library is still readable after upgrading the main system. Only for centralized
libraries, this can be guaranteed by the system developers. For example, in the
L4 verification project [KA+10] (7 years, 390000 lines of Isabelle/HOL), Isabelle
updates and change management turned out to be major problems [BDKK12].

The Isabelle and the Mizar groups maintain one centralized library each – the
“Archive of Formal Proof” [AFP] and the “Mizar Mathematical Library” [MizLib],
respectively. The Coq group maintains a similar set of contributions. These libraries
contain individual formalizations with relatively few interdependencies.

Highly-integrated libraries are usually found as part of a single formalization
project whose size required the development of a separate library. Even though
these libraries started as auxiliary devices, they are valuable results in their own
right – maybe even more valuable than the primary formalization. Examples
are Tom Hales’s formalizations in HOL Light for the Kepler conjecture [HA+15]
and Georges Gonthier’s work in Coq for the recently proved Feit-Thompson the-
orem [GA+13]. John Harrison’s formalizations in his HOL Light system [Har96]
and the NASA PVS library [PVS] have a similar flavor although they were not
motivated by a single theorem but by a specific application domain. The latter is
one of the biggest decentralized libraries, whose maintenance is disconnected from
that of the system. All of the above, use variants of implicit heterogeneity.

Heterogeneous libraries are the IMPS library [FGT], the LATIN logic library
[CH+11] by the authors, and the TPTP library [Sut09] of challenge problems for au-
tomated theorem provers. However, none of these enjoys the level of interpretation,
deduction, and computation support developed for individual fixed foundations.

The OpenTheory format [Hur09] offers some support for heterogeneity in order
to allow moving theorems between systems for higher-order logic (specifically HOL
Light, HOL4, and ProofPower). It provides a generic representation format for
proofs within higher-order logic that makes the dependency relation (i.e., the oper-
ators and theorems used by a theorem) explicit. The OpenTheory library comprises
several theories that have been obtained by manually refactoring exports from HOL
systems.

Library Integration. There are several facets of library integration. Firstly, one
can refactor a single library to increase reuse through modularity, sharing, and
inheritance. Typically, this amounts to using the heterogeneous method. Secondly,
one can align two (or more) libraries. Here alignments are special relations that
pair each concept of one library with the corresponding concept in the other one.
Alignment relations may range from “subsumes the intent of” to “are equivalent
and proofs can be shared”. Thirdly, one can merge two libraries. Usually, this
requires translating the libraries into a common language and then identifying and
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eliminating overlap between them.
No strong tool support is available for any of these facets. The state-of-the-art for

refactoring a single library is manual ad hoc work by experts, maybe supported by
simple search tools (often text-based). Merging libraries can hardly be attempted
because the state-of-the-art is still short of satisfactory translations into common
languages.

This is despite the large need for more integrated and easily reusable large li-
braries. For example, in Tom Hales’s Flyspeck project [HA+15], his proof of the
Kepler conjecture is formalized in HOL Light. But it relies on results achieved us-
ing Isabelle’s reflection mechanism, which cannot be easily recreated in HOL Light.
And this is an integration problem between two tools based on the same root logic!

Library Exports. In most cases, integration attempts falter already when trying
to access the library in the first place. Here, we have two options: We can work
with the sources or the internal data structures.

The usefulness of the sources is limited because interpretation, computation, and
deduction are highly non-trivial algorithms. This has the effect that each source
syntax can usually only be understood by a single system: the respective deduction
system.

The data structures on the other hand are usually difficult to access from the
outside. Deduction systems are typically realized as read-evaluate-print interfaces
to the data structures, optimized for batch-processing source files, and appear to
the outside as monolithic black boxes. In particular, the individual components are
tightly integrated and practically inseparable from the overall system.

Therefore, an export of the internal data structures is the only way to obtain
machine-level access to the libraries. This is indicated in Figure 1, where we use
our OMDoc format as an example for a standardized interchange format that holds
the exported data structures.

However, many deduction systems do not provide any export, let alone an export
to OMDoc. For example, in the case of Mizar, it proved notoriously difficult
[DW97; BK07; Urb06] until the authors obtained an export [IKRU13] that they
could actually make use of in their applications.

And even where exports exist – for example, Coq, HOL Light, Mizar, and PVS
provide idiosyncratic, system-near exports using XML syntax or binary files – they
have several problems.

Firstly, the use of elaboration means that often many parts of the data structures
are the result of non-trivial transformations, and their structure can differ substan-
tially from that of the source syntax. In particular, it may be difficult to infer the
implicit heterogeneous structure (even it is was explicit in the source) that would
be valuable for reuse.

Secondly, the exports quickly become out-of-date as new features are added to
the main system. The only exception are exports that are actively maintained
by the main developers, but this is rarely the case. Even the Mizar XML export
has gotten somewhat out-of-sync recently although the XML export was tightly
integrated with (and thus essential for) the main system.

Thirdly, there is usually little support for connecting the human-optimized source
syntax with the machine-optimized export syntax. To let human users interoperate
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with libraries of other systems, however, this is exactly what is needed. One com-
promise here is to export source references. If every fragment of the data structures
remembers the exact range in the source file that was interpreted to that fragment,
then such source references can be added to the export. This allows at least local-
izing change or conflict notifications in the source – and thus to integrate them into
the library management facilities of the system.

Library Translations. For importing fragments of a library L into a library L′,
we need an export facility for L, an import facility for L′, and additionally one of
two things: a translation between the underlying logics or a logical framework that
can handle libraries in multiple logics. Both are rare. Therefore, there are only a
few examples of bridging libraries between two large deduction systems.

A small number of library bridges have been realized using ad-hoc logic transla-
tions, typically in special situations. [KW10] translates from HOL Light [Har96] to
Coq [Tea] and [OS06] to Isabelle/HOL. Both translations benefit from the well-
developed HOL Light export and the simplicity of the HOL Light foundation.
[KS10] translates from Isabelle/HOL [NPW02] to Isabelle/ZF [PC93]. Here im-
port and export are aided by the use of a logical framework to represent the logics.
The Coq library has been imported into Matita once, aided by the fact that both
use very similar foundations. The OpenTheory format [Hur09] facilitates sharing
between HOL-based systems but has not been used extensively.

The second approach requires a logical framework in which the logics can be
represented. Then it is straightforward to map L to the library mechanisms of
the framework. Then the framework can serve as a uniform intermediate data
structure, via which other systems import L. The authors used this approach in
[IKRU13] for Mizar and in [KR14] for HOL Light. These used the logical framework
LF [HHP93] and made the libraries available to knowledge management services.
Another example is the Dedukti system [BCH12], which imports, e.g., Coq and
HOL Light into a similar logical framework, namely LF extended with rewriting.

The Library Integration Problem. Even when an export-import pair is available,
it is usually still very difficult to integrate libraries due to what we dub the library
integration problem.

The prevalent use of implicit heterogeneity means that results of L that are
interesting to reuse in L′ depend on a chain of conservative extensions all the
way down to the foundation underlying L. This is disastrous for integration in the
typical case where different libraries use different definitions (e.g., Dedekind cuts vs.
Cauchy sequences). Thus, a logic translation will usually not map the real numbers
of one system to the real numbers of another system. In explicitly heterogeneous
libraries, on the other hand, each result depends only on some axiomatic theories,
which can be mapped more easily to corresponding theories in L′.

Very little work exists to address this problem. In [OS06], some support for
library integration was present: Defined identifiers could be mapped to arbitrary
identifiers ignoring their definition. No semantic analysis was needed because the
translated proofs were rechecked by the importing system anyway. This approach
was revisited and improved in [KK13], which systematically aligned the concepts
of the basic HOL Light library with their Isabelle/HOL counterparts and proved
the equivalence in Isabelle/HOL. The approach was further improved in [GK14] by
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using machine learning to identify large sets of further alignments.
The OpenTheory format [Hur09] provides representational primitives that, while

not explicitly using theories, effectively permit heterogeneous developments in HOL.
The bottleneck here is manually refactoring the existing homogeneous libraries to
make use of heterogeneity.

We sketched a partial solution aimed at overcoming the integration problem in
[RKS11].

2.4 Logical Frameworks

In response to the plurality of logical systems, logical frameworks have been intro-
duced. These are formalisms in which the logical parts of the data structures (but
usually not the concrete source syntax and not all extra-logical parts) of logics can
be defined. [Pfe01] gives an overview.

LF [HHP93] is a logical framework based on the dependently-typed λ-calculus.
It uses the judgments-as-types methodology. In particular, logic definitions usually
use a declaration proof : form → type such that proofF is the type of proofs of
F . Twelf [PS99] is the most mature concrete implementation of LF. It includes a
theorem prover for meta-theorems, i.e., theorems about the defined logics. A wide
variety of logics have been defined in Twelf, e.g., in the LATIN library [CH+11].

Dedukti [BCH12] implements LF modulo rewriting. By supplying rewrite rules
(whose confluence Dedukti assumes) in addition to an LF theory, users can give
more elegant logic encodings. Moreover, rewriting can be used to integrate compu-
tation into the logical framework. A number of logic libraries have been exported
to Dedukti, which is envisioned as a universal proof checker.

Isabelle [Pau94] implements intuitionistic higher-order logic, which (if seen as
a pure type system with propositions-as-types) is rather similar to LF. Isabelle
includes an LCF-style interactive theorem prover and a tactic language for prov-
ing object theorems, i.e., theorems within the defined logic. Despite being logic-
independent, most of the proof support in Isabelle is optimized for individual logics
defined in Isabelle, most importantly Isabelle/HOL and Isabelle/ZF.

All logical frameworks allow representing logics as theories. This allows using the
heterogeneous method to build logics from small components and to express logic
translations as theory morphisms in the logical framework. The authors’ LATIN
library [CH+11] systematically employs this approach to formalize a large collection
of logics.

However, state-of-the-art logical frameworks are not expressive enough yet to
allow natural formalizations of the complex foundations underlying state-of-the-
art deduction systems. For example, the LATIN project could not obtain full
formalizations of the major foundations in LF.

Moreover, logical frameworks cannot replace foundation-specific systems because
the increase in generality always unavoidably leads to additional overhead and a
decrease in efficiency. In particular, logical frameworks lack strong support for
computation and thus cannot represent proofs efficiently that rely on computation.
Therefore, several systems that are expressive enough to act as logical frameworks
such as Coq or Nuprl have not pursued these avenues. The use of rewriting in
Dedukti is motivated by this shortcoming.
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2.5 Knowledge Management (KM)

KM Languages. Mathematical knowledge, research, and applications are dis-
tributed globally, and mathematical knowledge is highly interlinked by explicit and
implicit references and citations. Therefore, a computer-supported management
system should support global interlinking and scale to very large libraries. Yet,
virtually all current deduction systems operate under the implicit assumption that
all relevant knowledge is locally available and can be loaded into main memory –
i.e., at local scale.

On the other hand, there are representation languages developed for global scale
mathematics. OpenMath [BC+04] and MathML [AB+10] provide general defi-
nitions of the concrete and abstract syntax of mathematical objects. OMDoc
[Koh06] extends these with abstract and concrete syntax for statements, hetero-
geneous theory development, informal knowledge, and mathematical documents.
These languages can be customized by content dictionaries, which introduce addi-
tional primitives and describe their semantics. While there are only very few and
weak content dictionaries that were natively written in these languages, content
dictionaries can be generated automatically from heterogeneous formalizations as
we do in [HR15].

These languages have been used as system-level interchange formats for math-
ematical/symbolic systems (e.g., the use of OpenMath in the SCIEnce project
[HR09]), as a basis for integrating mathematics with the semantic web (e.g., in
the MONET FP6 project and the HELM/MoWGLI FP6 project), or as markup
languages for web browsers (e.g., by the integration of MathML into HTML5).
They are the basis of generic assistant systems such as MathWebSearch [KŞ06]
for search or ActiveMath [MB+03] for user-adaptive learning. Many mathematical
assistant systems from symbolic computation or (to a much smaller extent) formal
deduction can use them for the export or import of their knowledge.

KM for Deduction Systems. As a rough general rule, deduction systems fare
badly on KM challenges like large scale collaborative projects, change and distri-
bution management, and integrated development environments. Retro-fitting them
with KM support has proved very expensive and unsatisfactory. In fact, because
these systems have initially focused on soundness and efficiency at local scales, large
scale KM has proved very difficult to add as an afterthought, often prohibitively
so. Moreover, developers’ resources are stretched thin already by developing (and
maintaining) their system at all. Therefore, the gradual migration towards new
designs that overcome these problems is extremely difficult. It is no coincidence
that Matita [ACTZ06] — one of the few major new systems of the last decade —
is the most KM-friendly among them.

More concretely, most proof assistants come with some support for searching
statements (usually a plain text search of the source files or a search for identifiers
with certain properties after loading the library) and ad hoc change management
(usually based on file-modified timestamps). Most systems are able to export their
library as browsing-oriented HTML, using styles, cross-references, and visibility
management.

These services tend to be low-level services based on data structures that are
close to the plain text source (e.g., text-based search) or high-level services based
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on the volatile in-memory data structures (e.g., searching for identifiers with certain
types). The systems often lack persistent high-level representations of the library
(e.g., in OMDoc) that could serve as the basis for generic large scale KM services
that can be developed and run independent of the deduction system. If such repre-
sentations exist, such as Coq’s binary or Mizar’s XML files, their KM potential is
not fully exploited, often due to a lack of resources among the experts and a lack
of documentation for outsiders.

One of the most advanced system-specific solutions is the automated reasoning
service for HOL Light [KU13], which uses machine learning to select from a large
knowledge base of theorems those that can help to prove an open proof obligation
automatically. One of the most advanced system-independent KM projects in this
area is [ABMU11], which develops a general Wiki infrastructure that is applied to
Mizar and Coq.

For Isabelle, a partial reimplementation in a different programming language
(Scala instead of ML) permitted a tighter coupling between deduction kernel and
KM applications (in this case authoring support) [Wen12]. A related line of work
built asynchronous theorem proving [Wen10], which allows delaying all checks that
are only relevant to the correctness of the theory but do not have immediate bearing
on the user interface. This allows a systematic change management where small
changes to large formalizations can be made more efficiently.

3. THE OMDOC/MMT LANGUAGE AND MMT SYSTEM

We new review the base of our proposal for fresh start of the QED project.

3.1 A Universal Language for Pluralistic Mathematical Libraries

We have developed the OMDoc XML format [Koh06], which can serve as a stan-
dardized representation language of a QED-style database. In particular, it can
represent the exports of deduction system libraries and their documentation. In
the last five years we re-developed the fragment of OMDoc pertaining to for-
mal knowledge resulting in the OMDoc/Mmt language [RK13; HKR12; Rab14b].
OMDoc/Mmt greatly extends the expressivity, clarifies the representational prim-
itives, and formally defines the semantics of this OMDoc fragment.

OMDoc/Mmt introduces a rigorous, foundation-independent conceptualiza-
tion of the data structures of deduction systems. It systematically avoids any com-
mitment to a particular foundation, abstracts from and mediates between different
foundations, and thus maximizes the reuse of concepts, tools, and formalizations.
As such, OMDoc/Mmt provides a uniform solution to the root logic controversy
of QED.

More concretely, OMDoc/Mmt integrates successful representational paradigms
• theories and the reuse along theory morphisms from the heterogeneous method,
• the logics-as-theories representation from logical frameworks and the transpar-

ent, multi-level integration into the heterogeneous method,
• the Curry-Howard correspondence from type theoretical foundations,
• URIs as globally unique logical identifiers from OpenMath,
• the standardized XML-based interchange syntax of OMDoc,
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Fig. 2. Meta-Theories and Theory Morphisms in OMDoc/Mmt

and makes them available in a single, coherent representational system for the first
time. The combination of these features is based on a small set of carefully chosen,
orthogonal primitives in order to obtain a simple and extensible language design.

The central concept of OMDoc/Mmt is that of a theory, which is a named
list of declarations. Most importantly, the declaration of a constant introduces a
new name possibly with additional attributes such as type, definiens, or notation.
Relative to a theory, objects are formed as syntax trees with binding.

Although further work remains regarding certain features (e.g., computation),
these three concepts already allow natural representations of most formal languages.
• All languages are represented uniformly as OMDoc/Mmt theories. This in-

cludes foundations, logical frameworks, logics and type theories, signatures and
theories, set theories.
• All operators and symbols of a language are represented as OMDoc/Mmt

constants. This includes the sort, constant, function, and predicate symbols of
logics, the base type, type operators, and term constructors of type theories,
the concepts, relations, and individuals of ontologies, as well as – via the Curry-
Howard correspondence – the judgments, inference rules, axioms, and theorems
of calculi.
• All composed expressions are represented as objects. This includes formulas,

derivations and proofs, terms, types, kinds, and universes, etc.
OMDoc/Mmt theories can be related to each other via theory morphisms,

which are used to uniformly describe the modular structure of and representa-
tion theorems between theories. Regarding modular structure, theory morphisms
occur as import declarations within theories, which uniformly represent, e.g., in-
heritance and instantiation. Regarding representation theorems, theory morphisms
occur as translations, functorial representations, implementations, and models.
OMDoc/Mmt maintains a formal meta-theory relation between theories. Let

us write M/T to express that we work in the object language T using the meta-
language M . For example, most of mathematics is carried out in FOL/ZFC, i.e., first-
order logic is the meta-language, in which set theory is defined. FOL itself might be
defined in a logical framework such as LF [HHP93], and within ZFC, we can define
the language of natural numbers, which yields LF/FOL/ZFC/Nat. In OMDoc/Mmt,
all of these languages are represented as theories, each of which may be used as
the meta-theory of another one. The meta-theory indicates both to humans and
to machines how a theory is to be understood. For example, interpretations of ZFC
must understand FOL, and the typing relation of FOL is inherited from LF. The
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diagram of OMDoc/Mmt theories in Figure 2 gives an example, where LF + X
represents some extension of LF with additional features.

The combination of foundation-independence and theory morphisms makes OM-
Doc/Mmt very suitable for building a universal community-driven QED database.
Practically, this makes the foundation (root logic) a parameter of the formalization,
which enables an inclusive “bring-your-own-foundation” approach to community
building. Moreover, it becomes easier to design new root logics because the OM-
Doc/Mmt module system can be reused. Theoretically, theory morphisms allow
relating theories across foundations, a crucial prerequisite for the systematic inte-
gration of systems and libraries.

We can see OMDoc/Mmt as the next step in a progression towards more
abstract formalisms as indicated in the table below. In conventional mathematics
(first column), domain knowledge is expressed directly in ad hoc notation. Logic
(second column) provided a formal syntax and semantics for this notation. Logical
frameworks (third column) provided a formal meta-logic in which to define this
syntax and semantics. Now OMDoc/Mmt (fourth column) adds a meta-meta-
level, at which we can design even the logical frameworks flexibly. (This meta-
meta-level gives rise to the name OMDoc/Mmt with the last letter representing
both the underlying theory and the practical tool.) That makes OMDoc/Mmt
very robust against future language developments: We can, e.g., develop LF + X
without any change to the OMDoc/Mmt infrastructure and can easily migrate all
results obtained within LF.

Mathematics Logic Meta-Logic Foundation-
Independence

OMDoc/Mmt
logical framework logical framework

logic logic logic
domain knowledge domain knowledge domain knowledge domain knowledge

The increased level of generality in OMDoc/Mmt makes it harder to obtain
OMDoc/Mmt-level results because any result has to be generalized to apply to
every foundation. Indeed, one might think that it is not possible to obtain deep,
meaningful results at all. However, as exemplified below, practical experience has
shown that many results can be generalized to the OMDoc/Mmt level. This
expands on existing experiences with logical frameworks – for example, Isabelle
contains ∼ 40 ML files with logic-independent functionality such as for induction
or code extraction.

For each result, this may require a substantial research effort, which samples
existing results for specific foundations and integrates them into a general result.
But it is doubly rewarding: Besides yielding a general result, the abstract level of
OMDoc/Mmt provides a more focused view on a concept and often yields clearer
intuitions.

3.2 Foundation-Independent Implementation

Exploiting the small number of primitives in the OMDoc/Mmt language, the Mmt
API [Rab13b] provides a simple scalable implementation of OMDoc/Mmt (written
in the functional and object-oriented language Scala [OSV07]), which serves as the
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kernel of a tool suite for the creation and life-cycle management of OMDoc/Mmt-
encoded libraries of mathematical knowledge.

It implements data structures, algorithms for interpretation, computation, and
(very experimentally) deduction, as well as knowledge management support founda-
tion-independently. For each algorithm, foundation-specific aspects (if any) are
supplied by plugins via various plugin interfaces, which often take the form of sets
of rules. Our experience shows that the vast majority of the implementation is
foundation-independent. For example, the LF plugin contains the typing and proof
rules for LF and various LF-specific functionality such as code generation or rewrite
rule generation. Yet its size is only about 5% of that of the Mmt API. Thus much
functionality can be made available to individual foundations at small cost.

Logical results obtained generically at the OMDoc/Mmt level include the
fundamental concepts of logic [Rab14b], module system [RK13] and theory trans-
formations [Hor14], literals [Rab15a], notation-based parsing, type reconstruction
and simplification, and a (so far) very basic theorem prover. (The latter results
have not been published independently but are part of the Mmt system.) [Rab15b]
generalizes the method of logical relations to the “almost OMDoc/Mmt” level,
i.e., it makes some mild assumptions about the foundations.

These results can be used for rapidly prototyping new foundations. This can
help build a variety of specialized deduction systems that make small contributions
to a large QED database. But no foundation-independent implementation can
compete with foundation-specific ones for tasks such as proof development and
proof checking, which are efficiency-critical and prone to combinatorial explosions.
Therefore, Mmt is most useful in those cases where foundation-specific solutions
do not exist in the first place, e.g., for new or experimental foundations.

In any case, the most important application of Mmt as a foundation-independent
deduction system is to implement logical frameworks and use those to formalize the
foundations of existing deduction systems.

For example, Mmt’s type reconstruction algorithm handles implicit arguments
and unsolved meta-variables, constraint delay, and error reporting foundation-
independently. The plugin that implements the logical framework LF supplies only
∼ 10 LF-specific rules of a few lines each, which correspond directly to the usual
typing and equality rules for Π, λ, and application. To instantiate the algorithm
with other logical frameworks, we only have to change the set of rules. For example,
any other pure type system can be implemented accordingly by changing the type
inference rule for Π, and shallow (rank-1) polymorphism is obtained by adding a
single rule. Mmt’s computation algorithm is also rule-based and integrated with
type reconstruction; therefore, Dedukti-style type theories modulo are obtained
simply by adding rewrite rules. We believe this approach will extend to more com-
plex foundations (including, e.g., universe hierarchies, induction, or subtyping), but
we have not investigated that yet.

Contrary to logical results, knowledge management results typically require
no foundation-specific customization and thus offer higher pay-offs when applied to
existing foundation-specific libraries. Results implemented generically at the OM-
Doc/Mmt level include project management and build system [HI+11], IDE (build
by integrating Mmt with the jEdit text editor) [Rab14a], interactive browsing us-
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ing HTML+presentation MathML and JavaScript [GLR09], change management
[IR12], as well as indexing, querying, and search [Rab12; KMP12; KI12]. Plugin
interfaces allow the convenient import/export of content in other formats.
Mmt URIs serve as identifiers throughout the implementation and abstract from

physical storage units such as file systems or versioned repositories. Mmt main-
tains a catalog that maps URIs to physical locations. Mmt content is loaded into
and unloaded from memory dynamically and transparently, and the distribution
of content over physical storage and networks remains transparent to Mmt-based
services.

Fig. 3. Mmt IDE based on jEdit

For example, the Mmt-based foundation-independent IDE is realized as a plugin
to the jEdit text editor. It allows defining logics in any logical framework that
is implemented within Mmt. Figure 3 shows a definition of propositional logic
with meta-theory LF. An – intentionally introduced – error was detected by type
reconstruction and highlighted in blue. Note how the sidebar shows the abstract
syntax tree of the theory: The types of the variables x and y were inferred and
are displayed in the syntax tree even though type reconstruction for the whole
expression failed. Other features include hyperlinks, type inference tooltips for
selected subexpressions, context-sensitive auto-completion, or interactively solving
for missing subexpressions based on the expected type. Mmt’s design makes it
possible to realize this advanced functionality using only < 1, 000 lines of glue code
between jEdit and Mmt.

Another example is the Mmt web server. Figure 4 shows a fragment of the
HOL Light library as imported into Mmt in [KR14]. It shows how the context
menu is used to interactively call type inference on the selected subexpression in
the definition of the universal quantifier (which is written ! in HOL Light). Other
interactive features include folding subexpressions, hiding/showing inferred types,
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Fig. 4. Type Inference in the Mmt Web Server

implicit arguments, and redundant brackets, or retrieving the definition of a symbol
or of an included theory.

The web server can be run as a dedicated server or locally. For example, it can be
run from within the jEdit IDE, in which case browser and editor become connected,
e.g., for synchronous navigation.

4. THE MATHHUB.INFO ARCHIVE AND PORTAL

The Mmt system described in Section 3 can be used to give individual users access
to a mathematical library and supports their knowledge management workflows.
But a full-scale, global QED database requires user/rights management, distributed
revision control, and Web 3.0 features (e.g., discussions and user-generated anno-
tations). For that purpose, we introduce the MathHub.info system. It is realized as
an instance of the Planetary system [Koh12], which we have substantially extended
in the course of the work reported here.

4.1 Architecture

MathHub.info has four main components (see Figure 5):
i) a versioned backend holds the libraries,

ii) the Mmt API as the kernel tool understands the libraries provides semantic
services for them,

iii) a web-based frontend makes the libraries and services available to users,
iv) a Javascript plugin architecture enriches document presentations with localized

semantic services.
We use best-of-breed open source systems for the components going beyond Mmt.
In the backend, we use GIT for versioning, distribution, and user/rights manage-
ment adapting the GitLab repository manager [GL], an open-source alternative
to GitHub. For the frontend, we use the Drupal container management system.1

For the Javascript library we use our JOBAD framework [GLR09; Koh12], which
embeds semantic services into HTML documents and thus makes them interactive
and user-adaptive. Even though JOBAD is just a relatively thin layer of glue code
that picks up on semantic annotations in the generated HTML5, its effect for the
users is rather profound: It gives them access to added-value services “at the point

1Drupal and similar systems self-describe as “content management systems”, but they actually
only manage the documents and their metadata – essentially document containers – without
changing their internal structure.
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of pain/interest”, i.e., in the user interface. Figure 4 already shows JOBAD in
action: it links fragments of the formula presentations with computations in the
Mmt system and makes both available to the user embedded in the document.

Browser Drupal

MMT
System

GitLab

library

convert source to
OMDoc/MMT

MWS

harvest
query

load
casual
user

REST

JOBAD

semantics

edit

power
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Fig. 5. The modular MathHub.info Architecture

Figure 5 shows the detailed architecture. Here GitLab provides distributed ver-
sioned storage of the libraries and organizes them into repositories owned by users
and groups. And Drupal supplies uniform theming, discussion forums, and a plu-
gin infrastructure for adding interface functionality. Both systems provide user
management, but we automatically synchronize the users and permissions between
them, so that GitLab becomes invisible to the casual user.

This componentized architecture has the advantage that we can combine two
methods for accessing the contents of MathHub.info: i) an online, web-based
workflow for the casual user, and ii) an offline authoring workflow based on git
working copies for power users and bulk edits. Users can fork or pull the relevant
repositories from GitLab, edit them, and submit them back to MathHub.info either
via a pull request to the repository masters or a direct commit/push. As the
content is often highly interlinked and distributed across multiple interdependent
repositories, we have developed tool support for managing multiple working copies
across repository borders.

The interactive functionalities in MathHub.info are based on the OMDoc/Mmt
representation of the libraries, but authors and users have to interact with them in
the respective source language of the library. Both the source and OMDoc/Mmt
representations are versioned in GitLab and the respective source representations
must be converted into OMDoc/Mmt by language-specific custom exporters. Cor-
respondingly library import is managed by MathHub.info at the level of the GitLab
repository.

Then we can dedicate a specific GIT working copy together with an Mmt instance
to a user or a group that shares permissions. Thus, the Mmt instance sees (and
takes into account for its services) only the documents accessible to the group. If an
authenticated user edits MathHub.info content, the changes are committed under
his name into the specific working copy. This makes it easy to cope with multiple
synchronous users, for which MathHub.info uses separate working GIT clones and
Mmt instances.
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4.2 Content

MathHub.info is intended as a portal and archive for both QED-style formalized
mathematics and flexiformal mathematics, i.e., informal or partially formalized
documents. To deal with flexiformal mathematical content, we have also extended
the Mmt API to allow informal fragments and to degrade gracefully in their pres-
ence. For example, Mmt’s type reconstructions works on those subexpressions
for which type information is available, and Mmt’s change management for those
documents for which dependency information is available.

We are currently hosting a nucleus of formal and flexiformal libraries and their
OMDoc/Mmt representations to develop and evaluate the functionality. Con-
cretely, these are

i) SMGloM [Koh14], a flexiformal glossary containing about 1500 definitions and
notation written in STEX [Koh08] (semantically annotated LATEX).

ii) about 6500 flexiformal STEX files containing teaching materials (slides, course
notes, problems, and solutions) in computer science,

iii) the LATIN logic library [CH+11] with about 1000 modules,
iv) the TPTP library [Sut09] of over 20, 000 theorem proving challenge problems,
v) the Mizar Mathematical Library [TB85] of about 1,000 articles and 50,000

statements, and
vi) the HOL Light Library of about 200 files and over 15,000 statements,

vii) very recent and still partial versions of the Open Encyclopedia of Integer Se-
quences (OEIS) [Slo03] and the libraries of PVS [ORS92], Specware [SJ95],
and Theorema [Win14].

In the future we want to open the portal up for user-supplied content, eliciting
documents from mathematics and nearby disciplines. We anticipate that Math-
Hub.info may be attractive to authors because it i) offers free private repositories,
ii) allows transforming mathematical papers into hosted, searchable HTML5 docu-
ments, iii) allows adding interactivity by semantic annotations in a stepwise fashion.

But ultimately, we are interested in a communal resource, in which the document
sources are available for inspection, re-use and semantic analysis. Therefore, the
free private repositories are in what we call public escrow : They are private as long
as the user actively requests them to be. Otherwise, they are published under a
copyleft license of the user’s choice.

Even though the MathHub.info system is more general than necessary for a QED-
style database of formal mathematics, it is well-suited for it. In fact, we expect that
the inclusion of informal documents will support stepwise formalization workflows
and allow interlinking conventional mathematical texts with their formalizations.

4.3 Global Services in MathHub.info

Like the deduction systems surveyed above, the Mmt system provides its services
based on data structures in main memory – essentially a must for reasoning and
knowledge management services – even though the OMDoc/Mmt language sup-
ports global scope and linking via its XML-based syntax and Mmt URIs. Essen-
tially, the memory consumption of the Mmt system adapts dynamically to the
scope of the respective user’s field of attention.

The MathHub.info system can also integrate services that have a global view, i.e.,

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.



QED Reloaded: Towards a Pluralistic Formal Library of Mathematical Knowledge · 221

services that range over all the libraries in MathHub.info. Such services usually
operate on a special, reduced representation of content – e.g., the dependency
graph. This representation is often produced by mapping a translation service
provided by the Mmt system over the library; this is very efficient because many of
the OMDoc/Mmt-based algorithms are systematically incremental, i.e., they can
translate a single file or theory without loading its dependencies – see [KRZ10] for
details.

A good example of a global-scope service is the MathWebSearch service (MWS;
[KŞ06]), a formula search engine. It consists of a web service that harvests formulae
from all MathHub.info content and submits them to a specialized substitution tree
index, which can be efficiently queried by the user (cf. Figure 5). In contrast to
local services, which load content into memory on demand, MWS must keep the
whole index in memory [KMP12].

In MathHub.info, we are using an extension ([search [KI12; IK15]) of MWS, which
makes use of the modular structure in OMDoc/Mmt encoded libraries: [search
uses the Mmt system to flatten all theories (essentially copying over all inherited
statements) creating a monolithic knowledge space, which can then be indexed
in the regular MWS engine. In this way, we can search the exponentially larger
knowledge space induced by the modular theories hosted in MathHub.info.

Fig. 6. [search on a Theory Graph similar to the one in Figure 2

Figure 6 shows a query for the associativity of integer addition, and shows a hit in
the theory IntArith, which inherits the associativity axiom from the theory Abelian-
Group. This alleviates a common concern with the heterogeneous method: that
the space-efficient representation given by reuse of theories in modular structures
hinders accessibility of contents. nBy using Mmt and [search, the heterogeneous
structure of formalizations can remain transparent to casual users. Note that Mmt
URIs (the form in which [search hits are returned by the underlying search engine)
contain enough information to generate matheamtically adequate explanations of
the hits.
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5. QED RELOADED

With the OMDoc/Mmt representation format and system and the MathHub.info
infrastructure, we have first versions of all the critical pieces for a modern incarna-
tion of the QED database. In this section, we show how they can work together to
form a pluralistic formal library system of mathematical knowledge. We also dis-
cuss current short-comings, in particular regarding the representation of complex
foundations and library integration. In any case, actually filling this infrastructure
with the QED content remains a substantial community effort.

5.1 Representing Foundations
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Fig. 7. A Fragment of the LATIN Atlas

The LATIN project [CH+11] built a heterogeneous, highly integrated library of
formalizations of logics and related languages as well as translations between them.
It represented logics as OMDoc/Mmt theories with the logical framework LF as
the meta-theory. Figure 7 shows a high-level view of a fragment of the resulting
diagram of OMDoc/Mmt theories, where ↪→ represents inclusions and → other
theory morphisms, and the meta-theory LF is omitted. The left side shows some of
the logics. For example, FOL is included into ZFC set theory because it is its meta-
theory; and the model theoretical semantics of FOL is given by a second morphism
into ZFC, which factors through HOL. All logics are defined modularly, and the
middle zooms into the modular definition of propositional logic, which arises by
importing each connective. The right side zooms in further to show the definition
of conjunction as a triple of syntax (the binary connective and its notation), proof
theory (the introduction and elimination rules), and model theory (the cases of the
interpretation function).

The logics formalized in LATIN include propositional, first-order, sorted first-
order, common, higher-order, modal, description, and linear logics. Type theoreti-
cal features, which can be freely combined with logical features, include the λ-cube,
product and union types, as well as base types like booleans or natural number.
In many cases alternative formalizations are given (and related to each other),
e.g., Curry- and Church-style typing, or Andrews and Prawitz-style higher-order
logic. The logic morphisms include the relativization translations from modal,
description, and sorted first-order logic to unsorted first-order logic, the negative
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translation from classical to intuitionistic logic, and the translation from first to
sorted first- and higher-order logic.

All representations systematically exploit modularity and form a single highly
interconnected diagram of OMDoc/Mmt theories. Every logical principle, e.g.,
as conjunction, the universal quantifier of first-order logic, or the extensionality
principle of higher-order logic, is formalized in a separate module. Thus, logics
can be composed modularly from the individual features using the OMDoc/Mmt
module system. For example, the logic of Isabelle [Pau94] can be obtained by
combining the modules for Church-style typing, simple function types, a boolean
type, implication, typed universal quantification, and typed equality, as well as
corresponding theories for the proof theory and corresponding theory morphisms
for the model theory.

The LATIN library also allows representing model theoretical semantics as the-
ory morphisms from a logic into a theory representing a foundation [Rab13a]. A
paradigmatic example for first-order logic and its proof- and set-theoretical se-
mantics was published as [HR11]. The foundations in LATIN include Zermelo-
Fraenkel set theory, Church’s higher-order logic, and Mizar’s formalized set theory
[IR11]. These representations can also double as a documentation layer for the
foundations.

Representing a foundation in a logical framework can be very difficult. Often it
requires a deeper understanding of the logic and its implementation than published
in the literature. Moreover, state-of-the-art logical frameworks such as LF or Is-
abelle are not strong enough to represent all features of the typical foundations of
QED systems. Already Mizar’s soft type system cannot be represented elegantly.
Similarly, inductive and record types, subtyping and implicit coercions, and com-
putation and reflection are notoriously difficult to represent in logical frameworks.
Moreover, sometimes unexpected features prove important: We designed a version
of LF with sequences [HRK14] in response to practical needs.

This is the main motivation for OMDoc/Mmt to allow plurality even at the
logical frameworks level: It lets us gradually design the logical frameworks neces-
sary to represent the various foundations while already building the overall QED
database. Our practical experience has confirmed the feasibility of this approach:
Originally, OMDoc/Mmt only supported LF, but additional features such as pure
type systems, shallow polymorphism, and rewriting could be added very easily.

5.2 Representing Libraries

We anticipate that most contributions to the reloaded QED database will be pro-
duced by foundation-optimized systems even though our proposed framework is
foundation-independent. Therefore, the development of QED libraries should con-
tinue in foundation-specific systems, and we propose extending these systems with
export facilities that publish their libraries to our central QED database.

Concretely, after representing the foundation F of a deduction system in an
appropriate logical framework, we can add an export function to the system that
outputs its library as a set of OMDoc/Mmt-theories with meta-theory F . In
our experience, the specification of these exports is relatively simple except for
handling a few idiosyncratic features that each foundation tends to have. However,
their implementation and maintenance is very expensive and can even be impossible

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.



224 · Michael Kohlhase and Florian Rabe

LF LF+X

LATIN logic library
. . .

HOL Light

HOL Light library
Bool Arith

. . .

Mizar

Mizar library
XBoole XReal

. . .

Arith

. . .

Fig. 8. Representing Libraries in OMDoc/Mmt

without refactoring the system. Therefore, substantial collaboration from within
the respective developer community is indispensable.

The most advanced library exports at this point are those for Mizar [IKRU13]
and HOL Light [KR14], resulting in the OMDoc/Mmt diagram of Figure 8. If
our proposal for a pluralistic QED library gains traction, it will become a maturity
signal for a deduction system to support such an export facility.

We do not expect a “back-translation” from OMDoc to the source syntax in the
near future – indeed thiles is usually very difficult in our experience. Moreover, at
least for mature QED systems, the curation and extension of the various libraries
will continue to operate on the respective source files (rather than the exported
OMDoc files) using the existing foundation-specific work flows. Therefore, the
QED database should store both the source and the OMDoc files, and the latter
should include fine-granular source references. Then generic library management
functions can operate on the OMDoc representation and use the source references
to annotate source fragments, e.g., with refactoring suggestions or user comments.

5.3 Integrating QED Libraries across Foundations

In principle, deduction systems can use the QED database to import results from
libraries with compatible foundations or adapt proofs and proof scripts by analogy.
However, this is still hampered by the library integration problem. We believe our
pluralistic database is necessary for systematically attacking this problem. In fact,
we might even say that we need it just to develop the tools for surveying the extent
of the problem. We propose two methods for working towards a solution.

Alignments. We subscribe to the analogy that considers conventional mathemat-
ics as akin to (informal) software specification and formalized mathematics as akin
to implementations. Consequently, the different foundations correspond to the dif-
ferent programming languages used to implement a specification.

Now the flexiformal MathHub.info system that we suggest for QED already per-
mits representing both the formalizations and the conventional mathematics. In
fact, we regard the flexiformal glossary SMGloM mentioned in Section 4.2 as the
kernel of a collection of informal reference specifications: SMGloM is a theory-graph
structured set of theories, which contain flexiformal definitions for standard math-
ematical concepts and objects [Koh14]. As such, they abstract away from many of
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the foundational choices we have to make in formalization. Thus, we can link each
concept in a formalization to the glossary concept that it “implements”.

Then we can define two symbols in two libraries to be aligned if they are linked
to the same concept in the glossary. Alignment will have to be a very complex
relation. For example, HOL Light has a type of booleans, which is aligned with
two concepts in Mizar: the type first-order propositions and the 2-element set of
booleans. Conversely, Mizar’s number 0 is aligned with multiple numbers in HOL
Light including the natural and the real number 0.

Therefore, alignments will not induce formal translations between libraries. But
they will still allow a variety of important services, such as:
• Mathematicians can use common mathematical syntax to search all QED li-

braries up to alignment.
• Formalizers can look for useful theorems formalized in other systems. This may

even allow to automatically transport proof ideas, e.g., by using a heuristic that
uses alignments to translate essential lemmata.
• If the types of aligned constants are aligned as well, libraries of one system can

be presented in the notations of another.

Interface Theories. The method of alignments can be deepened to what we call
interface logics and interface theories. Following the above analogy, these
correspond to the use of formal specifications in software engineering.

Interface logics will be the minimal logics needed to state a problem and thus will
be much less expressive than common foundations. This is no coincidence: Whereas
foundations are designed to be simple and expressive at the same time (because
they should be fixed and implemented once and for all), interface logics should be
as inexpressive as possible even if that makes them more complex. For example,
axiomatic set theory, higher-order logic, and constructive type theory are common
foundations. But we can specify the real numbers using a much less expressive
interface logic, such as monadic second-order logic, whose definition may be more
involved. While giving a logic translation between any two typical foundations can
be prohibitively difficult, a weak interface logic can be easily translated into many
foundations. The LATIN logic library described in Section 5.1 already constitutes
a large heterogeneous library of interface logics.

Similarly, interface theories will use interface logics as their meta-theories and
differ from QED-style formalizations by excluding any definitions and proofs. For
example, the interface theory for the real numbers will declare derived operations
such as exponentiation and their properties. But it will not commit to a concrete
definition and will not prove the properties.

We propose building a community-curated library of interface theories for the
typical domains of computer science and mathematics. We project that mathe-
maticians will be eager to join this effort. Indeed, the creation of interface theories
is an essential part of mathematics, and we can already see this effect in our expe-
riences with the glossary.

Moreover, in many cases, interface theories can be extracted automatically from
existing formalizations. This extraction will, however, be difficult for libraries that
use complex interpretation algorithms to handle heterogeneity implicitly. It remains
open how to trade-off between reusability and expressivity in these cases.
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In any case, it is crucial that the interfaces are built heterogeneously to ensure
that each commitment that substantially limits the possible realizations is made
in a separate theory. For example, division must first be specified in an interface
that can still be realized in intuitionistic foundations before refining it to a binary
function in a way that tacitly assumes classical logic.

We can leverage interface logics and theories for the integration of QED in two
ways. Firstly, deduction and symbolic computation procedures can refer to them to
declare their scope. Accordingly, proof assistants can use them to describe the scope
of open proof obligations. It is then straightforward to build mediator systems that
match up problem producers with problem solvers.

L

F1 F2

T1 T2

T

f1 f2

t1 t2

Secondly, interfaces can provide a way to translate be-
tween libraries. Consider the diagram on the right where
an interface logic L is implemented by two foundations
F1 and F2. The correctness of these implementations is
witnessed by two theory morphisms fi : L → Fi. Corre-
spondingly, an interface theory T of L is implemented by
two theories Ti of Fi with their correctness witnessed by
ti.

Now, for a T -symbol c, we say that t1(c) and t2(c) are aligned via (c, t1, t2). A
library translation should respect alignments in the sense that t1(c) is translated
to t2(c). Typically, ti maps symbols to symbols so that it induces a partial inverse
t−1i . As we already suggested in [RKS11], we can then compose t−11 with t2 to
translate partially from T1 to T2. This partial translation will only be defined for
concepts that are expressible in the interface theory and part of the alignment. In
particular, it will typically exclude proofs.

A major difference in the analogy between software specification and formaliza-
tion is that the former only has to show that an implementation is correct. In the
latter, we also have to ask whether it is conservative. We define ti to be conser-
vative if for any T -formula A, the theory Ti proves ti(A) only if T proves A.

Consider (Fi, Ti) to be part of deduction tools that are used for reasoning in
(L, T ). Then the existence of the morphisms (fi, ti) guarantees completeness: if T
proves A, then Ti proves ti(A) because morphisms preserve all judgments. Con-
servativity, dually, guarantees soundness. Thus, trusted library translations can be
obtained as follows: If t1 is conservative, then every T1-proof of t1(A) guarantees
the provability of t2(A) in T2 — even if we are unable to translate T1-proofs to T2.

Proving the conservativity of ti is often similar to proving the consistency of
Ti. In fact, except for degenerate cases, consistency is a necessary condition for
conservativity. But even if we assume the consistency of T1, it can still be a major
theoretical challenge to prove the conservativity of t1. This challenge has received
surprisingly little attention in the QED community so far. This is because each
QED system with foundation F1 typically assumes that the reference definition for
the set of valid T -formulas is provided by the validity in F1 itself. But that is not
allowed if we want to mediate between multiple QED systems.
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6. CONCLUSION & OUTLOOK

To assess the feasibility of actually starting work on the QED project, 20 years after
its announcement, we have surveyed the advances in formalized libraries. We find
that while there have been massive improvements in individual deduction systems
and their respective libraries, they remain insular and non-interoperable, leading to
duplication of work, sub-standard re-formalizations, and missed opportunities for
sharing. Moreover, the current crop of deduction systems have not been designed
for interoperability or global-scale libraries.

We contend that in the current situation, where we see at least half-a-dozen
major deduction systems and libraries2, we will only reach critical mass and make
progress towards an QED-inspired library if we take Peter Andrews’ suggestion to
“accept diversity” seriously and design a powerful, joint, pluralistic library system
that federates the various libraries, provides mathematicians with a unified view
on the library, and provides comprehensive library management functions based on
that view.

We have presented a body of work conducted with the aim of starting such a
pluralistic, global-scale library for mathematical knowledge. This work has been
conducted independently from the more established automated deduction and for-
mal methods community under the headings of “logical frameworks” (for logical
plurality) and “mathematical knowledge management” (for global scale). We view
this work as missing parts needed for establishing a QED library that lives up to
the community’s ambitions.

It will still require a large community effort to integrate the existing and fu-
ture libraries into our proposed infrastructure. In several areas, especially logical
frameworks and library integration, further research is necessary to improve on the
existing methods and to further automate the work flows.

We contend that 20 years after the QED manifesto the time is ripe for putting
together the advances in deduction systems, logical frameworks, and knowledge
management to create a QED library system and organize a community effort to
work towards realizing this vision. Now, as then, the greater automated reasoning
community has much to gain from such an effort. Especially, when some of its
spin-offs are becoming standard tools in industry.

As a final word of caution relativizing what was said here, we point out that the
QED effort will hardly be able to keep up with the ∼ 1.2 · 105 articles published
annually in research mathematics alone. Even if we assume that most of these
articles are not important enough to be formalized, we foresee that we will have
to generalize the methods presented in this paper to include partial formalizations.
Fortunately, our research shows that (contrary to complete mechanical proof ver-
ification) many aspects of the infrastructure and knowledge management can be
generalized well to the partially formal setting. We conjecture that this will allow
small-step formalizations that will be more efficient and flexible than the current
big-step formalization process.

2In [Wie07] Wiedijk compares surface and system languages of deduction system and finds that
there is no inherent “winner”, and we do not expect this to change in the near future.
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