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The Theorema project aims at the development of a computer assistant for the working math-

ematician. Support should be given throughout all phases of mathematical activity, from in-
troducing new mathematical concepts by definitions or axioms, through first (computational)

experiments, the formulation of theorems, their justification by an exact proof, the applica-

tion of a theorem as an algorithm, to the dissemination of the results in form of a mathe-
matical publication, the build up of bigger libraries of certified mathematical content and the

like. This ambitious project is exactly along the lines of the QED manifesto issued in 1994 (see

e.g. http://www.cs.ru.nl/~freek/qed/qed.html) and it was initiated in the mid-1990s by Bruno
Buchberger. The Theorema system is a computer implementation of the ideas behind the Theo-

rema project. One focus lies on the natural style of system input (in form of definitions, theorems,

algorithms, etc.), system output (mainly in form of mathematical proofs) and user interaction.
Another focus is theory exploration, i.e. the development of large consistent mathematical theories

in a formal frame, in contrast to just proving single isolated theorems. When using the Theorema

system, a user should not have to follow a certain style of mathematics enforced by the system
(e.g. basing all of mathematics on set theory or certain variants of type theory), rather should

the system support the user in her preferred flavor of doing math. The new implementation of
the system, which we refer to as Theorema 2.0, is open-source and available through GitHub.

1. AN INTRODUCTION TO THEOREMA

The first author initiated the Theorema project around 1995, see for example
[Buc97], after many years of experimenting with using formal predicate logic as
a working language both in mathematical research as well as in mathematical edu-
cation, see our early book on Mathematics for Computer Science [BL79], in which
we taught predicate logic (for first semester students) as a working language for
formulating problem specifications, algorithms, correctness theorems for algorithms
and their proofs. So, when QED was first issued, we welcomed this as a fascinating
vision and goal and, at that time, we had the first sketch and experiments towards
Theorema under way. In distinction to projects that aimed at the implementation
of efficient and general automated reasoners for proving isolated theorems, in the
Theorema project we emphasized from its outset that the system should be a logic
and software tool for supporting the entire process of mathematical theory explo-
ration, i.e. definitions of notions, formulation and proof of propositions, formulation
of problems, formulation and execution of algorithms for solving problems; all this
with a strong emphasis on a structured and layered build-up of theories. We ex-
pressed this view continuously in the frame of the early EU Calculemus Project of
which Theorema was one of the initiators, see for example [BMTV97].

1 Supported by the Austrian Science Fund (FWF): grant no. W1214-N15, project DK1.
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After a couple of years of experimenting with various programming languages,
computer algebra and automated reasoning systems, in 1995, we had come to the
conclusion that all the ingredients (attractive personal computers, screens, the in-
ternet, software technology, computer algebra libraries, attractive man-machine
interfaces, two-dimensional syntax etc.) were available for designing and imple-
menting a practically attractive mathematical theory exploration system. Based
on a systematic comparison of systems available, we decided to use Mathematica
as a frame for the development. The three reasons for this decision were: First
and most importantly, the Mathematica programming language with its pattern
matching programming style makes it easy to program reasoners in a straightfor-
ward and natural way. Second, Mathematica at that time was the only mathemat-
ical software system that already had an attractive user-interface (two-dimensional
programmable syntax, structured notebooks, fantastic graphics tools, etc.). Third,
Mathematica comes with a huge library of efficiently coded numeric, algebraic, and
symbolic algorithms. The third point must not be misunderstood: The logic basis
of Theorema does not rely on any of the algorithms in the Mathematica library
but, rather, only uses Mathematica as a programming language (as meta-language
for the implementation of Theorema reasoners). Still, sometimes, it may speed up
experiments in the exploration of more advanced areas of mathematics if one may
use some of the algorithms in a library, as black boxes, for conjecture forming,
comparison, and other heuristic purposes.

The main design principles of Theorema were, and still are:

— The system should support all phases of mathematical theory exploration.

— The system should allow to build up mathematical theories in a structured
way. (Organizational tools for this come for free with Mathematica. Internally,
in Theorema, we implemented powerful functor constructs that allow to build up
towers of mathematical domains conveniently, see [Buc96].)

— The basic logic language in which all theories are formulated is higher order
predicate logic with currying (i.e. we allow formulae, for example, of the form
D[+][x, y], i.e. function D applied to object + yields a function that can be applied
to x and y). The user may then decide how she wants to build up mathematics (the
part of mathematics she is interested in). In particular, she may decide which kind
of typing should be used. For example, some user may want to build up everything
in the frame of Zermelo-Fraenkel set theory, i.e. within first-order predicate logic
with the universal membership predicate. Others may want to build up towers
of domains with our functors that include a means for describing types in a very
explicit way that distinguishes between different data structures for isomorphic
domains.

— The advanced user of the system will want to explore a mathematical theory
by working on the object- and the meta-level in parallel : she may, in certain stages
of the exploration, work on the object-level by adding a few definitions, theorems,
algorithms and call the reasoner that is currently available for the theory for prov-
ing, solving, or computing formulae in the theory. Alternatingly, she may work on
the meta-level by extending the available reasoner. (In certain stages, the user may
want to stay a long time on the object-level and just work on the theory with the
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currently available reasoners.) In Theorema, the object language is predicate logic
and the meta language, for implementing reasoners, is Mathematica.

— Reasoning in Theorema is considered to have three different aspects: proving,
solving, and simplifying (in particular, computing, i.e. simplifying ground terms).
In practical reasoning, the interaction of these three aspects is of utmost importance
and interest.

— Correspondingly, proving (in particular proving the correctness of algorithms
relative to formal problem specifications) and computing (i.e. the execution of
algorithms on data) is possible in the same language. In a future version, also
solving (i.e. finding objects that satisfy certain properties depending on given
objects) will be supported in the language.

— The result of reasoning (using the reasoners available for a particular theory)
are abstract reasoning objects, which can then be post-processed for delivering
readable reasoning text (in particular, human-readable proofs). We emphasize the
importance of readable proofs in contrast to only producing proof scripts.

— The system should have a couple of organizational tools that allow to organize
libraries of theories, display and navigate through proofs, design two-dimensional
syntax according to the taste of the user, etc.

We are aware that a considerable number of projects and systems with similar
goals as Theorema are available or under construction, e.g. Isabelle/HOL [WPN08],
Coq [BC04a], Mizar [MR05, TB85], HOL/Light [Har96] and its relatives from the
HOL family, Minlog [BMSS11], ACL2 [KMM00], Leo [WSB14], Matita [ARSCT11],
and many more. A systematic comparison has been made a couple of times in the
past twenty years, see for example [Wie06]. An in-depth comparison between all
these systems and the Theorema system is not the aim of this paper. We think that,
while the goals and views are similar, there are a couple of aspects and features in
which Theorema differs from one or the other system:

— We emphasize the importance of special provers for special theories in the
same way as, in the frame of mathematical software systems, special solvers are
made available for special domains, e.g. solvers for linear and non-linear systems,
solvers over various coefficients domains, solvers for differential and functional equa-
tions etc.

— Theorema’s main credo is natural style in many aspects and facets. System
input written by the user should be as natural as possible for our main target
audience, namely mathematicians. We therefore put a lot of effort into the design
and styling of Theorema content notebooks and the Theorema user interface in
general, see Section 2.1. Also the system’s output should delight the user. In the
case of proving, the resulting proof should not only be a correct proof, but it should
be in natural style, easy to read and understand, and nicely formatted. It should
be presented in such a way that it is easy to browse and navigate through. In
this respect, we see a chance that computer-generated formal proofs could even be
perceived by users as an improvement compared to traditional proof presentation.

— Theorema should not only be a proving system, but also a computing system
that allows efficient development and execution of mathematical algorithms and a
universal solving environment that supports the specification and solution of various
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kinds of mathematical problems. In particular, the Theorema language should be
rich enough to serve as a logical frame for all these activities.

— Many mathematical assistant systems are interactive theorem provers or proof
checkers (Isabelle, Coq, HOL, Mizar), which assist the user in writing correct proofs
by either only allowing to formulate correct proof steps or checking each step in a
proof provided by the user. The focus of Theorema, on the other hand, is on fully
or partially automated proof generation.

— In the Theorema system, the term “interactive theorem proving” is used for
an optional mode, in which the fully automated proof generation may be user-
assisted, typically through hints for the prover given by the user. As an example,
in interactive mode the proof search loop may ask the user for the next open proof
situation to process instead of automatically choosing the left-most, see Section 3.
Or, when proving an existential goal, the system may ask the user for a witness
term in order to proceed. User guidance is employed in situations where current
automated techniques are not powerful enough to perform the desired steps or, in
educational use, full automation is too powerful and performs steps that we want
the user to practice and understand.

— Also, we want to emphasize that the goal of Theorema, typically, is the sup-
port of building up theories like elementary and advanced analysis, Gröbner bases
theory, the theory of functions and relations, number theory, graph theory, topol-
ogy etc., which consist of a big number of definitions, propositions, algorithms and
pertinent proofs, where each of the steps in the theory is of relatively small size
and much of the mathematical intelligence lies in the build-up of the theory and
in the intuition behind a few of the theorems. In this way, there are similarities,
but also differences, to recent important projects like the verification of the Kepler
Conjecture (led by T. Hales based mainly on HOL/Light with assistance from other
systems, see [Hal12]) or the complete formalization of the Feit-Thompson Theorem
in Coq (led by G. Gonthier, see [GAA+13]).

In the frame of a first version of Theorema, some interesting formal mathematical
research happened with a couple of surprising results:

— We had a couple of reasoners for various areas of mathematics implemented
that yielded proofs in what we think is a quite attractive proof style that may
convince working mathematicians about the value of formal theory exploration
systems, see [BDJ+00] for a summary.

— We developed new methods for reasoning in natural style in general predicate
logic, using meta-variables [KJ01] as well as a special technique for formulae with al-
ternating quantifiers (“S-decomposition” [JBK+09]), which allows an efficient usage
of algebraic techniques for discovering witnesses and instantiation terms [VJB09].

— We approached the problem of program verification by creating a simple the-
oretical framework for the generation of verification conditions [PJ11, EJ10], in
which we successfully combined logical and algebraic techniques for the automatic
generation of polynomial loop invariants [KJ06].

— We implemented a general version of Buchberger’s algorithm using our Theo-
rema functors so that the algorithm works in arbitrary towers of domains (so-called
reduction rings). Also, we developed a new algorithm synthesis algorithm (called
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“lazy thinking method”) by which it was possible to synthesize Buchberger’s algo-
rithm automatically from a formal specification of the Gröbner bases construction
problem, see [Buc04, BC04b]. This was somehow amazing because the Gröbner
construction problem is a problem that, before Buchberger’s PhD thesis in 1965,
was open for 65 years.

— We developed the first completely general symbolic method for solving linear
boundary value problems, which is based on showing that an analogue to the Baxter
axioms for the differentiation, integration, and evaluation operators form a Gröbner
basis (in some quite abstract non-commutative polynomial ring). This proof was
done completely automatically using a Theorema implementation of polynomial
reduction, see [RRTB11].

— The Theorema system has been used to support the teaching of mathematics.
In particular, special learning units have been developed with the aim of making
the “art of proving” accessible to beginner students. Tools have been developed,
for instance, that allow the student to investigate how the choice of the appropriate
knowledge base influences the proof that can be given, see [MSW07].

For the progress made in the Theorema project over the years, we refer to the
overview papers [BJK+97, BDJ+00, BCJ+06, JBK+09]. The system grew both in
size and capabilities through numerous contributions of both senior group members
and PhD students. Many of the students, after finishing their theses, continued their
careers in other places, and even changed their focus of research. On the side of the
software, this posed certain challenges to the coherent maintenance of heterogeneous
pieces of code. Together with advances in the user interface capabilities of the
underlying Mathematica system, this made a re-design and re-implementation of
the entire system necessary. The new version, which we call Theorema 2.0, still
keeps all the basic design principles described above, but uses the lessons we have
learned from the first implementation of the system.

The goal of the current paper is twofold: First, we want to describe the main new
design features and software details of Theorema 2.0 (see Sections 2 and 3) and also
a recent improvement of the unification algorithm, which is one of the basic logical
instruments for provers in Theorema (see Section 4). Second (see Sections 5 and 6)
we want to give two case studies of theory explorations in the Theorema style with
an emphasis on showing how the explorations of theorems and algorithms interact
and how the object-level of formulating theories and the meta-level of formulating
special inference rules go hand in hand.

2. THEOREMA 2.0

Theorema 2.0 is the latest implementation of the Theorema system. In Section 1 we
described the reasons for implementing the first version of Theorema in 1995 on the
basis of Mathematica. The main points are, in our view, still valid. Therefore, also
Theorema 2.0 is implemented in the Mathematica programming language (since
recently called the “Wolfram Language”) and it uses the Mathematica front end
as its user interface. In the following sections, we want to present the new system
from two perspectives,

(1) for users who want to use the system as it is and develop their mathematical
theories and
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(2) for developers who want to enhance the system capabilities by adding new
features.

Ideally, what we envisage as future users are expert users who combine the two
views just described. Imagine they want to develop a certain field of mathemat-
ics, e.g. the theory of Hilbert spaces. Then, in addition to defining the needed
concepts on the object-level, they provide their expert knowledge in the domain
on the meta-level in form of inference rules for the newly introduced concepts.
In the concrete example, they would formulate typical proof rules for the inner
product in a Hilbert space. This reflects common practice in the hierarchical de-
velopment of mathematics, where “advanced areas” are characterized not only by
advanced content (object-level) but also by advanced techniques (meta-level). Pro-
viding meta-level inference definitions as part of the Theorema language on the
user-level would require a mechanism of reflection with quoting, which has been
studied as a prototype in Theorema 1, see [GB07]. We decided not to include
such features in the current version mainly because our analysis in the technical
report [GB07] was not thorough enough for making it possible to move from infer-
ence rules formulated and proved in Theorema to using the rules when exploring
theories. We want to emphasize, however, that the perspective of formulating the
reasoning rules within the Theorema language with the possibility of proving their
correctness within the system is very attractive. It would certainly be a key feature
of an envisaged QED-system, so we might pick up these ideas in a later stage of
development.

2.1 The Theorema User Interface

We have a rather broad understanding of what a “user interface of a QED-system”
must be capable of. We think of the user interface not only as a software component
that allows the user to enter mathematical formulae or to call an automated prover.
Rather, we want to model the whole process of doing mathematics and have it sup-
ported by the software as smoothly as possible. This concerns, in particular, the
writing of mathematical documents. It is important to realize that typical math-
ematical documents (research papers, mathematical presentations, lecture notes,
etc.) do not only consist of formal entities such as formulae, definitions, theorems,
and proofs. In addition, they contain lots of semi- or informal parts such as text,
graphics, organizational matters (e.g. declaring global variables for a part of the
document), and the like. Recently, the notion of “flexiformal documents” has been
introduced for this kind of material, see [Koh12].

In Theorema we address all these issues by using enhanced Mathematica note-
books as the primary format for writing all kinds of mathematical documents.
Mathematica notebook documents consist of hierarchically nested cells, which all
have a certain “style” that guides not only their appearance but also their behav-
ior. Already in their standard version, they are kind of flexiformal, since there are
different styles for input, output, text, typeset expressions, and many more. Of
course, Mathematica notebooks are not perfect in all facets (when printed they are
not as beautiful as a well-written LaTeX-document, they do not match BibTeX
when it comes to literature citation, and when used as a beamer-presentation they
do not support all features of a dedicated presentation software), but they are a
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Fig. 1. Theorema 2.0 GUI: Content notebook left with Theorema commander to the right.

good compromise as a single format that can serve as the basis for many purposes.
In general, we prefer to have only one format in which the user does her work
compared to having many different tools with different formats and a variety of
conversion mechanisms between all of them. Moreover, notebooks are interactive
and can contain machine-executable parts, which we consider as very attractive.
Last but not least, the notebook interface is a central component of the Mathe-
matica system, and the chances are high that improvements can be seen with every
new release of Mathematica.

Theorema notebooks can also contain big portions of system-generated content
(formal output), most prominently automatically generated proofs. In order to ini-
tiate such content generation we provide a mouse-click driven user interface that is
also responsible for supporting hand-crafted input of formal parts of the document
(formal input). For Theorema 2.0 we have tried to take advantage of recent de-
velopments for supporting the implementation of user interfaces in Mathematica.
The user interface of Theorema 2.0 now consists of two components, the content
notebooks and the Theorema commander, see a screenshot of a Theorema session
in Figure 1.

2.1.1 Theorema Content Notebooks. The content notebooks are enhanced Ma-
thematica notebook documents. All typesetting facilities of Mathematica can be
used in both formal and informal parts, and stylesheets (similar to cascading
stylesheets in webpages) can be used to define the cells’ appearance and behav-
ior. Special cell styles are available for Theorema-specific formal portions of the
document.2 Most prominently, we provide so-called Theorema environments, which
contain formal expressions to be processed by Theorema, typically definitions, the-

2Note that inside a cell it is not possible to mix formal with informal content, a cell is either

entirely formal or entirely informal.
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Fig. 2. Theorema environment expressing the definition of a new property

orems and the like. Figure 2 shows an example of a Theorema definition in detail.
An environment starts with a header cell (marked (1) in Figure 2), which has no
formal restrictions on its content but only serves as a structural element. It ends
with a “�”, which enforces automatic grouping of the cells inside the environment
(5). The body of an environment may contain informal textual explanations (3),
formulae expressed in the object-level syntax of the Theorema language (4), and
what we call globals (2). The Theorema object-level syntax is essentially unchanged
from its predecessor version; it supports a huge variety of common special characters
and two-dimensional expressions, which results in expressions very close to usual
mathematical standards, see Figure 2. Basic arithmetic expressions, set, tuple, and
function notations have built-in support and new notions can be introduced via
definitions.

We will describe two important novelties introduced in Theorema 2.0 in more
detail, hierarchical formula input and global quantifiers/conditions (short: globals).
Hierarchical formula input (formula tree input) addresses the problem of operator
precedence in mathematical notations. As the simplest example, consider inputting
a formula like ∀

x
P ⇒ Q. Traditionally, this would be entered left-to-right by a

sequence of keystrokes

∀ – move below – x – move back to baseline – P – ⇒ – Q

and depending on the precedence between ∀ and ⇒, it would be interpreted as

(a) ∀
x

(P ⇒ Q) or (b) ( ∀
x
P )⇒ Q.

Due to the absence of a commonly agreed standard of precedences between all
imaginable operators—and even if there was one, the average user would typically
not memorize it—the desired grouping should be indicated by the user. The idea
in the new Theorema user interface is to enter formula skeletons via mouse-click
or keyboard-shortcuts, where subformulae conserve the grouping induced by the
sequence in which they were entered. Correct grouping is enforced by automatic
insertion of parentheses as shown in Figure 2 (4). We consider the parentheses
as crucial, because they show to the reader what the author wanted to express.
However, we show them almost invisible in order not to end up with parentheses-
dominated LISP-reminiscent expressions. In addition, subformulae can easily be
re-grouped manually, and there is a presentation mode, where parentheses vanish
completely at the price of the formula becoming uneditable.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.



Theorema 2.0: Computer-Assisted Natural-Style Mathematics · 157

In the example, in order to obtain formula (a), instead of starting with the ∀-
symbol, one would enter the ∀-skeleton resulting in ( ∀

2
2) and proceed recursively

in all subexpressions indicated by “2”. The first subexpression is a simple x, in the
second we enter the⇒-skeleton resulting in ( ∀

x
(2⇒ 2)) followed by P and finally

Q. Using the Mathematica standard TAB-key to cycle through all 2-placeholders,
this results in a sequence of keystrokes

∀ – x – TAB – ⇒ – P – TAB – Q, (1)

where s stands for mouse-click or keyboard-shortcut for skeleton s. Analogously,
we get formula (b) by

⇒ – ∀ – x – TAB – P – TAB – Q. (2)

Hence, we can get unambiguous and nice-looking input with reasonable effort, in the
example even without extra keystrokes. We want to emphasize that the proposed
way of entering formulae requires understanding the tree-structure of expressions,
since the difference between (1) and (2) just reflects the different trees representing
formulae (a) and (b). However, this should not be a hurdle, because even novice
users must understand the logical structure of the expressions they want to work
with.

Secondly, Theorema 2.0 introduces globals, which should be thought of as a for-
malization of the common “Let K be a field . . . ” at the beginning of a section
or the “Let f be a function from A to B . . . ” at the beginning of a definition
or a theorem. Both of these phrases are used to express that in all what follows
certain symbols are used as universally quantified variables, possibly with condi-
tions attached to them. It reflects common mathematical practice to either entirely
omit the outermost universal quantifiers and interpret free variables as implicitly
universally quantified or indicate universally quantified variables and conditions at-
tached to them in the surrounding informal text. Logically, however, there is no
difference to writing the universal quantifier with appropriate conditions in each
formula. It is exactly this, what we want to bring to a formal level through globals.
They are nothing more than particular formula fragments that are used to aug-
ment expressions within their scope. The scope of a global ranges over groups of
formulae that are determined by the hierarchical grouping of cells in the notebook.
Globals are written in a separate cell, see Figure 2 (2), and they affect all formulae
that appear after the globals-cell in the nearest enclosing cell group. Notebook
cells are grouped in sections, sub-, subsubsections, and finally environments, thus
a global always applies to all formulae until the end of the current sectional unit or
environment.

Theorema currently supports three kinds of globals:

the global-∀ (written as ∀
R
C

with variable range R and condition C) simply prefixes

all formulae in its scope with the corresponding object-level ∀
R
C

,

the global-⇒ (written as C ⇒) turns every formula F in its scope into C ⇒ F , and
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the global-let (written as let
a=e

) defines an abbreviation a for expression e that is

immediately expanded as soon as a formula in its scope is evaluated.3

Example 1. Given a global-cell on the section-level containing

∀
x,y

let
n=|x|

|y| = n⇒

and assume F1, . . . , Fm are the formulae in the remainder of that section, then what
Theorema finally sees are the formulae

∀
x,y
|y| = |x| ⇒ F1, . . . , ∀

x,y
|y| = |x| ⇒ Fm,

and quantifiers are only added for those variables that actually appear free in Fi.

Example 2. Suppose we are in the process of exploring the topic “functions from
a set A to a set B” and we already have defined earlier a predicate “f is a function
from A to B” (denoted by f : A → B). If we then want to introduce the basic
concepts injectivity and surjectivity, one would typically write something like

Given sets A and B and f : A→ B, we define:

f is injective from A to B :⇐⇒ ∀
x,y∈A

f(x) = f(y)⇒ x = y

f is surjective from A to B :⇐⇒ ∀
y∈B

∃
x∈A

f(x) = y

In a formalized setting, this would translate into something like

∀
A,B,f

f : A→ B ⇒ (injective(f,A,B) :⇐⇒ ∀
x,y∈A

f(x) = f(y)⇒ x = y)

∀
A,B,f

f : A→ B ⇒ (surjective(f,A,B) :⇐⇒ ∀
y∈B

∃
x∈A

f(x) = y).

Not only does this need more typing, it is also more complicated to read and
comprehend as the informal representation above. Using globals in Theorema 2.0
the same can now be expressed compactly inside a definition-environment as follows:

Similarly, globals can be used to introduce section-wide global variables with appro-
priate conditions valid in certain parts of a document, which is an important aspect
in Theorema’s ambition to make formal mathematics appear close to traditional
style.

2.1.2 The Theorema Commander. The Theorema commander, see Figure 1, is
the component in the user interface that supports the creation of content note-
books, in particular those parts that can be generated with automation-support.
It has been introduced in [Win12], and its main purpose is to support the main

3In mathematics as well as in programming languages the phrase “let” occurs in various situations.
In mathematics, it often expresses universal quantification. It is important not to confuse the
global-∀ and the global-let.
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activities proving, computing, and solving4 and also some administrative aspects
like document preparation (e.g. support for two-dimensional formula input) and
session organization. For each activity selected on the left margin of the comman-
der, there are several concrete actions to be performed in order to complete the
activity. Actions are selected through menu buttons in the top row of the main
window, and the intention is that they are run through left-to-right. All actions are
carried out in point-and-click interfaces and result in the appropriate configuration
of the respective activity. The result of the activity is then integrated as formal
output into the content notebook, from which the activity was initiated.

Example 3. In order to get a proof generated automatically in Theorema 2.0,
the user must

—specify the proof goal,

—specify the knowledge base available in the proof

—specify available knowledge about Theorema built-in language constructs, and

—select and configure the desired proof method.

Correspondingly, the ‘prove’-activity consists of separate actions guiding the user
through these steps. In the ‘goal’-action, the proof goal is defined by just selecting
the formula to be proved in the notebook. In order to quickly compose the knowl-
edge base, the ‘knowledge’-action displays the knowledge browser, which consists of
a summary of formulae for each open notebook, hierarchically structured according
to the grouping given in the notebook, see the illustration in Figure 3. For each
formula only its textual label is displayed, the full formula is unveiled in form of a
tooltip as soon as the mouse moves over the label. By clicking the corresponding
check-box, the formula (or an entire group) is selected to go into the knowledge
base for the next proof. It serves for the orientation and navigation through the
knowledge browser when telling text is used in the informal environment header
cells and the formula labels (see Figure 2 (1) in Section 2.1.1). In a similar fashion,
the user can select the computational knowledge about built-in language constructs.

A Theorema prover typically consists of inference rules that are applied using
a certain proof strategy, see more details in Section 3. The ‘prover’-action allows
to (de)activate rules on an individual basis, the rule implementation defines rule
groups that can again be (de)activated similar to the knowledge browser above. As
soon as the prover configuration is finished, the ‘submit’-action displays a compact
summary of all settings chosen in the previous steps. The data can now be sent
to the prover, which then tries to generate a proof. The commander steps to the
‘inspect’-action, which features a live animation of the tree corresponding to the
ongoing proof search. Tree nodes exhibit different shapes and colors depending
on their type (And-node/Or-node) and status (success/failure/pending). Proof
generation stops as soon as one successful proof has been found or the search has
reached its time or space limits. In the content notebook, we then find a link to the
proof and information on proof generation configuration, which is very useful when
the proof needs to be re-generated. When clicking the link, a natural language proof

4Support for general “solving” is not yet studied in detail and, hence, not yet implemented in the

current release of the Theorema system, see also Section 5.
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Fig. 3. The knowledge browser (left) and the prover configuration (right)

presentation generated automatically from the underlying proof object is displayed
in a separate notebook, similar to how proofs were displayed in Theorema 1. Note
that when we speak about proofs or proof objects, we always mean “possibly partial
proofs / proof objects”. Theorema always generates a proof object, even if the proof
fails or is aborted. A natural language presentation can be generated for a failing
or incomplete proof attempt as well. The status of a proof can be read off from
the status of the root node in the tree presentation (currently green with a X-
indicator, though this may become configurable in the future) and from a small
success indicator icon displayed in the content notebook next to the link to the
proof.

The proof notebook and the proof tree, see Figure 4 left and right, are bidirec-
tionally linked:

—selecting a cell in the proof notebook marks the corresponding node in the tree;

—clicking a node in the tree moves the cursor to the corresponding step in the
proof notebook.

Furthermore, we make heavy use of tooltips, which allow to display additional
information when the mouse moves over certain objects, e.g. formula labels in
a proof carry the whole formula in a tooltip, and nodes in the proof tree carry
information on the inference rule that was applied at that point.

We are confident, and first observations with novice users support this claim, that
the new interface makes working with Theorema 2.0 a lot easier compared to its
predecessor, in particular for non-expert users. Furthermore, the novel proof navi-
gation provides much better understanding of the proof structure.
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Fig. 4. The natural language proof presentation (left) and the corresponding proof tree (right)

2.2 Software Technological Aspects of Theorema 2.0

2.2.1 Proving and Computing in One Language. As already described in Sec-
tion 1, we use Mathematica as the meta-language for the implementation of Theo-
rema reasoners. At the same time, we use the Mathematica notebook front-end as
the user interface and we want to provide the full power of Mathematica to all users
even when the Theorema system is loaded, e.g. a user should still be able to solve a
system of equations using the Mathematica Solve-command. On the other hand,
the Mathematica language also subsumes mathematical expressions and it uses a
particular implicit semantics, which we do not want to be the semantics of The-
orema automatically, e.g. the syntactical expression a+b is represented internally
as Plus[a,b], which represents an operation Plus applied to two objects a and b.
Mathematica, however, treats Plus always associative and commutative with 0 as
identity. Furthermore, in the presence of concrete numeric values for a and b it
might perform simplifications based on Mathematica built-in black-box knowledge.

Since Theorema is not based on Mathematica semantics, it is of utmost im-
portance to strictly separate Theorema expressions from meaningful Mathemat-
ica expressions. The problem can, in principle, be solved easily, since using the
MakeExpression-mechanism in Mathematica allows to redefine the entire Math-
ematica parser, such that e.g. a+b is no longer interpreted as Plus[a,b] but as
foo[a,b]. This would, however, require huge effort to re-implement the entire
Mathematica parser for all kinds of expressions. The solution in Theorema 1 was
therefore to just rename all operators that carry a meaning in Mathematica once
and for all to fresh symbols, see [Win01]. This turned out to be unstable when
new Mathematica releases come out, in which previously unknown operators may
suddenly have semantics attached. Errors of that kind are very subtle and were
difficult to detect and isolate because they could just emerge as an undesired trans-
formation of an expression deep inside the execution of one of our reasoners without
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further notice.
Thus, in Theorema 2.0 the solution to this problem is to rename all symbols

to fresh symbols when they appear in a Theorema expression. We use the new
possibility introduced in recent versions of Mathematica to define the behavior of
notebook cells via the stylesheet, i.e. we introduce special cell types for writing
Theorema expressions such that special expression preprocessing can be employed
for these cells.5 Two such cell types are those for formulae inside an environment
and those for globals. These two differ in turn, because we want to interpret a ‘∀’
differently depending on whether it is written as a global or as part of a regular
formula.

When it comes to computation, we want to provide semantics for a certain com-
putable fragment of the Theorema language, namely integer numbers, rational num-
bers, (finite) tuples (i.e. lists), finite sets, boolean expressions, and quantifiers with
finite ranges. These datatypes are built into Theorema, and the standard opera-
tions on them (arithmetic on numbers, standard tuple operations, set operations,
etc.) are provided as part of the Theorema system, i.e. they are programmed
in Mathematica and some of them use available Mathematica functionality. Most
prominently, of course, arithmetic on integers and rational numbers uses available
Mathematica algorithms, and tuples are represented as Mathematica list such that
efficient list algorithms can be re-used. Sets, on the other hand, are not a basic
datastructure in the Mathematica language, hence Theorema introduces its own
representation based on Mathematica-lists, such that powerful algorithms for e.g.
set intersection/union from Mathematica can be used. Special precautions are
taken due to the fact that computation might interact with proving in the sense
that a computation can appear as a simplification step during a proof and, hence,
expressions may contain variables.

Example 4. For finite sets, their intersection just contains the finitely many ob-
jects in common, e.g. {1, 5}∩{3, 5} gives “by computation” {5}. On the other hand,
{1, 5, a} ∩ {3, 5} (with a variable a) should not compute {5}, because the result is
either {5} or {3, 5} depending on the value of a. Incautious computation could then
lead to erroneous proof steps, e.g. when we are to prove ∃

a∈A
|{1, 5, a} ∩ {3, 5}| = 2.

Computations are driven by the standard rewriting mechanism of Mathemat-
ica, which is based essentially on substitution and replacement like in predicate
logic. This means, that Theorema semantics must be represented on the level of
Mathematica function definitions, which are then applied as rewrite rules by the
Mathematica computation engine. This puts Theorema semantics functions to the
same level as Mathematica built-in functions with the problem of undesired evalu-
ation inside of formulae as described at the beginning of this section. The key to a
solution is given by Mathematica contexts, which provide appropriate namespaces
for Mathematica symbols. Let us consider the simplest example 1+1 as part of
a Theorema formula. The internal full form is Plus[1,1], which we rename to
a “fresh” Plus$TM[1,1] in order to avoid confusion with any semantics for Plus.
Furthermore, when entered in a formula inside an environment, the formula pre-

5This explains the restriction mentioned in Section 2.1.1 that formal and informal content cannot

be mixed inside one cell.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.



Theorema 2.0: Computer-Assisted Natural-Style Mathematics · 163

processor associated with that cell type sets up the parser in such a way that the
expression actually becomes

Theorema‘Language‘Plus$TM[1,1]

where Theorema‘Language‘ is the designated context for symbols known in the
Theorema language. Everything related to the built-in computational semantics has
its home in Theorema‘Computation‘Language‘, i.e. the definition of Theorema’s
built-in + for numbers defines Theorema‘Computation‘Language‘Plus$TM, and
it is guaranteed that all semantic-related definitions are given for symbols in the
computation-context only.

For doing computations, Theorema notebooks provide special computation cells,
in which users must write their input. In that situation, the formula preprocessor
turns 1+1 into

Theorema‘Computation‘Language‘Plus$TM[1,1]

which will immediately simplify as expected to 2 by built-in Theorema semantics.
For computations as part of a proof, the computation must be initiated explic-
itly by the prover programmer. For this purpose, the prover programming library
provides translation functions between the Theorema language context and the
corresponding computation context.

When a user enters the definition of a function or a predicate inside an environ-
ment, this should always be available for user computations also. Consider as an
example the definition

∀
v

valuation[v] :⇔ ∀
j∈1,...,|v|

vj ≥ 0

from Figure 1 in Section 2.1. In order to make this definition accessible inside a
Theorema computation, it is translated in the background automatically to a Math-
ematica function definition, which is then evaluated in the computation context such
that it is immediately available for the rewrite engine in subsequent computations.
In addition, a condition is attached, that allows to (de)activate the definition from
within the user interface, so the final definition looks like

Theorema‘Computation‘Knowledge‘valuation$TM[v_] /; active[...] :=

Theorema‘Computation‘Language‘Forall$TM[...]

where active[...] checks a flag connected to the check-box at the respective
definition in the knowledge browser of the ‘compute’-activity6 and Forall$TM[...]

stands for the Theorema datastructure representing the ∀-formula on the right-hand
side of the definition. Due to the semantics of the Forall$TM that is present in the
computation context, an expression valuation[〈3, 0, 0, 1, 2〉] in a computation cell
will immediately rewrite to True, see again Figure 1. We should mention that also
all Theorema built-in functions carry a similar condition in their definitions such
that they can be (de)activated via the user interface. For this, both the ‘prove’-
and the ‘compute’-activity have a ‘built-in’-action that features check-boxes for

6Figure 3 shows the knowledge browser in the ‘prove’-activity, where checking a box has the effect

of putting a formula in the knowledge base of the proof. The knowledge browser in the ‘compute’-
activity looks exactly the same, but checking a box there means to set the corresponding flag.
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all built-in operations and works essentially like the ‘knowledge’-action described
in Section 2.1. If a user, for instance, decides that she does not want to rely on
Theorema built-in semantics for ∀ then she would only need to deactivate ∀ in the
GUI and a computation of valuation[〈3, 0, 0, 1, 2〉] would then return

∀
j∈1,...,5

〈3, 0, 0, 1, 2〉j ≥ 0.

2.2.2 Community Support Through Knowledge Archives. Knowledge archives
serve the purpose of distributing mathematical theories among Theorema users.
This is very important in practice, because otherwise every user would have to
start building up mathematics based on just the elementary objects supplied by
Theorema, i.e. tuples and sets. The main challenges that must be met are the
following:

Namespaces. The names of symbols in one archive should not accidentally collide
with symbol names in other archives or user-defined symbols. However, archives
should support theory hierarchies, where theories depend on each other and symbols
from one theory can safely be used inside an other.

Ease of use. It should be easy for the user to load a theory into the current
Theorema session.

Communication. Theory archives should be exchangeable with other systems.
This requires theories to be stored in some standard used also by other mathemat-
ical assistant systems, e.g. MathML, OpenMath, OmDoc, etc. Last but not least,
archives should not depend on the platform they have been developed on.

These problems are well-known in the field of algorithm libraries for programming
languages. For this case, Mathematica supports a mechanism for writing algorithm
packages, which has proven over many years to satisfy the first two of the above cri-
teria. The organization of Theorema archives is therefore oriented on the principles
of Mathematica packages, which are based again on the concept of Mathematica
contexts, see also Section 2.2.1. Theorema archives are composed in Theorema
notebooks that use an archive header section at the beginning in order to setup
the archive. It consists of the archive name (as a context dir1‘...‘dirn‘name‘),
where name should be the basename of the notebook’s filename and the dir1 to
dirn are the directories on the filename path (relative to the standard location
of archives in Theorema), e.g. an archive for equivalence relations could have the
name algebra‘relations‘equivalence‘, it must then be written in a notebook
“equivalence.nb” in the subdirectory “algebra/relations” of Theorema’s standard
archive directory. Next in the header is a list of parent archives, on which the new
archive depends. This has the effect that the new archive may use all symbols that
are exported from its parents. Finally, there is a list of all symbols that the new
archive wants to export (i.e. allow to be used outside) in addition to the exported
symbols of its parents. The convention is that all symbols not explicitly exported
are treated as private to the archive and hence invisible outside. The rest of the
notebook is a plain Theorema content notebook, only at the very end it must have
an indicator to close the archive.

When the archive is closed, all formulae written in environments in the notebook
are stored as Mathematica expressions (representing Theorema formula datastruc-
ture) in an external file using Mathematica’s standard file exporting features. In
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other words, a Theorema archive file contains just plain Mathematica expressions,
hence loading an archive into a Theorema session can simply be done with the
Mathematica <<-command well-known from loading standard Mathematica pack-
ages. It is important to note that we do not store any informal content in an archive,
and we store the parsed and fully processed formulae and not the two-dimensional
formula structures contained in the notebook. In particular, all globals appearing
in the notebook (see Section 2.1.1) are already applied and thus need not be stored
in the archive. For distribution among users it is optional to distribute the note-
book, from which an archive was generated, together with the archive in case the
informal parts should be communicated as well. We store some interface informa-
tion into the archive in addition such that, for instance, a knowledge browser entry
for the archive will be added to the commander even if the respective notebook is
not present.

Theorema archives are Mathematica expression files, so they can be read on
any platform regardless from where they have been generated. Communication
with other systems will require translations from Theorema syntax to MathML,
OpenMath, etc. As an example, the implementation of a mechanism for saving an
archive in the MMT-format, see [RK13], is under way at the time of writing this
paper.

3. HOW PROVERS ARE ORGANIZED IN THEOREMA 2.0

In this section, we will describe the organization of reasoners in the Theorema 2.0
system, which, as its overall aim, tries to allow as much configuration as possible for
the user without the need of a special language. The concept of a reasoner in The-
orema 2.0 differs substantially from how provers were organized in its predecessor
version. We consider a Theorema reasoner to be just a plain sorted list of inference
rules accompanied by a strategy for their application. As already indicated in Sec-
tion 2, giving the user the possibility to define inference rules and strategies would
require non-trivial extensions of the language and is thus currently not supported.
Apart from that, the user should have as much flexibility as possible in setting up
her own reasoners. From now on we want to focus on the special case of reasoners
for proving, i.e. on Theorema provers.

3.1 The User’s View

The setup of the prover is done by the user in the ‘prover’-action as part of the
‘prove’-activity in the Theorema user interface, see Figure 3 in Section 2.1.2. Firstly,
the user may choose a certain collection of inference rules via a menu from a set
of predefined collections that are provided by prover developers. The actual rules
provided by the selected collection are then displayed in structured groups that
are fixed by the prover developer. Each rule comes with two check-boxes and a
pull-down-menu containing numeric priority values. The left check-box (2) allows
to entirely (de)activate the respective rule, while the right check-box (visualized as
a hand using a pencil) allows to turn a rule silent. A silent rule will apply during
a proof as usual, but its application will not be reflected in the natural language
presentation of the proof.

In order to understand the consequences of the prover setup, the user only needs
to understand the basic principle of how provers work. Theorema maintains a proof
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object, which serves two purposes:

(1) during proof generation, it stores all information necessary for guiding the proof
search and

(2) when the search has completed, it contains the proof tree. In case of successful
completion the tree makes up the formal proof, otherwise it represents a partial
proof attempt, which may still be instructive for the user to study.

The Theorema proof object is organized as a tree structure with each node repre-
senting of a proof situation. In addition, each node carries some proof information
needed for proof display and a proof status relevant for this situation. The tree is
an And-Or-tree, meaning that each non-terminal node can either be of type And
or of type Or. And-nodes stand for proof situations that are proved as soon as
all of their children are proved, they correspond to nodes in usual formal proof
trees. Or-nodes require only that at least one child is successfully proved, they are
used essentially to model alternatives for the proof search to continue, and they
are a means to efficiently implement backtracking in case of failing branches in the
proof search. Terminal nodes in the tree are either of type OpenProofSituation
indicating a situation where the proof needs to be continued, or of type Termi-
nalProofSituation with an indication of success or failure where the respective
branch of the tree ends. Type and status of proof nodes is used in the visualiza-
tion of the proof tree, see Figure 4 in Section 2.1.2. The main proof-loop is pretty
standard and straightforward.

— It starts with a proof object consisting of only the root node. It is of type
OpenProofSituation with status “pending” containing the initial proof goal and
the user supplied knowledge base coming from the ‘goal’- and ‘knowledge’-actions
in the user interface, respectively.

— As long as the root node has status “pending” and neither the maximum
search depth nor the maximum search time have been reached, it locates all open
proof situations in the tree, determines the next one to be processed, and finally
applies the strategy with all active inference rules to this situation, where the rules’
activity comes from the prover setup in the ‘prover’-action of the user interface.

— Both inference rules and strategies in general return a proof tree. In the
simplest case, the strategy could only apply one rule. Then the tree returned is
just the tree returned by that rule. Otherwise, the strategy generates an Or-node
with the trees returned by the individual rules as its subtrees.

— The proof status of the leaves is then recursively propagated depending on
the node types towards the root of the proof tree and the loop continues.

The prover setup influences the list of rules that are actually applied during
each loop-run. Firstly, the structured rule groups in the user-chosen collection
are flattened, then filtered according to user-defined activation, and finally sorted
with respect to ascending priority. The resulting list of rules is then applied to
the open proof situation using the standard Mathematica ReplaceList-command
for transformation rules, which returns a list of all possible results. The order
of the proof situations in that list corresponds to the priorities of the inference
rules. Hence, the user influence on the resulting proof is two-fold: activation and
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deactivation of rules decides on the presence of certain branches in the tree and the
selected priorities decide on their order.

Example 5. The prover configuration in Figure 3 chooses the rule collection “Ba-
sic Theorema Language Rules”, which consists of groups “Rules for Proof Termi-
nation” (all of them active as indicated by the checked box in the group header),
“Quantifier Rules” (not all of them active as indicated by the unchecked box in the
group header), “Rules for Logical Connectives” (not all active), etc. In the group
of quantifier rules, all rules but two are activated, the rule for universal quantifiers
in the goal has priority 10, and the rule for instantiating universal knowledge has
priority 40, meaning that universal quantifiers in the goal will be treated before uni-
versal quantifiers in the knowledge base. No rule is silent, since the hand-pencil-icon
is present for every rule.

The selection of the next open situation to be processed is currently always the
left-most, resulting in a depth-first-like proof search. We deviate from strictly
searching depth-first by checking each new situation immediately for proof success.
This means precisely that we do one level of breadth-first search with a restricted
rule set (only those that allow to determine success) before we continue depth
first. Moreover, we integrate possibilities for semi-automated search by allowing
user interaction in the choice of the next proof situation to expand. Independent
from this kind of interactivity on the level of the proof search, we mention that
interactivity may also be implemented at the rule level, i.e. inference rules that,
when applied, require some sort of dialog-driven user interaction. Rules of that
kind are implemented for instance in the specialized prover described in Section 6.
The proof search finishes with the proof object representing

a successful proof in case the root node has status “proved”,

a failing proof in case the root node has status “failed”, or

an incomplete proof in case the root node has status “pending”.

In case of a successful proof, all Or-nodes can be eliminated by replacing them with
their necessarily existing successful subtree. The resulting tree then corresponds to
a formal proof.

From every proof object we can generate a natural language proof presentation
(see Figure 4 in Section 2.1.2) using proof text templates, which the prover im-
plementation must provide for each inference rule. These templates use the proof
information stored with each node, which contains all formulae needed and gener-
ated by that rule.

3.2 The Developer’s View

For a prover programmer, implementing a new prover means to

—implement individual inference rules,

—provide proof text templates for each rule, and

—define the rule group structure of the new prover.

Inference rules are implemented as Mathematica rewrite rules lhs :> rhs, which
transform the input proof situation lhs into a proof tree that is produced by the
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Mathematica program rhs. Every rule has a name that corresponds to an entry in
the prover setup in the user interface. As an example, take the rule for proving a
universally quantified goal. The name for this rule is forallGoal and it is stored
as inferenceRule[ forallGoal] essentially in the form

inferenceRule[ forallGoal] =

PRFSIT$[ g:FML$[ _, u:Forall$TM[ rng_, cond_, A_], __],

k_List, id_, rest___?OptionQ] :> rhs

PRFSIT$[g,k,...] is the Theorema datastructure representing a proof situation
consisting of goal g and knowledge base k (and optional data ...). Typically, we
use the Mathematica pattern matching mechanism in the specification of g and
k in order to describe, for which situations the rule should be applicable. Note
that Mathematica patterns may even contain arbitrary conditions, which allow to
check additional properties involving optional data present in the proof situation
(e.g. information about the proof progress). In the concrete example, the program
rhs would need to generate new constants x1, . . . , xn for the variables contained in
the quantifier range rng and produce new formulae g′ and c′ corresponding to the
quantifier’s body formula A and the condition cond with the variables substituted
by the constants x1, . . . , xn, respectively. From these ingredients, a new proof tree
node has to be created. The new proof situation consists of goal g′ and knowl-
edge k ∪ {c′}, and the proof information tells that formula g was used to generate
new formulae g′ and c′, and the rule applied was forallGoal. The Theorema
prover programmer library provides the necessary functions to analyze formulae,
do substitutions, create new proof tree nodes, and all that.

The template for english proof text (“En”) for this rule looks something like

proofStepText[ forallGoal, "En", {{g_}}, {{g’_, c’__}}, ___]:=

{textCell[ "For proving ", formulaReference[g], " we choose ",

inlineTheoremaExpressionSeq[ v, "En"],

" arbitrary but fixed and assume"],

assumptionListCells[ {c’}, ",", "."],

textCell[ "We have to show"],

goalCell[ g’, "."]

};

In the natural language presentation this would result in proof text

For proving label we choose x1, . . . , xn arbitrary but fixed and as-
sume

c′.

We have to show

g′.

where label is the short label of the formula g.
Finally, for defining inference rule groups, we need code of the form

registerRuleSet[ "Quantifier Rules", quantifierRules,

{
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{forallGoal, True, True, 10},

{forallKB, True, True, 40},

...

}]

registerRuleSet[ "Basic Theorema Language Rules", basicTmaLangRules,

{

terminationRules,

quantifierRules,

connectiveRules,

...

}]

which defines the group quantifierRules consisting of the rules forallGoal (de-
fault activation: True, default presence in natural language presentation: True, de-
fault priority: 10), forallKB with respective default values, and several more rules.
Based on that, the group basicTmaLangRules is defined to consist of the subgroups
terminationRules, quantifierRules, connectiveRules, etc. This rule grouping
corresponds exactly to the structured display of rules in the ‘prover’-action shown
in Figure 3.

The notion of inference rule maybe needs some clarification: typically, the focus
of Theorema lies on inference rules representing one logical proof step, e.g. modus
ponens or proof by contradiction. The natural language presentation is then capa-
ble of describing every logical step, we call these provers white-box-provers. Still,
inference rules can also be implemented in such a way that a certain sequence of
smaller steps is hardcoded within one rule, i.e. one bigger step. In other systems,
this might be handled via tactics. Theorema uses dedicated rules instead, because
making only one big step instead of many small ones also has the effect that only one
step will be documented in the proof object. This is useful because then the textual
proof explanation can describe the combined step appropriately, because the expla-
nation of a combined step is not just the concatenated explanation of the individual
steps. As a simple example, we could have one rule for proving universally quan-
tified implications, which would essentially combine the rules for proving universal
goals and proving implications but it would give the explanation in one stroke.
For a nice application, we refer to Section 6.2. A more extreme example could
be a Gröbner basis prover for proving boolean combinations of polynomial equal-
ities and inequalities. Such formulae can be proved by the Gröbner basis method
by transforming the formulae into the problem of the solvability of a system of
polynomial equations, which can be decided by a Gröbner basis computation. The
transformation process and the respective Gröbner basis computation could then
be implemented altogether as one rule, and it is up to the prover programmer, how
much information goes into the proof information in the proof object. We call such
provers black-box-provers. In particular in such provers it might be convenient to
have a powerful algorithm library like the entire Mathematica system available for
prover programming. We want to stress, however, that white-box-provers typically
only use Mathematica as a programming language. Even black-box-provers do not
necessarily rely on built-in Mathematica algorithms, they could, for instance, also
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call external SAT or SMT solvers.

4. UNIFICATION IN THEOREMA

Unification is a key ingredient in theorem provers and proof assistants, used in a
number of inference rules. It tries to make two terms identical or equal modulo an
equational theory by replacing some variables by the corresponding expressions.

The core unification algorithm implemented in Theorema is unification modulo
α-equivalence, adapted to the special syntactic features of the system. This is a
kind of pragmatic, minimalistic approach, since α-equivalence can be seen as the
most basic property of languages with binders. Developers of individual Theorema
reasoners may choose to rely on the algorithm as it is, or to extend/modify it to
meet the needs of that particular reasoner.

Note that although Theorema provides higher-order syntax, there is no hidden
default higher-order logic behind it. Therefore, a developer of a special prover for
higher-order logic may wish to extend the algorithm to deal with equalities modulo
β and η, while, e.g. for first-order reasoning, the provided algorithm would suffice.

The unification problem is formulated as a meta-equation between two Theorema
expressions. The syntax is quite liberal: Such an expression may be a constant, a
variable, an application of an expression to a sequence of expressions, or a quanti-
fied expression. Variables are of two kinds: for individual expressions (individual
variables) and for sequences of expressions (sequence variables). Following Baren-
dregt’s Variable Convention [Bar84], bound variables are fresh and distinct from
free variables.

Given a unification problem t1 =?
α t2, the core algorithm tries to find a substi-

tution σ such that t1σ =α t1σ, where σ may instantiate only free variables (so
called meta-variables) of t1 and t2. Individual meta-variables are mapped to in-
dividual expressions. Sequence meta-variables are mapped to finite sequences of
expressions. In the process of unification, bound variables can be renamed into
other bound variables.

As an example, consider the unification problem between two statements about
sets: X + 1 ∈ {x |x x > X} =?

α Y ∈ {y |y y > a}, where X and Y are individual
meta-variables. The algorithm computes the unifier σ = {Y 7→ a + 1, X 7→ a}.
In the process of computing σ, the bound variable x is renamed into the bound
variable y.

Substitutions avoid variable capture. That implies that, for instance, if Q is
some quantifier and X is a meta-variable, the unification problem Q

x
X =?

α Q
y
y

is unsolvable. In this way, the unification algorithm implemented in Theorema
differs from nominal unification [UPG04] that also tries to unify terms modulo
α-equivalence, but permits variable capture.

The reasoners that invoke the unification function should make sure that rea-
soning with quantifiers is sound. Therefore, they pass the unification algorithm
information about dependencies between meta-variables and arbitrary but fixed
constants (sometimes also called parameters) that have been introduced by some
rules dealing with quantifiers. For instance, a prover can reduce the problem of
proving the formula ∀

x
p(x, x)⇒ ∃

y
∀
z
p(y, z) to the unification problem p(X,X) =?

α

p(Y, az), where X and Y are meta-variables (introduced by the corresponding quan-
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tifier rules in place of x and y, respectively) and az is a new arbitrary but fixed
constant (also introduced by the corresponding quantifier rule in place of z). In
addition, the information that az depends on Y is passed to the unification func-
tion. If this dependence were not there, the unification problem would have the
solution {X 7→ az, Y 7→ az}. But the dependence forbids Y to be mapped to
az and, therefore, there is no unifier. Depending on the prover, it is also pos-
sible that proving ∀

x
p(x, x) ⇒ ∃

y
∀
z
p(y, z) gives raise to the unification problem

∀
x
p(x, x) =?

α ∀z p(Y, z). Also here, the algorithm can not compute the solution. An

attempt to replace Y by z would lead to the variable capture. Hence, the proof
fails. All these are well-known techniques in quantifier reasoning.

Since unification is not done modulo the β-rule, the equation X(a) =?
α f(a, a)

does not have a solution (in contrast to four unifiers when the β-rule is permitted).
Note also that the Theorema unification function does not see f(a)(a) and f(a, a)
equal. The problem X(a) =?

α f(a)(a) can be solved by {X 7→ f(a)}. For reasoners
with extra axioms about the expression equality, the core unification algorithm can
be extended with the corresponding rules.

Sequence variables, a specific feature of the Theorema syntax, make the lan-
guage very flexible, but as the price, unification becomes difficult. Some problems,
such as, e.g. f(a,X) =?

α f(X, a), where X is a sequence variable, can have in-
finitely many incomparable unifiers: {X 7→ ( )}, {X 7→ a}, {X 7→ (a, a)}, . . ..
This obviously causes a challenge to reasoning, but there are ways to deal with
it. On the one hand, finitary fragments of unification with sequence variables
have been identified, see e.g. [GF92, RF97, Kut03, Kut07, KM12]. On the other
hand, constraint- and expansion-based reasoning methods have been proposed,
e.g. [Gin91, Kut02b, HV06, PB13]. The unification algorithm of Theorema uti-
lizes both ideas: It tries to solve the unification problem (that involves sequence
variables) completely with the help of the algorithm introduced in [Kut02a]. In this
process, if an equation appears that does not belong to the known finitary frag-
ments, the algorithm switches to the incomplete method of expansion, replacing
sequence variables by sequences of fresh individual variables up to a certain prede-
fined length. For instance, if this length is 3, for the above mentioned unification
problem f(a,X) =?

α f(X, a) the algorithm will return four unifiers: {X 7→ ( )},
{X 7→ a}, {X 7→ (a, a)}, and {X 7→ (a, a, a)}.

Besides the maximal length of expansion sequences, the unification function has
another parameter: the maximal number of solutions to be computed. Sequence
variables may lead to multiple solutions, and with this parameter one can easily
control the desired number of them.

When talking about specific features of the language, we should note that, by
default, f and f( ) are not identified. Therefore, the unification problem f =?

α f(X)
does not have a solution, while f( ) =?

α f(X) has one, namely the substitution
{X 7→ ( )}. However, there is an option to extend the core algorithm to work
with the equational theory specified by the equality f

.
= f( ) for some f (or for all

symbols).
Yet another equational theory, to which the core algorithm has been extended, is

generalized commutativity, or, in other terms, the theory of orderless symbols. A
symbol is orderless if the order of its arguments does not matter. The unification
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function has an option to set the orderless property for certain function symbols,
and then apply the respective rules for unification. For efficiency reasons, sequence
variables under orderless symbols are treated by the expansion method (although
there exists a complete unification procedure, based on the reduction to systems of
linear Diophantine equations [Kut02a]).

5. ALGORITHM SYNTHESIS BASED ON LOGICAL REASONING

Here, we consider a very general version of the notion of solving : given a problem
specification, find an algorithm that, when applied to any input that satisfies the
input condition, computes a result that satisfies the output condition. In this con-
text, a problem specification consists of an input condition and an output condition.
As an example, the problem of “sorting” can be described by the input condition
“the input is a list” and the output condition “the output is the sorted version
of the input”. Solving the sorting problem amounts to finding an algorithm that
computes the sorted version of its input. In other words, we need to find a sorting
algorithm.

This section summarizes a case study in Theorema on synthesis of sorting algo-
rithms in parallel with the exploration of the theory of lists. For additional details,
see [DJ15]. The use of Theorema facilitates this work because the system sup-
ports the implementation of complex inference rules as described in Section 3.2 and
also because the formulae and the proofs are presented in natural style, making it
easy to understand the development of the theory. The purpose of this case study
is to demonstrate the use of mechanical proving in the automated development
of non-trivial algorithms. Moreover we identify special inference rules and spe-
cific strategies for automated reasoning in the domain of lists. This work extends
[BC04b] by using part of the developed theory (however modified in order to be
first order) and by introducing a different approach for expressing algorithmic ideas
(logical formulae instead of algorithm schemata).

The relevance of this case study for the QED-related activities consists in the de-
velopment of a certain theory and of an arsenal of proving methods for the purpose
of solving a certain practical problem. This mimics the process of mathematical
progress on a simple example: we start from the concept of list and of sorting,
and try to find the appropriate axioms and definitions which are necessary for the
formalization of these concepts. Then we attempt to synthesize sorting algorithms
by proving, where new properties and notions and also some specific proof methods
turn out to be necessary.

5.1 Approach

The approach consists of extracting the algorithm from the (constructive) proof of
the statement: “For any input satisfying the input condition, there exists an object
satisfying the output condition between the input and the output”. The input and
the output condition of the function to be implemented constitute the specification,
which is the input to the synthesis process. The output of the synthesis is a collec-
tion of conditional equalities which can be used to compute the desired function.
The proof needs a corresponding theory of the domains which are relevant for the
problem (that is, a collection of logical formulae).
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In the simplest case, a non-recursive algorithm for the target function exists, the
functions necessary for the implementation of the algorithm are already present in
the theory. In this case the proof will exhibit a set of witness terms which expresses
the algorithm in non-recursive way—possibly with conditions. In the sequel we will
call such sets of conditioned witnesses simply witness. (In fact, Theorema offers
a special notation for expressing such sets of conditioned terms as a single term.)
For instance, in our case study, such an algorithm is the one for computing the
maximum of two values.

If some of the functions necessary for the algorithm are not in the theory, then the
proof fails and from the failed proof one can identify the specification of one or more
of the missing auxiliary functions. This approach was pioneered in [BC04b], which
also automated a certain heuristic for the production of such specifications. (The
case study presented here offers a basis for further automation of this process.) The
algorithm synthesis process continues with the finding of the necessary algorithms
based on these new specifications, and if still some of them are not found, the
original proof is re-iterated (with more success this time), in order to find more
specifications of more functions. For instance, in our case study, the quick-sort
algorithm requires an auxiliary function for splitting a list in two, such that each
element in the first list is smaller than each element in the second list.

Recursive algorithms can be discovered by inductive proofs (see e.g. [BSW90]).
We follow the approach that the algorithmic idea for the desired implementation is
presented in the form of an induction principle, consisting of a composition function
and the corresponding decomposition functions. (The base cases correspond to the
objects which are too small to be decomposed.) The proof branches for the base
cases yield simple ground witnesses, and the inductive step produces a witness
which is dependent (in our natural style proving) on some Skolem constants. Some
of these constants correspond to the recursive calls of the algorithm on the parts of
the decomposed argument. In our case study we use two induction principles: head-
tail (as in Lisp programming) and split (decompose the list in two parts, compose
a list from two lists by concatenation). For the problem of sorting, the base case
consists naturally of empty and unit lists in both induction principles.

Since we work in first order logic7, it is sure that if a non-recursive algorithm
exists, then it will be found. Completeness of first order proving insures that a set
of witness terms is found, which corresponds to the provable disjunction of ground
instances of the existential goal. When the set is non-unitary, then this expresses an
“if-then-else” structure of the algorithm, where the respective conditions can also
be extracted from the proof. We developed a special strategy for the extraction
of such conditional algorithms: identification and use of elementary goals. An
elementary goal is a formula which cannot be reduced anymore and it contains
only functions which can be evaluated in constant time. In this case the proof
is considered successful on the current branch and the current elementary goal
becomes the condition for the current witness. The prover creates another branch
of the proof (at the suitable previous point in the deduction), in which the negation

7Using induction in first order logic is possible because the induction principle is already instan-

tiated with the property which we want to prove, and moreover the induction is often used as an

inference rule.
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of the respective elementary formula is assumed. In this way further conditional
branches of the algorithm will be found. For instance, in our case, such a non-
recursive conditional algorithm is the maximum of two numbers. The technique
of identifying branching parts of the algorithms is used however also in the case
of non-recursive algorithms, for identifying witnesses on the inductive branches of
the proofs. For instance, in our case study, such an “if-then-else” witness is found
on the inductive branch of the proof synthesizing the merging algorithm (merge
two sorted lists into a sorted one), which is the auxiliary function needed for the
merge-sort algorithm.

In addition to the induction principle, we show how one can specify algorithmic
ideas by logical formulae (which become the goals on the inductive branches). In
the following, O denotes the output condition of the specification of the target
function (an input predicate is not necessary in this case), while C,C ′ denote some
composition functions on lists. All variables are of type “list”. The algorithmic
idea “we decompose the input using the reverse of C, then we apply recursively
the target function on the parts, and then we use C ′ to compose the desired result
from the partial results” can be expressed as:

∀
X
∃

X1,X2
C[X1, X2] = X ∧ ∀

Y1,Y2
(O[X1, Y1] ∧O[X2, Y2])⇒

∃
Y
Y = C ′[Y1, Y2] ∧O[X,Y ]

If the composition function C for the input is known (for instance, if it is the one
defined by the induction principle), then the synthesis of the algorithm consists in
finding the appropriate composition function for the output from the proof of the
following simplified formula:

∀
X1,X2

∀
Y1,Y2

(O[X1, Y1] ∧O[X2, Y2])⇒ ∃
Y
O[C[X1, X2], Y ]

The witness T [X1, X2, Y1, Y2] for the existential variable Y will define the re-
cursion of the desired algorithm by a pattern matching equality F [C[X1, X2]] =
T [X1, X2, F [X1], F [X2]]. This can be transformed into a functional equality by us-
ing F [X] on the left-hand side and the (induction corresponding) decomposition of
X into X1, X2 on the right-hand side.

If the composition function C ′ for the output is known (for instance, if it is the
one defined by the induction principle), then the synthesis of the algorithm consists
in finding the appropriate decomposition function for the input from the proof of
the following simplified formula:

∀
X
∃

X1,X2
∀

Y1,Y2
(O[X1, Y1] ∧O[X2, Y2])⇒ O[X,C ′[Y1, Y2]]

The witnesses for the existential variables X1, X2 will express the required de-
composition algorithm.

5.2 Experiments

We followed the principles described above by using as implicit input condition
I[X]: “X is a list” and as output condition O[X,Y ]: “Y is the sorted version of
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X”. The later is composed of two atoms: “X is a permutation of Y ” and “Y is
sorted”.

The first version of the list theory contained the definitions of these two atoms and
the definitions of the necessary notions corresponding to them (like e.g. the ordering
relation among the elements of the lists). After that, certain properties have been
added (after being mechanically proven), like e.g. the fact that “is a permutation
of” is an equivalence relation, and the properties of the ordering. During the first
proof attempts it also became clear that certain additional predicates are useful,
for instance the comparison between an element and a list (the element is smaller
than each element in the list, or the other way around), and similarly between
two lists. More properties have been added for these new predicates as well as for
the interaction between them and “is sorted”. The theory exploration continued
with the addition of the necessary auxiliary functions which have been synthesized
during the process.

The synthesis proceeded with repeated attempts to prove the main statement (“a
sorted version of the input list exists”) in an inductive way using several branches:

—two branches for the base cases (empty list and unit list);

—two branches for the head-tail induction principle:
— known input decomposition (head-tail) and unknown output composition:
this yields the insert-sort algorithm, the auxiliary composition function inserts
an element into a sorted list;
— unknown input decomposition and known output composition (“cons” of
Lisp): this yields the max-sort algorithm, the auxiliary function finds the maxi-
mum of a list;

—three branches for the split induction principle:
— known input decomposition (split) and unknown output composition: this
yields the merge-sort algorithm, the auxiliary composition function merges two
sorted lists into a sorted list;
— unknown input decomposition and known output composition (concatena-
tion): this yields the quick-sort algorithm, the auxiliary function splits a list
such that each element in the first is smaller than each element in the second;
— both decomposition and composition are unknown, such that only the second
list has to be sorted: this yields a novel algorithm which we call “unbalanced
merge sort”: at decomposition the first list is constructed by taking the elements
which are already in the appropriate order, while the other elements are put in
the second list; for output composition the same merging function as in the first
subbranch of this group is used.

In this way we finally generated 5 sorting algorithms, as well as the necessary
auxiliary functions. All proofs for the synthesis and for the required properties
are generated automatically8 (more than 50 proofs). The synthesis proceeded it-
eratively, by conjecturing properties of the auxiliary functions from failed proofs,
and by adding and proving the necessary properties. The proofs are performed in
natural style, using predicate logic inference rules (instantiation, modus ponens,

8The human interaction for every proof consists in selecting the assumptions which are necessary
for the proof and some options of the prover (e. g. which induction principle should be used).
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back-chaining on goal à la Prolog, Skolem constants, meta-variables) as well as
specific inference rules and strategies for the domain of lists of elements from an
ordered domain. These specific techniques reduced the search space by a significant
factor. For instance, it was very useful to introduce a normal form for expressions
containing concatenation over elements and lists: a pair of multi-sets, one for el-
ements and one for lists. This allows efficient reduction of goals containing such
expressions in atoms like “is permutation of” and “is sorted”.

An example of a useful strategy is the consideration of what we call “micro-
atoms” (ground atoms without function symbols). For instance an atom consisting
of “is sorted” applied to a composite term can be decomposed in a maximal (as
many as possible) or in a minimal (as few as necessary) number of micro-atoms.
We decompose the goal minimally and the assumptions maximally, and then a
significant reduction of the goal can be obtained.

6. COMPLEXITY ANALYSIS OF GRÖBNER BASES COMPUTATION

This section presents a case study in mathematical theory exploration which was
recently carried out in Theorema 2.0. It is concerned with the complexity analysis
of Buchberger’s algorithm (with chain criterion) for computing Gröbner bases, re-
stricted to bivariate polynomial rings. The algorithm itself, its improvement (chain
criterion), as well as a pencil-and-paper elaboration of the complexity analysis pre-
sented here are all due to the first author [Buc65, Buc83]. The section is only
meant to be an overview for illustrating how the formal development of a theory
in Theorema typically proceeds, not as an in-depth treatment of the topic; more
details can be found in [Mal14] instead.

Here, complexity analysis means verifying a certain upper bound on the degrees
of the polynomials in the Gröbner basis computed by the aforementioned algorithm,
depending on the degrees of the input polynomials. As soon as such a bound is
known, the number of operations that have to be executed during the algorithm
can easily be estimated (but this is not covered by the analysis presented here).
One of the most important results needed for verifying the upper bound is the
fact that a certain numeric quantity is an invariant of the algorithm, in the sense
that it does not increase (but it may well decrease). This quantity only depends
on the exponent vectors of the leading monomials of the polynomials in the so-far
computed set A in the course of the algorithm. The Theorema formula, which states
that it does not increase when adding a new element x (with certain properties) to
A, is shown in Figure 5.9

6.1 Theory Exploration

The theory we explored is mostly concerned with exponent vectors and tuples
thereof. An exponent vector can be thought of as a finite vector of natural numbers,
where typical operations on exponent vectors are, for instance, component-wise ad-
dition of two vectors, divisibility of one vector w. r. t. another (defined to hold if
and only if each component of the first vector is at least as big as the corresponding
component of the other vector), and the least-common-multiple of two vectors.

9For technical reasons, we based our formalizations on tuples rather than sets. Hence, in Figure 5
A is a tuple and A x x denotes the tuple A with element x appended.
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Fig. 5. Theorema 2.0 formula stating that M(A) + W (A) does not increase when adding a new

element x to A (left), together with a fragment of its Theorema-generated proof (right).

Listed below are the individual steps we went through in the formal exploration
of the theory:

(1) Introduce Basic Notions: At the very beginning, some of the frequently used
basic notions the theory is built upon were defined, including the notions of tuples,
linear order relations and commutative monoids. None of these notions is specific to
the complexity analysis and may thus be used as a building block for other theories,
too. Typically, such notions are collected in separate Theorema knowledge archives,
see Section 2.2.2, so that they can readily be re-used in other explorations. An
example of such a basic notion is that of a total order relation.

(2) Prove Properties of Basic Notions: Then, some (again very elementary) prop-
erties of the previously introduced notions were proved. For instance, from the
defining properties of reflexive total order relations we formally verified that most
properties (like transitivity) also hold for their strict, non-reflexive versions.

(3) Create Special Prover : This step is one of the most important ones and
described in more detail in the next subsection. The main idea is to “lift” parts of
the knowledge about the basic notions to the level of inference, such that later one
does not have to fall back to the object-level formulae, but can directly use their
semantic contents in a more convenient and efficient way.

(4) Introduce Specific Notions: Similar to the first step, new notions and concepts
were introduced, but this time specific notions directly related to the complexity
analysis, for instance the chain criterion predicate (which is a relation between two
exponent vectors and a tuple of exponent vectors).

(5) Prove Properties of Specific Notions: Now, similar to the second step, some
more or less elementary properties of the newly introduced specific notions were
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proved, making use of the already acquired knowledge about the basic notions and
the special prover that was created in the third step. For instance, we proved an
alternative description of the chain criterion in case all exponent vectors only have
two components.

(6) Prove Main Theorems: Finally, as the last step the main theorems the com-
plexity analysis is concerned with were proved, making use of all the knowledge
about basic and specific notions, as well as the special prover.

Most of the lemmas proved in steps (2) and (5) are so-called rewrite-kind formu-
lae. A rewrite-kind formula is a (universally quantified, conditional) equality or
equivalence, which can be used as a rewrite-rule for simplifying expressions. As it
turned out, many theorems can be proved using only these rewrite-kind lemmas to-
gether with basic inference rules from predicate logic, resembling the way a human
mathematician would carry out the proofs.

Nevertheless, in some situations rewrite-kind formulae were not sufficient. There-
fore, we created a special prover in order to obtain short and natural proofs. This
is described in the next subsection.

6.2 Creating New Provers

Creating special provers for individual theories has ever since been an integral
part of the philosophy of Theorema: Theorema allows, if not encourages, the user
exploring a certain theory to create a new prover that incorporates all the basic
knowledge the theory is built upon, such that eventually proofs become short and
simple and resemble proofs done by human mathematicians.

More precisely, the term “special prover” must be understood in a broad sense:
A special prover is usually described by a collection of special inference rules that
behave particularly well when working in certain theories. They may range from
rules for newly-introduced quantifiers (note that Theorema does not yet support
higher-order rewriting by object-level formulae at the moment!) over rules that
simply apply pre-defined rewrite rules following a control that is different from the
ones used by the default rewriting mechanisms, to inference rules that enhance the
logic of Theorema (e.g. by adding types to expressions). Still, it must be clear
that in most cases a special inference rule is merely an abbreviation that combines
elementary inference techniques (simplification, etc.) into one compact step, see
Section 3.2.

The special prover we created for the complexity analysis embodies precisely the
aforementioned ideas. In particular, it consists of inference rules that in some sense
“imitate” the presence of object-level formulae in the knowledge base. The advan-
tage of such an approach can be illustrated best in a concrete example: consider
the associative-commutative (AC) binary function + and the linear order relation
≤ appearing in the theory. Not only is + AC, but it is also monotonic w. r. t. ≤, in
the sense that z+x ≤ z+y whenever x ≤ y. This means that whenever we have to
prove that a (nested) sum of elements x1, x2, . . . , xn is less than or equal to some y,
and we know that the (nested) sum of some of the xi, say xi1 , . . . , xim , is less than
or equal to some z, then we can remove all the xij from the left-hand-side of the
proof goal and add one single z instead. Monotonicity and transitivity guarantee
that if we manage to prove the new goal, also the original goal is proved. The
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problem now is as follows: although all the properties that are needed to carry out
the inference, namely AC and monotonicity of +, can easily be stated as ordinary
object-level formulae and can, hence, also be used in the knowledge base in proofs,
often the resulting proofs become unnecessarily long and complicated. For instance,
if x3 +x1 ≤ z is known and (x1 +x2) +x3 ≤ y has to be shown, it is apparent that
the definitions of associativity, commutativity and monotonicity have to be instan-
tiated several times with different terms such that eventually the original goal can
be replaced by x2 + z ≤ y. This is something one usually wishes to avoid, because
on the one hand it makes proving inefficient, and on the other hand it distracts the
user from the “more interesting” parts of the proof (typically, inferences like the
one described here are standard transformations of proof situations a human math-
ematician (at this level of exploration) is not really interested in10). One convenient
way to overcome this problem is to create a special inference rule which implicitly
uses the AC- and monotonicity properties of + on the meta-level for simplifying
the proof goal to x2 + z ≤ y in one single step, which is precisely the approach we
pursued in our prover. For the sake of clarity it must be mentioned that it cannot
only handle inequalities and monotonic functions, but also other concepts such as
tuples and the minimum/maximum functions. A more detailed description would
go beyond the frame of this paper but can be found in [Mal14] instead.

As already explained in Sections 2 and 3, Theorema provers have to be coded
directly in the Mathematica programming language. Theorema neither provides
any user-interface allowing them to be implemented in the Theorema language, nor
is it possible to let Theorema carry out the lifting process described above (i.e. turn
object-level formulae into inference rules) automatically. All this has to be done
manually. Since we have not yet included quoting and reflection in Theorema 2.0,
see Section 2 and [GB07], the Theorema provers cannot be verified within Theorema
itself. Their validity must be justified by hand-written correctness proofs.

6.3 Remarks on the Formalization

The case study presented in this section demonstrates how a non-trivial mathemat-
ical theory can be formalized and verified in a natural but nonetheless rigorous way
in Theorema 2.0. Furthermore, even though the theory already existed for more
than 30 years and hence is by no means “new”, it nevertheless profited from the
formal treatment in the sense that some simplifications and generalizations (com-
pared to the original pencil-and-paper elaboration) could be achieved. For more
information on this, the interested reader is referred to [Mal14].

In order to get an impression of the size of the theory, we list some figures. The
total number of formulae in the formalization is 292, with 62 being definitions and
230 being lemmas and theorems, hence, 230 proofs had to be generated. The new
special prover consists of 57 inference rules whose implementation makes up 2650
lines of Mathematica code. The time needed to carry out the theory exploration

10It is very important to realize that what is important and interesting in a proof is not something

that can be fixed once and for all—in particular it must not be fixed by the reasoning software. It

always depends on the concrete phase of theory exploration, in which a user currently is. While
AC-rewriting is certainly interesting for a user in a phase where AC is newly introduced, it is
usually not interesting anymore in a phase where this concept is completely understood.
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(including the design and implementation of the special prover) was, at a rough
estimate, 300 hours.

7. CONCLUSION

This work reflects the current status of the Theorema project and its concrete
implementation in form of the Theorema 2.0 system. We describe the new interface,
the general system architecture and some promising first case studies that show the
feasibility of the system’s recent re-implementation. As future work, we will have to
carry over special reasoning techniques that were already available in Theorema 1
(such as set theory proving or induction provers for various domains). Furthermore,
we want to embark on the aspect of solving in the Theorema system. The approach
described in Section 5 is a first step into this direction, but it is not yet entirely
clear, how this will integrate into the Theorema system from a user’s point of view.
The issues to be settled include the design of an interface for specifying problems
and for defining algorithm schemes together with appropriate induction principles.
Last but not least, we also want to provide a rich library of knowledge archives to
be used together with the basic system.
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