Mixing Computations and Proofs

MICHAEL BEESON
Professor Emeritus, San José State University

We examine the relationship between proof and computation in mathematics, especially in formal-
ized mathematics. We compare the various approaches to proofs with a significant computational
component, including (i) verifying the algorithms, (ii) verifying the results of the unverified algo-
rithms, and (iii) trusting an external computation.

1. INTRODUCTION

Computers have been used in mathematics since the dawn of the Computer Age;
Turing himself investigated the Riemann hypothesis by computations on the Manch-
ester Mark I in 1950 [Boo06]. General purpose symbolic computation systems are
now in routine use, performing integrations, algebraic and combinatorial compu-
tations, and number-theoretical computations. When a mathematician wants to
perform or check a complicated calculation, he or she naturally turns to a com-
puter program, and this is no longer a new development. But when a proof has
to be checked for correctness, the mathematical community still relies on a social
system rather than a computer system. Just in the last few years, some large proofs
have been checked by computer. Headlines were made by Gonthier’s verification of
the four-color theorem [Gon08], especially since that same theorem made headlines
forty years ago when a computer was used to make the calculations required by the
proof. At the time, doubts were raised as to whether the program(s) might have
bugs leading to missing a counterexample.

In 2012, Gonthier headed a team that completed another large formal proof
[GAAT13]. This proof used 170,000 lines, 15,000 definitions, and 4300 theorems
to prove the “odd-order theorem” of Feit-Thompson (every group of odd order is
solvable). In 2014 the proof of the Kepler Conjecture was checked, by an infor-
mal international collaboration led by Thomas Hales [HAB'15]. That proof also
involved extensive computations, originally performed by computer. The referees
who recommended publication of Hales’s original article would not certify the cor-
rectness of the proof, due to doubts about those computations. These doubts, like
those about the four-color theorem and the odd-order theorem, have been laid to
rest by formalization.

These examples show the importance of being able to formalize proofs that de-
pend heavily on computation. They were done in two different systems and used
different approaches. All three proofs required many person-months of effort to
formalize; an amount of effort likely to be expended only on a result of great
mathematical interest. Indeed, the last two examples were completed by teams
numbering in the dozens; the list of authors looks more like a paper in particle
physics than one in mathematics. All three required a great deal of ad hoc work, as
well as the formalization of some underlying mathematics that was not specific to
the problem at hand. Here we investigate why these matters are not routine, and

Journal of Formalized Reasoning Vol. 9, No. 1, 2016 Pages 71-99.

72 . Michael Beeson

what the possibilities may be to make them more routine.
The author gratefully acknowledges the many helpful suggestions of the referees.

2. WHAT'S HOLDING UP THE QED SINGULARITY?

The QED Singularity, mentioned (though not by that name) in [Wie08], is the
future time when formal proofs will be the norm in mathematics. It is now only a
gleam in the eye. Some mathematicians (most of those I know personally) take the
view that formal mathematics is either not even useful, or is not worth the cost (the
time and energy would be better spent proving new theorems informally). There are
two notable exceptions among the famous: Thomas Hales and Vladimir Voevodsky.
Each of these had a large and complicated proof and wanted certainty about its
correctness; Hales because the referees had expressed doubt, and Voevodsky because
a mistake had been found in another proof he had long believed correct. Both have
become advocates for formalized proofs; but that view is still the view of a small
minority. Here we investigate the reasons for that.

2.1 Why do we want proofs?

The reasons for the view that formal mathematics is “not worth the trouble” are
not simple to summarize; they go back to the roots of mathematics. What is the
reason for proving things at all? A brash student asked a professor friend of mine,
“What do we need all this rigor for?” This was during a discussion of Euclid’s
“proof” of the side-angle-side congruence criterion, in which Euclid argues that
one triangle can be moved rigidly atop the other, and the third vertex must also
coincide. This argument was found “convincing” by most students, and of course it
is convincing in some sense, but it isn’t a proof from Euclid’s axioms. Similarly, the
numerical evidence for the Riemann hypothesis would satisfy any physicist as to its
truth, but not the mathematicians. (There are hundreds of millions of confirming
numerical computations.) There are two possible answers to the question why we
want proofs:

—To know that the theorem is true.
—To know why the theorem is true.

It is the difference between these answers that accounts for the ambivalence about
long computer-checked proofs. After Appel and Haken’s proof by computation
of the four-color theorem, the referees commissioned an independent program to
check the computations; that provided some evidence that there was no program
bug. Assuming there was no bug, one then had to believe that the theorem was
true. But simply to say that all the many cases had been checked did not give
people the feeling of understanding why. Gonthier’s formalized proof served to
remove all doubt about a possible bug; and it may have come closer to explaining
why, since he did improve the analysis: distinguishing between the topological
and combinatorial aspects of “planar”, he eliminated the use of the Jordan curve
theorem and introduced some helpful new concepts, as described in [Gon08]. These
things helped us understand better the part of the proof that reduces an infinite
number of cases to a finite number. But still, a large finite number of cases need
to be computed, and the proof is the result of a long computation. There just isn’t
any map requiring five colors. We don’t know “why”; it’s just how the world is.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

Mixing Computations and Proofs : 73

Similarly, there’s no better way than Kepler found to pack oranges; that’s just how
the world is. The “reason” is many thousands of lines of proof and computation; if
it can be shortened to digestible size, that remains for a future generation.

The resulting ambivalence accounts for the fact that the mathematical commu-
nity has not made a Manhattan Project out of the need to develop easily usable
proof-checkers and deploy them. That task has been left to a handful of developers
and users, who have not succeeded in convincing many mathematicians to follow
them. That is evidently because the cost-benefit analysis does not look promising
to the mathematicians. The cost is many hours, first to learn how to use a formal
proof-checker, then to fill in the formal details of their proofs. (Often these two
steps are separated by the necessity to first develop a library of needed theorems,
before even arriving at the proof whose formalization is of interest.) The benefit is
the certainty that the proof is correct in every detail. But in general that does not
earn a promotion or a salary increase, or an increase in prestige or the respect of
colleagues; and if it must be balanced against the benefit of writing three additional
unverified papers in the time it would take to formalize one, the choice is usually
the former.!

2.2 Structured proofs

Contrast the far-from-universal use of proof-checking with the near-universal adop-
tion of TEX. Evidently the cost-benefit analysis for TEX came out much better:
beautiful mathematics, easily revised almost instantly, versus the cost of learning a
few typesetting commands.? Leslie Lamport, the author of IXTEX, has long advo-
cated a semiformal approach to writing “structured proofs” [Lam12, Lam95]. He
says

[M]athematical notation has changed considerably in the last few cen-
turies. Mathematicians no longer write formulas as prose, but use sym-
bolic notation such as €™ +1 = 0. On the other hand, proofs are still
written in prose pretty much the way they were in the 17th century.
The proofs in Newton’s Principia seem quite modern. This has two
consequences: proofs are unnecessarily hard to understand, and they
encourage sloppiness that leads to errors.

Lamport maintains that writing structured proofs will make them both easier to
read, and more rigorous (hence more likely to be correct). But he says, “Learning
both a new way to write proofs and how to be more precise and rigorous was too
high a barrier for most mathematicians.” In the more recent of his two articles, he
toned down the goal:

[T]he important goal is to stop writing 17th century prose proofs in the
21st century.

LA referee pointed out that in some parts of computer science, formal proofs are becoming the
norm. But these developments do not seem to have accelerated the pace of formalization of
mathematics.

2No doubt the introduction of IATEXhelped reduce the cost and increase the benefits. In some
sense IATEXis a user interface to TEX, and it illustrates the point that a good user interface helps.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

74 . Michael Beeson

But this goal does not seem to have attracted much of a following, in spite
of Lamport’s persuasive articles. Lamport has also provided a I#TEX package to
support writing structured proofs; even that did not produce a flood of structured
proofs. If the structured proofs so typeset could be automatically checked for
correctness, with errors generated like TEX errors, would that tip the balance in
the cost-benefit analysis??

2.3 Formal proof sketches

A similar idea, intended to address in another way the difficulty of having to write
too many and too detailed steps, is the “formal proof sketches” introduced in
[Wie04]. A formal proof sketch is a formal proof, without labels and references
and with some details omitted. It is nevertheless “formal” because it is a precise
question whether an alleged formal proof sketch can or cannot be completed to a
formal proof. The cited paper compares the features of Lamport proofs and formal
proof sketches, finding the latter more readable, and proposes that they be sup-
ported in a proof development environment. The crucial part of the proposal is
“The same proof language should be used for the formal proof sketches and for the
full formalizations.”

2.4 Ways QED can be too difficult

The QED project was explicitly about building a database of formalized mathe-
matics; but it was implicitly about making formalized proof more common and
easier. (There is only one line in the QED manifesto mentioning “interface.”) Of
course, the hope is to set up a positive feedback: the larger the formalized database,
the more the tools are used, the more they are improved, the easier it is to used
them. It is this feedback loop that should, according to Wiedijk, result in the QED
singularity. Since this result has not yet occurred, twenty years after the original
QED workshop, we should analyze the (at least perceived) difficulties. Why is
proof-checking so difficult?

—I have to write too many steps in too much detail.

—I have to write the proofs in a vastly different way than I would naturally write
informal proofs in TEX.

—The system does not know facts at the undergraduate level.

—Well-known theorems (meaning theorems so well-known that I would not have
to cite a reference to them in a published paper) should be known to the system.

—Referencing such well-known theorems should be easy, e.g., it should not cost a
lot of time to look them up.

—It is too hard to become sufficiently expert with a proof-checker (e.g. to learn its
interface, libraries, and workflow).

All these are problems with all of today’s systems. The first two are already prob-
lems with using Lamport’s structured (informal) proofs, but the lack of formality

3Even among the subset of the QED community that believes in writing declarative proofs, there
is not complete agreement on how they should be written. Lamport emphasizes naming proof
steps; by contrast the Isar language [Wen99], which conforms to Lamport’s requirements in some
respects, makes a point of not naming the steps of a proof.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

Mixing Computations and Proofs : 75

means that the last three problems do not arise with structured proofs. Thus:
Structured proofs require too many steps and a constrained style, and that is not
(thought by many to be) worth the payoff in increased rigor and likelihood (but
not certainty) of preventing errors. To get certainty of correctness we need to
solve all four difficulties, and so far, that is not judged worth the price (by most
mathematicians), except in high-stakes cases like the Kepler conjecture.

The first difficulty, “I have to write too many steps”, leads naturally to the desire
that the lowest-level steps in a proof-checker should be automated. That is, the line
between proof-checking and proof-finding programs is not absolute; proof-checkers
should find those steps that seem trivial to humans. Witness the following quotation
from the HOL Light tutorial [Harll], p. 17:

Typically a proof in HOL proceeds as follows. The user employs special
insight into the problem to break it down into a series of relatively simple
subproblems, and once the subproblems are simple enough or fall within
a limited enough domain, they can be dealt with automatically by HOL.
Generally speaking, the level of detail needed before HOL can fill in the
gaps is greater than most people are used to. On the other hand, there
are pleasant exceptions where one can replace a fairly long manual proof
with a single automated HOL step.

The part about “fall within a limited enough domain” refers to the effort to include
a number of different decision procedures for specific decidable theories. This has
been the guiding principle of the proof-checker PVS developed at SRI [OSR92]. In
[Sha09], there is a short list of some of the important decision procedures in PVS:
SAT and SMT procedures, binary decision diagrams, symbolic model checking,
predicate abstraction, and decision procedures for monadic second-order logic and
Presburger arithmetic. The idea is to use interaction to reduce a goal until it lies
in a decidable theory.

3. LOGIC AND COMPUTATION

The previous section surveyed the aims of the QED project and reviewed some of
the difficulties. Now let us consider the causes of and the remedies for those diffi-
culties. Two obvious causes are inadequate libraries (of theorems) and inadequate
user interfaces. We shall not discuss the remediation of those problems (see [Geu09]
for such a discussion.) What we shall discuss is another cause, perhaps more funda-
mental in nature: the interplay between logic and computation. That is important,
because the connection between proof and supporting computations is a weak point
of mathematics. People are often willing to trust unverified computations, espe-
cially if those computations are made by familiar software that has produced no
obvious errors in the past. Everyone trusts their calculator (except professors of
numerical analysis). Most mathematicians trust common symbolic computation
software, even if they know that it can sometimes deliver wrong answers due to
mistaken hidden assumptions. They think they can detect such situations and that
if the answer appears reasonable it is correct. Yet, if there are many computations,
or they are performed by special-purpose software, trust evaporates.

The QED software of the future must be able to smoothly integrate logical proof
steps with computation, perform large computations efficiently, and leave no doubt

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

76 . Michael Beeson

as to the correctness either of the computations or their connection to the logical
part of the proof. There is at present no universal consensus on how this is to be
accomplished, and different systems work differently.

3.1 What is the difference between logic and computation?

Mathematics consists of logic and computation, interwoven in tapestries of proofs.
“Computation” refers to chains of formulas progressing towards an “answer”, such
as one makes when evaluating an integral or solving an equation. Typically com-
putational steps move “forwards” (from the known facts further facts are derived),
and involve chains of inferences of equalities or inequalities.

Logical steps, on the other hand, often move “backwards” (from the goal towards
the hypothesis, as in it would suffice to prove. Of course, logical steps can also move
forwards, and many proofs work forwards from the assumptions and backwards from
the goal until the inferences “meet in the middle.” Hence the distinction between
computation and proof is not the same as the forward-backward distinction. Some-
times the logic associated with a computation also runs backwards, as when solving
algebraic equations.

As is well-known, propositional logic can be regarded as boolean equations, so
a backwards-running proof converts to a forwards-running computation in which
we try to rewrite the goal to the constant true. This we regard as an example of
reducing proof to computation, and it further illustrates the point that computa-
tions consist of forward chaining of equalities or inequalities. In lucky cases, we can
reduce an infeasible search for a proof to an efficient execution of some algorithm;
that is when it pays to reduce proof to computation.

The mixture of logic and computation gives mathematics a rich structure that
has not yet been captured, either in the formal systems of logic, or in computer
programs. We have computer languages that are used to represent algorithms in
a formal way; we have logical languages that are used to represent reasoning in a
formal way. None of the programming languages used to implement the apps on
your smartphone can represent logic (directly). None of the languages mentioned
in logic textbooks can represent real, implementable algorithms.* The difficulty of
merging proof and computation has yet to be properly solved even at a theoretical
level. You will see this fundamental theoretical difficulty appearing again in the
last sentence of this paper.

Expert readers will at this point be jumping to contradict me, pointing to certain
functional programming languages, for example OCaml, in which HOL Light is
written and which has supported John Harrison’s pathbreaking book [Har09b.
There are also Agda and Idris, based on Martin-Lo6f’s type theories. OK, I accept
that point, and we will consider HOL Light further below. There may also still
be some Prolog programmers who insist that computation reduces to logic; and
there may be some LISP programmers and users of NQTHM who think that logic
reduces to computation. But the fact remains that in the mainstream of logic, and
in the mainstream of programming, logic and computation remain separate.

4A few logical languages, like Gédel’s theory of functionals of finite type, do have terms that cor-
respond to number-theoretic algorithms, but nobody actually writes programs in those languages.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

Mixing Computations and Proofs . 77

3.2 Kinds of Mathematical Reasoning

In order to elucidate the connections between mathematical reasoning and compu-
tation, we are going to make a short survey of some different kinds of mathematics.
Librarians and journal editors are accustomed to classifying mathematics by subject
matter, but that is not what we have in mind. Instead, we classify mathematics by
the kind of proofs that are used. In the following list, the items are not intended to
be exclusive; items lower in the list represent more complex proofs and may include
the kinds of arguments earlier in the list.

—Purely logical, as in checking that one line of a proof does really follow from the
stated previous lines.

—Simple theory, as in geometry (one kind of object, few relations). Euclid’s Books
I to IV, for example.

—Equational. For example, the famous identity that the product of two sums of
four squares is again a sum of four squares; or deriving the famous ten Knuth-
Bendix identities of group theory.

—Simple algebraic calculations, but not just normalization. For example: Simplify
the following expression:

a?—(b-c? (a—c)?—=b> (a—b)2—c2

(a+¢)2=02 (a+b2—-c2 (b+c)?—a?
A systematic normalization procedure will usually produce a much longer and
more complicated proof than an experienced human, which is why this example
does not come under the previous category. In case you would like to paste this
into your favorite software, here it is in machine-readable form:®
(a”2-(b-c)~2)/((atc)"2-b"2) + ((a-c)"2-b"2) /((at+b)"2-c"2)
+ ((a-b)"2-¢c"2)/ ((b+c)~2-a"2)

—Uses natural numbers and mathematical induction. For example, the formula for

the sum of the first n squares.

—Uses definitions (perhaps lots of them). For example, point set topology, with
definitions of open, closed, convergence, limit point, closure, isolated, perfect set,
etc.

—Uses a little number theory and simple set theory. For example, the theorem
that the order of a subgroup divides the order of a group (Lagrange’s theorem).
Abstract algebra up through Galois theory falls in this category.

—Uses calculus (limits, derivatives, integrals).

—Uses inequalities heavily. For example, the arithmetic mean is less than the geo-
metric mean. The Flyspeck project to prove the Kepler conjecture relied heavily
on the verification of algebraic inequalities. Here is an example (mentioned in a
talk by Voevodsky):

1
—1.44 < xﬁxg + xsxg, - xwi + xi - §w1 + §$4

5A referee said an answer would be helpful: (a +b—3c)/(a+ b+ c). MathXpert gets that answer
in auto mode, accounting for the “usually” in the text. Can you get that answer out of other
software? Or prove the resulting identity in your favorite proof-checker?

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

78 . Michael Beeson

given that (z1, 2,23, 24,25, 26) belongs to
[(—1,-0.1,-0.1, —1,—0.1,—0.1), (0,0.9, 0,5, —0.1, —0.05, 0.03)]

There is a list of 100 theorems on which the proof-checking community has been
testing its provers [Wie99]. It is an interesting exercise to classify the 100 theorems
according to the kind of proof techniques involved. All but a few are easily classified.
(Those few involve more set theory.)

Mathematicians divide proofs into “algebra” and “analysis”. What distinguishes
the two? I think it is the use of inequalities that divides analysis from algebra.
At least, no serious analysis can be done without inequalities, and one rarely sees
inequalities in algebra. A referee disagreed, saying that algebra is concerned with
first-order structures, and analysis is concerned with functions. Algebra, however,
is usually second-order, e.g., it deals from the outset with cosets, subgroups, homo-
morphisms and isomorphisms, etc., whereas “hard analysis” often deals only with
specific functions. For example in [Tit51] no function variables meet the eye, but I
do find many inequalities.

3.3 My experience

Over the years, a number of my projects have dealt with aspects of proof and
computation. Here is a list of the projects and the corresponding issues:

—Symbolic computation with logical correctness in MathXpert [Bee89b, Bee89c,
Bee89a, Bee97]

—Reducing logic to computation I: Using infinitesimals in limit computations in
MathXpert [Bee95].

—Precise semantics of limits using filters [BWO05]

—Reducing logic to computation II: convergence tests for infinite series in Math-
Xpert, and asymptotic inequalities (2012, unpublished)

—Linking proof to computation, by calling MathXpert from theorem-prover Otter-
A, with resulting applications to proof by mathematical induction [Bee(6].

—Theorem prover Weierstrass and the proof of irrationality of e [Bee01]. Compu-
tations from MathXpert combined with Gentzen-style inference rules. The right
level of detail in a formal proof.

We will return to some of these examples below; but it is fair to set out at this
point my basis of experience, on which my opinions and observations are partly
based. Of course, I have tried to be aware of the main developments in formal-
ized mathematics, but my own work gives me the lens through which I see those
developments.

3.4 Obstacles
Here is a list of obstacles to the goal of smoothly integrating logic and computation:

—Computation software doesn’t track assumptions, or doesn’t track them com-
pletely, and can give erroneous results.

—Computation performed by logic is inefficient.
—Justifying computations requires putting in too many steps.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

Mixing Computations and Proofs : 79

—Computation performed by unverified software may be unreliable.
—Verified software may be inefficient.

4. SEVERAL APPROACHES TO THE PROBLEM

There are several ways to combine proof and computation. Barendregt [BB02]
mentions three of them, to which he gave the names believer, skeptic, and autarkic.
I here split the skeptic category in two, and list four approaches to the problem.

— Believer: Use unverified software and just believe it. After all your proof-checker
may have a bug too. This is the approach of the Theorema project [Buc06],
which relies on Mathematica, although it guards against bugs resulting from
mishandling of side conditions. Also the Analytica prover [BCZ96] falls in this
category.

— Witness: Use unverified software, but check the result (not every step). E. g. if
you find an indefinite integral, it doesn’t matter how you got it, you can check it
by differentiation. This is also done in HOL Light. A good example can be found
in Thomas Hales’s file Jordan/num_ext_gcd.ml, which contains the comment:

Now compute ged with CAML num calculations, then check the an-
swer in HOL-light.

Another example is discussed in § 5.3 below.

—Skeptic: Verify each computation step by step, rather than the algorithm. HOL
Light does this, see the HOL Light tutorial §3.4 ([Harll], top of p. 17). For
example ARITH RULE appears to verify (z +y)? = 2% + 2zy + y? in one step, but
in reality many steps are taken; there is nowhere a formal specification for the
algebraic results that are produced by ARITH RULE.

—Autarkic® : Verify the algorithm, coded in the same language the proof system
uses. Then you don’t need to verify each result. This technique is known as
“reflection”.

For a similar, but slightly different, classification of ways to connect computation
and proofs, see [KWO08], which also contains a list of examples of systems using
different methods.

4.1 Witness vs. skeptic

What is the difference between “witness” and “skeptic”? It is this: in the witness
approach, the witness to the truth of the result may not at all explain how it was
found. For example, a witness to the non-primality of a large number N could be
simply a divisor of N. A witness to the fact that c is the greatest common divisor of
a and b may be two integers A and p such that ¢ = Aa+ pb. In [BCO1], Barendregt
and Cohen report on how they got GAP to produce witnesses to the primality of
certain specific large numbers N, and then used those witnesses in Coq to prove
formally that N is prime. On the other hand, in the “skeptic” approach, we just
formally verify the computation. The important difference is that in the skeptic

6 Autarky is “the quality of being self-sufficient.” Usually the term is applied to political states or
their economic systems. Autarky exists whenever an entity can survive or continue its activities
without external assistance.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

80 . Michael Beeson

approach, the computation must be done, or re-done, in the proof-checking system
itself, even if it was originally done elsewhere.

What the witness and skeptic method have in common is summarized in Ronald
Reagan’s famous saying from the Cold War era, “Trust, but verify.”

4.2 Reflection

As explained above, “reflection” is short for: write a decision procedure (or other
algorithm), prove it correct, and run it, all in the same system. For the history
and theory of reflection, see [Har95b]. The proof-checker Coq makes use of this
technique, and other modern proof-checkers, such as Isabelle and HOL Light, are
also able to do so. According to the explanation just given, the algorithm should be
expressed in the formal language of the proof checker, and run in that form. How-
ever, that is usually inefficient, and if we have many time-consuming calculations
to run, we would like to run them instead in the implementation language of the
prover (e.g. OCaml, which compiles to C). It is possible to automatically extract
OCaml code from prover-language code. Similarly with Isabelle and its implemen-
tation language ML [HAB*15]: “Isabelle/HOL supports a form of computational
reflection (which is used in the Flyspeck project) that allows executable terms to
be exported as ML and executed, with the results of the computation re-integrated
in the proof assistant as theorems.”

This means that the prover (Coq or Isabelle) is trusting the code that “exports”
internal terms (programs) as executable (OCaml or ML) programs, as well as the
interpreter or compiler and operating system that executes that code. Since not
all that software has been proved correct, we are technically back to the “believer”
paradigm, rather than the “autarkic” paradigm. But we are putting our faith
not in implementations of particular mathematical algorithms, but in the relatively
simple and well-tested “exporting” code and compilers and operating systems. This
is made more explicit in §7 of [HABT15]:

. [W]e rely on the ability of Isabelle/HOL to execute closed HOL for-
mulas by translating them automatically into a functional programming
language (in this case ML), running the program, and accepting the
original formula as a theorem if the execution succeeds [12]. The pro-
gramming language is merely used as a fast term rewriting engine.

To remedy this step backwards from autarky to faith would require a formal proof
of the correctness of the translation, and of the execution system. A first step
has been taken in [HN10], who formalized the statement of the translation from
Isabelle/HOL to ML, using an intermediate language “mini-Haskell”, and gave a
“standard mathematical proof” (i.e., not formalized) of the correctness.

Reflection is not a new idea; it goes back at least to NuPrl in the 1980s [How88],
was discussed in [Har95a], see also [Bou97] (for Coq) and [Ber02]. The prover ACL2
[BM79] should also be mentioned, because in that case the prover’s language is a
subset of Common LISP, and the translation from internal code to executable code
is (almost) the identity. One of its first big successes was its use in the formalization
of the Fundamental Theorem of Algebra; this required the extension of reflection
to partial functions [GWZ00].

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

Mixing Computations and Proofs : 81

Reflection is an important idea, since it was central to the big successes with the
odd-order theorem and Kepler’s conjecture. It is therefore a minor scandal that it
breaches the autarkic paradigm by requiring faith in the translation, compiler, and
operating system.

4.3 The Poincaré principle

It is under the “autarkic’ method that Barendregt introduces the “Poincaré princi-
ple”. By this he means that if p is a proof of A(¢), and the term ¢ is computationally
equivalent to s, then p should also count as a proof of A(s). Thus any proof of A(4)
counts as a proof of A(2+ 2) as well. For this to be legitimate, according to Baren-
dregt, “computationally equivalent” has to mean, shown equivalent by an algorithm
that has itself been proved correct. The Poincaré principle is the justification for
the autarkic method. Barendregt uses the phrase “autarkic computations”, but it
is really the proofs that are autarkic, in the sense that the steps of the computations
are omitted (since they are certain to be correct, and only the result is of interest).
The Poincaré principle is a priori stronger than reflection, but in practice they are
almost synonymous, since if we are going to believe that ¢ = s because a proved-
correct algorithm computes it, then we are going to have little choice but to count
a proof of A(t) as a proof of A(s). We could, of course, tack on a note that t = s
had been proved by a certain algorithm.

The Poincaré principle has been applied in Coq, so that proof objects do not need
to incorporate (what would amount to) traces of computations. On the other hand,
then we can’t access directly the fast and powerful algorithms in systems like GAP.
The example given above of ARITH RULE in HOL Light is similar to the Poincaré
principle, in that the proof object does not include the trace, but is different in that
there is no proof (or even statement) of the correctness of ARITH RULE.

4.4 Witness examples

Here we mention more examples of the witness approach. First, symbolic integra-
tion. Differentiation is easier than integration, so once we have somehow obtained
an indefinite integral, we can “just” differentiate it to check the result. If we can
formally verify the steps of differentiation (or if we use a formally verified differ-
entiation program) then we need not care how we got the integral. This approach
was demonstrated successfully in [HT98], using HOL Light and Maple. It is not as
straightforward as the naive might suppose, since after we differentiate, we must
still “simplify” the derivative to the original integrand. In that paper, they asked
for the integral of sin® x, and upon differentiating the answer, needed to verify the
equality of two trigonometric polynomials. They used a decision procedure for that
problem and called Maple again.” There is also the problem of verifying the hy-
potheses of the fundamental theorem of algebra. For example we have (according
to most computer algebra systems)
4 In|z| = 1

x

dx

"They could have used an easier decision procedure, namely write sin @ and cos 0 respectively as
2t/(1 +t2) and (1 —t2)/(1 + t2), the so-called Weierstrass substitution.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

82 . Michael Beeson

but we cannot correctly conclude that

1
d
/ & | —In|-1]=0.
X

This illustrates the fact that in the “witness” method we need to do the verifying
in the prover, not the algebra system. In HOL Light, the system generates the
assumption x # 0:

7# DIFF_CONV \x. 1n(x);;
val it : thm = |- !x. &0 < x ==> ((\x. 1ln x) diffl inv x * &1) x

A second example of the use of witnesses is in finding closed forms for finite sums.
An example of the type of problem we have in mind is

n\> _(2n

() - (%)
The Wilf-Zeilberger (WZ) algorithm sometimes enables one to sum such series, i.e.
find the right side and the proof when given the left side. We refer the reader to
[PWZ96] for a thorough treatment, or to the Wikipedia article on “Wilf-Zeilberger
pair” for a brief introduction. The Wilf-Zeilberger (WZ) algorithm produces a
rational function as a certificate from which the proof can be recovered, so it is a
natural candidate for the use of the witness method. Such experiments have recently
been performed by John Harrison, and they were not quite as straightforward as
originally imagined (i.e., we “just need to connect maxima to HOL Light”). Some
flaws in the original proofs were exposed, whose correction was not trivial; but in
the end all was well. See [Harar| for the full story.

5. HOW MANY STEPS DO WE WANT TO SEE?

One reason why the QED singularity has not yet arrived is that a mathematician
wants to create a beautiful proof. None of today’s proof assistants create beautiful
proofs. That statement is deliberately blunt, in order to provoke discussion; but I
believe it is fundamentally true. The presentation of proofs in a manner that pleases
both the creator’s eye and sense of mathematical aesthetics is important. One of the
reasons for the success of TEX is that it pleases the eye. The need to present proofs
in a human-readable fashion (as opposed to merely human-decipherable fashion)
was recognized at the dawn of proof-checking, in AUTOMATH [dB70, dB94]. We
shall not attempt to discuss the many issues to which these considerations lead,
but take up in detail just one of those issues, namely the level of detail of the proof.

5.1 Too many steps?

When writing formal proofs that are intended to be human-readable, we do not
want to see low-level justifications of tiny steps of a calculation. To illustrate: do
we want to see answer-only steps like the following?

sage: factor(t~119-1)

(t-1) * (t76+t°5+t74+t°3+t°2+t+1)

* (£716 + t715 + t714 + t713 + t712 + t~11

+t710 + 79 + t78 + 77T + t76 + t7E 4+ t74 + 73+ t72 4+t + 1)

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

Mixing Computations and Proofs : 83

* (£796 - t795 + t789 - t788 + t782 - t781 + t779 - t778 +
t°75 - t774 + t772 - t771 + t768 - t767 + t765 - t764
+ t762 - t760 + t°58 - t757 + t°55 - t°563 + t°51 - t°50
+ t748 - t746 + t745 - t743 + t741 - t739 + t738 - t736
+ +
+ +

+ t734 - £t732 + t731 - t729 + t728 - t725 + t724 - t722
+ t721 - t718 + t717 - t7156 + t714 - t°8 + t°7 -t + 1)

We almost certainly don’t want to see that result verified by multiplying out the
factorization and justifying each step from the associative and commutative laws.
That is avoided in both HOL Light and Coq, but by different methods. In HOL
Light, ARITH_TAC can be used to verify the answer, which we can find in Sage and
paste in (after a little syntax editing). But we have to find the answer first, using
a different program than the program in which we check it. It’s possible that we
might consider the above output “too many steps” already. Perhaps we just want
to prove that t'19 — 1 is not irreducible, i.e., we want to know that there exist two
non-constant polynomials f and g whose product is t''9 — 1. We don’t have any
hope of proving that directly in HOL Light or Coq.

5.2 Not enough steps?

Perhaps we do not need to see the results, especially if the results are obtained by an
algorithm whose correctness has been formally verified. Here is an example, from
Gonthier’s 4-color proof. The program check _reducibility is proved to meet its
specification cf_reducible. After that, any particular run of the program produces
a correct result. For example (quoting the paper [Gon], p. 12)

Lemma cfred232 : (cfreducible (Config 11 33 37
H2H13Y5H1I0H1H1Y3H11Y4H
9H1Y3HOY6BY1Y1Y3Y1YY1VY)).

[is proved] in just two logical steps, by applying check_reducible_is_valid

to the concrete configuration above ... even though ... a longhand

demonstration would need to go over 20 million cases. Of course the
complexity does not disappear altogether—-Coq 7.3.1 needs an hour to
check the validity of this trivial proof.

This is the opposite of seeing too many tiny steps. This does not help us under-
stand why the theorem is true. We have to believe it, because the algorithm has
been formally verified. On the other hand, seeing twenty million steps would not
help us understand why, either.

5.3 Just right: the Goldilocks option

An interesting example is given in the HOL Light tutorial [Har11], p. 61. There is
a conversion rule PURE_SOS that “will attempt to express a polynomial as a sum of
squares”, and attempts to prove non-negativity of a polynomial just by expressing
it as a sum of squares. For example, we can ask it whether

zt 4 2222 + 22 —2wyz + 2222 + 2922 4222 =20 +2yz +1>0

or not. The system will give the “answer”, i.e. the sum of squares, but not the way
by which it was found or the verification that it is equal to the input. This is a case

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

84 . Michael Beeson

in which the answer can be easily verified, so it would suffice if the computation
had been done externally (and verified directly once obtained). Indeed that is
how it is done: this functionality is not in the HOL Light core, but is considered
“experimental”. A comment in the code says: “This needs an external SDP solver
to assist with the proof.”

What if the system had just returned true, indicating that it had found a sum of
squares equal to the input, and verified the equality, without telling us the particular
sum of squares? Would we like that brevity, or not? Does it matter whether the
sum of squares is 200 characters long or twenty million?

5.4 All that information is in there somewhere

As demonstrated by Claudio Sacerdoti Coen in [Coel0], it is possible to extract a
more human-readable proof with steps from a Matita proof script:

In the following example H labels the fact (z +y)? = 2% + 2zy + y*:
obtain H
(@ +9)* = (z+y)(e+y)
z(z+y)+ylx+y) by distributivity
22 + zy + yx + y? by distributivity
= 2%+ 2xy + y2

done

5.5 User's choice?

It is worth noting that the problem of how much detail to display comes up not
only with computer calculations, but also with hand calculations, and also with
very detailed proofs. An example is the omission of the detailed calculation of the
second, third, and fourth variations of area in the 560-page book [Nit89], p. 95-97,
where the author says “a direct but lengthy computation (which we omit owing to
lack of space).” Lack of space cannot really have been the issue; it was a choice
about how much detail readers would want, or how much the author wanted to
check himself.

Lamport [Lam12] proposes hypertext as the solution to this problem. The details
will be hidden until the reader clicks to open one more level of detail. Programmers
are already used to being able to “fold” code in this way. Mathematics is far behind,
but catching up. This journal allows electronic appendices, and it’s quite likely that
you are reading this in electronic form, so I could not get away with omitting details
for “lack of space.”

6. LOGICALLY CORRECT COMPUTATION

It is a shame that the widely used and very useful computation systems (for ex-
ample Mathematica, Maple, and SAGE) cannot be integrated into proof-checking
systems. But it is impossible, since they have been designed without a sound logical
foundation. Many readers know all about this, but some may not, so permit me to
review the situation.

—Each line of a computation represents the right-hand side of a sequent.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

Mixing Computations and Proofs : 85

—The left-hand side, which is not written, lists the assumptions in force at the
moment.

—Computation rules generate new lines from old, but they have side conditions;
that is, hypotheses that must be satisfied to apply the rule.

A computation may appear as a sequence of equations, each obtained from the
previous by some symbolic manipulation. But in reality, each line depends on some
assumptions that are usually not written, except sometimes when new assumptions
are made or old assumptions are eliminated (“discharged”). For example, if we
divide both sides of an equation by ¢, we must assume ¢ # 0. Thus each line of a
computation is correctly interpreted as an implication: if the assumptions at that
line hold, then the equation at that line holds. The systems mentioned above were
not designed with an architecture that can keep track of the assumptions accurately.
There is, for example, no command to display the current assumptions. It is easily
possible to derive contradictions in those computation systems by giving a couple of
commands that will generate contradictory assumptions. Mathematically, we have
generated an implication that a contradiction derives some false equation, which
is logically OK, but the system lost track of the assumptions and only keeps the
false conclusion. A number of examples of such false conclusions in commonly used
symbolic computation software have been collected in [Sto91].

Therefore, the results of those systems cannot be used by proof-checkers, except in
cases where the result, once obtained, can be independently checked. For example,
if an equation has been solved, it may be possible to check that is a solution; but
it may not be easily possible to prove that it is the only solution. If an indefinite
integral has been found, it can perhaps be differentiated to verify the answer. But
even these examples require that the checking be performed in a different, trusted
system. In other words, the “believer” approach to computation is too dangerous,
when using most symbolic computation software; we will need to use the “witness”
or “skeptic” method instead.

6.1 MathXpert as logically correct computational software

Maybe engineers and scientists can be trusted to recognize an incorrect answer, al-
though I personally don’t like the idea of flying on jets whose engines were designed
using such software. But incorrect answers are surely unacceptable in education. I
am the author of MathXpert, which is computational software designed for educa-
tion, specifically to help students learn algebra, trigonometry, and calculus. When
I was designing it, I was aware of the difficulties about correctness. I therefore
designed MathXpert to keep track of the assumptions valid at each line.

MathXpert does keep track of the assumptions, and hence, except for possible
programming errors (bugs), it can never derive an incorrect result.

Assumptions are generated as “side conditions” of executing certain computa-
tional transformations. For example, if we divide by some expression, this expres-
sion must not be zero. But we want to avoid, as much as possible, generating either
unnecessary assumptions (that follow from the existing ones) or contradictory as-
sumptions. Deriving contradictory assumptions is especially to be avoided, since
the assumptions are not displayed and it superficially appears that we have derived

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

86 . Michael Beeson

an incorrect result. At the worst we have derived a useless result, but not a wrong
result.

To put this another way: MathXpert does use the “believer” approach to some
extent, because it does not use formally verified algorithms or even provide formal
proofs of its results. But because it keeps track of assumptions, the only risk in
believing its results is the risk of a programming error, as opposed to a logical error
due to side conditions that are not satisfied.

More recently, work has been done on the automation of assumption generation
when using a reflection-based approach to computation within a proof-checker. See
for example [Kal08] and [KWO08]. These papers show that it is possible, at least in
principle, to have your cake and eat it too: computation as in a computer algebra
system, but verified to be correct.

6.2 Infer, refute, assume

In order to avoid deriving superfluous or contradictory assumptions, MathXpert
employs an algorithm called infer-refute-assume. It works like this:

—We first try to infer the condition from the current assumptions.
—If that fails, we try to refute it. (In which case, the rule cannot be applied.)
—If that too fails, then we assume the required side condition and proceed.

According to the classical undecidability result of Church, the algorithms for “in-
fer” and “refute” cannot be complete; and moreover, they must run without causing
a noticeable delay; so it can very well happen that contradictory assumptions are
still generated. Then the next line would appear false, but it also has generated a
false assumption, so we technically have not derived a contradiction.

Ezample: Divide xz(z — 1) = 0 by z, generating the assumption = # 0. Then
we find that the only solution of the equation is x = 1, which looks wrong, but
technically, under the assumption = # 0 it is OK. Of course we can’t have that
in educational software; so various warnings are generated in MathXpert, and you
can’t divide by the unknown. But that is irrelevant to the present theoretical
discussion.

MathXpert is much less powerful than Mathematica, Maple, and SAGE, and by
design, as it purposely uses only algorithms that are taught to students. Neverthe-
less, the design is interesting and permits one to explore the interface between proof
and computation. After publishing MathXpert, 1 used the symbolic computation
code as part of some later theorem-proving projects.

The current version of Mathematica has “options” GenerateConditions and As-
sumptions, which can give the user some control over the treatment of assumptions
during calculations; but Mathematica never makes assumptions unless explicitly
told to do so, and even if it is told to do so, those assumptions do not persist
to further lines of computation. Instead, when GenerateConditions is set to true,
Mathematica returns an answer, together with the assumptions it had to make to
get that answer; but internally those assumptions are then discarded rather than
remaining in force.

HOL Light can sometimes generate side conditions along with answers. For
example, DIFF_CONV differentiates Inx to 1/z, returning a theorem with the (gen-

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

Mixing Computations and Proofs : 87

erated) hypothesis > 0 and the answer 1/z. See also [FGT93] and [Kal08] for
other approaches to handling side conditions.

6.3 Partial functions and undefined terms

One topic that has already been discussed enough in the literature is the proper
treatment of partial functions. For example, is 1/0 undefined, or is it some (un-
specified and therefore irrelevant) number, or is it some unspecified object that is
not a number? It turns out that any of these answers can be made workable. In
1993, a systematic theoretical approach was given in [Far93]; although theoretical,
the work supported the implementation of IMPS [FGT93]. In 2000 [GWZ00], 1/0
is legal as a syntactic expression, but has no interpretation. There the work is not
merely theoretical but worked out in Coq. See [Harll], p. 151 for the treatment of
derivatives in HOL Light; it has to use a relation instead of a functional, because
functions have to be total; similarly [Har09a], pp. 252-253 for complex integration.
In [Kal08], a systematic approach to representing partial functions in HOL Light
is given. As one often experiences in programming languages, if there is more than
one way to do something, then errors are possible by mixing the ways.

6.4 Treatment of bound variables

In the standard logical languages (based on first-order logic) there is no way to rep-
resent a definite integral, limit, or an indexed sum, because these constructs involve
a bound variable, while first-order logic only allows quantifiers to bind variables. In
languages permitting lambda-abstraction (such as finite type theory), such bindings
are represented as lambda-abstractions, and also quantifiers are reduced to lambda-
abstraction, so that only one kind of variable binding is needed. This approach is
used in proof-checkers based on type theory.

Whatever the underlying treatment of variable binding, the correct integration
of computation with indexed sums (finite or infinite), limits, and integrals will
involve the correct handling of assumptions. We show below how MathXpert deals
with bound variables in integrals, sums, and limits. Even though in principle, all
these kinds of bindings can be reduced to lambda-abstraction, in practice different
techniques are required for reasoning with them.

Ezample. Determine the domain of (definedness conditions for) Z:ffl a™. The
“obvious” way to handle this expression involves assuming that n is an integer.
When the expression (tree) is traversed, we assume n is an integer between 1 and
100, while traversing that part of the tree. So n # 0 and no problem is created by
the fact that 0° is not defined. No assumption should be generated. On the other
hand, if the lower index of the sum is 0 instead of 1, then the assumption = # 0
should be generated.®

8In HOL Light, 09 = 1 rather than being undefined. In calculus textbooks it is undefined, perhaps
because z¥ is not continuous as a function of two variables at the origin. Knuth has argued
that it should be 1. Maybe there are really two functions: one defined on integers by iterated
multiplication, belonging to discrete mathematics; one defined as the inverse of the logarithm,
belonging to analysis, and they happen to agree except at 0°. But no actual system (or textbook
for that matter) distinguishes these two functions.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

88 . Michael Beeson

Definite integrals can be treated in a similar way: when traversing the expression
tree for f; f(x)dz, we assume a < z < b.9

7. LIMIT COMPUTATIONS AND INFINITESIMALS

It is less obvious how one should treat variables bound by a limit. For example,

consider the problem
) (sin x? 1 >
lim +
z—0 T z—1

Since z is a bound variable, no assumptions involving x are appropriate. The tra-
ditional analysis of this expression involves € and ¢, and two alternating quantifiers.
But the spirit of computation is that it should be quantifier-free!

This difficulty can be overcome by using infinitesimals. Traversing the expression
tree, when we go inside the limit, we assume z is infinitesimally near the limit point
(in this case 0), but not equal to 0. Then we can infer that the denominators are
not zero. The expression is therefore defined.

This approach avoids the complications of asymptotic inequalities, quantifiers,
and the dependence of § on €, and is purely computational, given certain rules for
computing with infinitesimals.

In MathXpert, the steps of computations are visible to the user, but the infer-
refute-assume algorithm is invisible. Hence, for the design of MathXpert, it did not
matter what methods were used to generate or infer assumptions, as long as the
answers were correct. Normal users will never see an infinitesimal, so MathXpert is
free to use them internally, as long as it gets correct answers. The question then
arose, how can we compute with infinitesimals, and guarantee that the answers are
correct?

We consider a second example of a limit computation. To calculate the derivative
of \/z from the definition, we consider

VTR E

lim
h—0

9A referee remarked that it suffices to assume a < = < b, saying that the behavior at the endpoints
is irrelevant to the value of the integral. This delicate distinction, and other similar distinctions
about endpoints, can lead to trouble. For example: is /z differentiable on [0, 1]? Answer: In most
of the world, no, because the function is not differentiable at the endpoint 0 (only its derivative
from the right exists). (In France, it is differentiable, because only difference quotients of points
in the domain are considered. There are other particular features of French mathematics as well.)
Now, we ask whether

L d
/ —Vzdz =+v1-V0
0 dzx

holds. In the US (and perhaps everywhere outside France) it does not, since the Riemann integral
on the left does not exist, because the integrand is not defined on the closed interval. (And
indeed, MathXpert rejects this integral as undefined.) In MathXpert, a definite integral is defined
if the integrand is defined on the (finite, closed) interval of integration, because you can’t define a
non-integrable function in the system. That scheme would break if we weakened the assumption
as suggested.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

Mixing Computations and Proofs : 89

The usual approach is to “rationalize the numerator” by multiplying numerator
and denominator both by v + h + /2. Then we get an expression involving

(Vz +h)* = (Vx)?
Now observe

—We need to rewrite (vx + h)? as z + h.

—That is only legal when « + h > 0, but we should not generate an assumption
depending on the bound variable h.

—The proper assumption to generate is > 0. Note y/z is not differentiable at 0
(not even from one side).

How can that be done by a general-purpose algorithm? The answer is that
x+h > 0 for all infinitesimal h if and only if x > 0. The implicit universal quantifier
over infinitesimals is expressed in the computation rule that rewrites = + h > 0 as
x> 0.

This approach eliminates quantifiers in favor of computation. But, one may
ask how this can be useful for QED, since most proof-checkers do not work in a
theory that allows infinitesimals. The answer might lie in the observation that the
trick is coming up with the right new assumption. Once we have it, even if we
pulled it out of a hat with a flourish of a multi-colored scarf, we may be able to
prove the theorem using the new assumption, within a proof-checker using semi-
automated tactics. Thus an external program could be used, not only to generate
integrals, solve differential equations, factor integers, and express rational functions
as sums of squares, but also to generate appropriate conditions using calculations
with infinitesimals, and the results verified within the checker, regardless of how
obtained.

7.1 Infinitesimal elimination and its correctness

When expression traversal enters a limit as * — a, MathXpert introduces an in-
finitesimal (variable) h = x — a. This infinitesimal can be used in infer-refute-
assume, while still inside the limit, but neither the infinitesimal A nor the bound
limit variable x can appear in any generated assumption. Thus the infinitesimal
must be “eliminated” before we finish evaluating the limit. This is to be accom-
plished by an “infinitesimal elimination algorithm.”

Although the results of infinitesimal elimination might be useful for QED even if
produced by magic, to ensure that MathXpert gives only correct results, I needed to
be sure that was also true of infinitesimal elimination. Therefore I needed to specify
the infinitesimal elimination algorithm, and prove its correctness. (To avoid any
misunderstanding: we are talking about an ordinary, informal correctness proof,
not a computer-checked formal correctness proof.)

Such a correctness proof must make use of some defined semantics. The semantics
used is “interval semantics”: A formula ¢(«) involving a nonstandard variable «
means that ¢(z) is true for all = in every sufficiently small punctured neighborhood
of the limit point a. We use one-sided neighborhoods for one-sided limits. There
are obvious modifications for limits at infinity.

In [Bee95] I specified the infinitesimal elimination algorithm and proved its cor-
rectness with respect to this semantics, at least for one infinitesimal: nested limits

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

90 . Michael Beeson

have not been treated (and are not in-scope for MathXpert, or for freshman calcu-
lus). Obviously an adaptation of this method to support professional mathematics
would require treating nested limits.

It is interesting to note that in the HOL Light library, differentiation is not
developed via limits of difference quotients; instead it is developed directly from an
epsilon and delta definition. See §19.3, p. 151 of [Har11].

7.2 Remarks on limit problems

Before the infinitesimal elimination algorithm, early MathXpert used a form of
second-order logic, similar to interval semantics, but coded directly in C. The in-
finitesimal elimination algorithms saved six or seven thousand lines of code.

Students have great difficulties understanding the semantics of limits. Epsilon-
delta semantics was not properly understood by even one of hundreds of students
to whom I lectured on the subject, as exam results showed. Such understanding of
limits as some students do achieve is based (in effect) on a direct axiomatization
of the undefined notion of limit. In other words, they learn certain laws to manip-
ulate limits and work with those computation rules rather than with logic. In my
last years of teaching calculus, I gave up the pretense of teaching the alternating-
quantifier epsilon-delta definition, and relied on computation rules and pictures.
I think mathematicians too prefer to work with computation rules; logic is a last
resort.

7.3 Asymptotic expansions

In the last two decades, significant effort has been devoted both to the theory
and the implementation of asymptotic methods, i.e. various kinds of series and
“transseries” expansions of functions at infinity. The basic class of functions to start
with is the exp-log functions, the least field of functions (defined on some positive
half-line) closed under the exponential and logarithm functions. Shackell [Sha90]
gave an algorithm for computing the limit at infinity of any such function, and that
algorithm was implemented in Maple [Gru96]. This class of functions is not closed
under inverse functions. To handle inverse functions it was necessary to develop
more esoteric kinds of expansions. See [SS99] for more information and references
to the symbolic computation literature. It seems that all the work on asymptotic
expansions works on various “Hardy fields” of functions; these functions all have
limits (finite or infinite) at infinity, so trigonometric functions are not included,
moreover only real-valued functions are considered.

We remark that although systematic asymptotic expansion algorithms are suffi-
cient to compute limits, they are not always necessary. Salvy and Shackell (op. cit.)
give the example

exp(z™t +e) —exp(z™!)

whose asymptotic expansion is difficult to compute. But a good calculus student
should have no trouble computing its limit at co (and MathXpert has no trouble
either).

The question arises whether this body of work is relevant to QED. As far as
I know, there is no natural “certificate” for an asymptotic expansion. That is,
there is no simple and reliable way to verify (even given additional data) that a

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

Mixing Computations and Proofs : 91

given expression really is a correct asymptotic expansion of a given function. That
makes it difficult to use the “witness” method with asymptotic expansions. Since
these methods are quite difficult to program, they have not been re-implemented
autarkicly, and nobody wants to trust without verification; so they have never yet,
to my knowledge, been used in formal proofs. That is too bad, because there
certainly have been formal proofs that used asymptotic limits, e.g. the proof of the
prime number theorem; so these have had to use independent methods.

One might consider asymptotic expansions as “generalized infinitesimals”. This
is an intriguing idea (suggested by one of the referees). The different terms of the
expansion then correspond to different “orders” of infinitesimal. In this analogy the
role of the infinitesimal elimination algorithm is taken over by conservativity the-
orems to the effect that limits calculated using asymptotic expansions are correct.
That is all very well, but if we ask Mathematica to calculate
lim VT -|- f

h—0
we get the answer 1/(24/x), without any assurnption x > 0 or even x > 0. This
shows that there is something yet to do before asymptotic expansions are useful in
QED.

8. INFINITE SERIES

In the US, there are the so-called Advanced Placement (AP) tests in calculus.
High-school students can earn college credit by passing these tests. There are two
of these: Calculus AB and Calculus BC. The most difficult topic in Calculus BC
is infinite series. Nested (double) series are not considered. There are three things
calculus students are expected to learn:

—To know certain basic series and to be able to use them to sum other series.

—To calculate the first few terms of a Taylor series by differentiating the given
function.

—The classical convergence tests: ratio test, root test, alternating series with de-
creasing terms test, and possibly some fancier ones.

Infinite series is the only topic on the American AP Calculus exam that was
not supported by MathXpert originally. Since June 2013 it is supported (to the
first-year college level only).

Clearly any serious contender for a QED system will have to handle infinite series
easily and correctly, in such a way that normal mathematical computations with
series do not require jumping through logical hoops, but also that correctness is
ensured. Infinite series are widespread in mathematics and the failure to work with
them in a natural way will hold up the arrival of the “QED singularity”. Let us
list some of the difficulties in meeting this requirement.

—We want to write series down without knowing whether or not they converge
(i.e., are defined).

—Many computational operations have complicated side conditions: rearrange or-
der of terms, regroup terms, differentiate or integrate term-by-term, multiply or
divide.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

92 . Michael Beeson

—The side conditions often involve two quantifiers: absolute convergence, for ex-
ample.

—The hypotheses for the convergence tests reduce to asymptotic inequalities.

By an asymptotic inequality I mean an equality that holds “for all sufficiently
large =7, or “for all sufficiently large n”, or “for all sufficiently small z”, or “for
all = sufficiently near to a”. It takes two quantifiers to express this concept in
first-order logic. For example,

INYm > N(2™ > m?)

expresses that asymptotically, 2 > m?3.
The three most important “convergence tests” are as follows. From their state-
ments, one can see that computing with asymptotic inequalities is the key.

—Comparison test. If asymptotically |b,| < |a,| and Y| a, converges, then so
does Y0 | by,.

—Divergence test. If asymptotically |b,| < |a,| and > | b,, diverges, then so does
2= bne

—Root test. If asymptotically a,, < a™ < 1 then > 7 a, converges.

The essential point is that the convergence tests all reduce to asymptotic in-
equalities. Hence, if we want to use infinite series in a logically correct manner,
the ability to decide asymptotic inequalities correctly (and verifiably) will be quite
useful. A start to this project was made in MathXpert, but it is nowhere near
adequate to support “real mathematics,” although it works for a good fragment of
freshman calculus. But as described in §7.3, the symbolic computation community
now knows how to compute asymptotic expansions for all exp-log functions and
their inverses. An important point is that these asymptotic expansions enable one
to settle inequalities algorithmically, since the difference of two functions also has
an asymptotic expansion and approaches a (calculable) limit.

The work so far on asymptotic expansions appears to be limited to real-valued
functions. Hence Fourier series and other trigonometric series are not covered; and
in general complex-valued series are used throughout number theory and analysis.
Even for real-valued functions, it has yet to be applied in proof-checking, for the
reasons sketched in §7.3.

8.1 A Feynman story

When I was an undergraduate at Caltech, Richard Feynman told us never to worry
about whether an infinite series converges. He said,

Just add it up! After you've got the answer, there’s plenty of time to
worry about whether it converges.

At the time I did not realize that Feynman had earned his Nobel Prize for finding
a way to “just add up” some infinite series that do not converge; his method was
called “renormalization.” Feynman wouldn’t have appreciated the goals of QED.
Compare Feynman’s remark that “there’s plenty of time to worry about conver-
gence after you have the answer” with the technique of getting an answer externally
and then verifying it. Even if you have the answer for an infinite series in hand, it is

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

Mixing Computations and Proofs : 93

often not easy to verify it, by contrast with an integral or expression for a rational
function as a sum of squares.

8.2 A John Harrison story

Here is a quotation from his paper [Har09a], p. 257, on formalizing the analytic
proof of the prime number theorem. In the quotation, he is talking about a single
step in the proof by Newman that he is formalizing.

(o]
1 log p logp 1
=3 L (LB — o L
n P D n
n=1 p<n D n>p

The implied equality between these different orders of summation of the
double series, simply stated without comment by Newman, also occurs
in our proofs, and we needed a 116-line proof script to justify it [emphasis
added].

This shows how far we have yet to go towards the goal of a QED system that
mathematicians would gladly use. A step that a human mathematician takes with-
out comment, and about which readers feel no doubt as to its correctness, should
not require 116 additional steps to formalize. No criticism is meant here—the system
and its use are state-of-the-art. My intention is simply to point out the difficulties
yet to be overcome.

What exactly are the “difficulties to be overcome” that are highlighted by this
example? Certainly one of them is the matter of the “rich enough library.” New-
man’s “library” included theorems allowing for the interchange of order of integra-
tion. HOL Light’s library perhaps did not (at that time); or perhaps the 116 lines
were needed to verify the hypotheses of those theorems. A human “sees” that the
terms are all positive, all the series are convergent, hence absolutely convergent,
etc. But that might take 161 lines to prove in the class where these theorems
are first introduced. There are thus two difficulties here: (i) the “accumulation of
knowledge”, and (ii) the “ease of applying well-known knowledge.”

9. MATHEMATICAL INDUCTION, OTTER-A, AND QED

Another kind of proof in which computation often mixes with logic is in proofs of
some (computational) formula by mathematical induction. These are often used to
introduce mathematics students to the concept of proof. A typical example is the
formula for the sum of the first n squares,

Zk2 _ TL(TL
k=1 2

The “proof plan” for mathematical induction reduces this to two algebra problems
(base case and induction step). The induction step is equational reasoning with an
equational assumption. “Equational reasoning” often reduces to computation, and
of course in the example, it does. Today’s proof-checkers have no serious difficulties
coping with proofs by induction. The example just mentioned occurs as the first
theorem in file fourier.ml distributed with HOL Light. Its proof script is five

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

94 . Michael Beeson

lines long; the first two lines name and state the theorem, and the last three lines
say, in HOL Light syntax, “first apply induction to reduce the problem to the base
case and induction step; then rewrite those cases by algebra and arithmetic.” The
actual script is explicit about the algorithms to be used for rewriting.

Nevertheless, there may be some lessons for QED to be learned from my ex-
periment in combining MathXpert with a resolution theorem-prover. The program
in question is called Otter-A, because it is based on adding (a certain kind of)
second-order unification to the theorem-prover OTTER [McC]. With second-order
unification, you can give Otter-A a second-order axiom (schema) like induction, and
it can try to find an instance of induction that will work. It did well enough at
this to do all the interesting examples of proofs by induction that Bundy’s provers
[Bun01] could do.

The relevance to QED is that, in order to do simple examples of induction, like
the one above, Otter needed high-school algebra. I linked Otter-A to MathXpert
(literally, linked the source codes producing a single executable). Otter-A passed
MathXpert the assumptions from the proof, and retrieved the result (including any
changed assumptions). Unless MathXpert has a bug, this result will be correct, so
I just let Otter-A take such steps, accepting the result without further verification.

This combination (Otter-A plus MathXpert) can indeed do high-school proofs by
induction—a successful proof of concept. Is this relevant to QED? There are two
points of relevance: The use of second-order unification to find the right instance
of induction, and the part about linking symbolic computation code to a resolution
theorem-prover may have some relevance. The proofs produced look like resolution
proofs, with steps taken externally justified by “simplify.” Trusting those proofs
relies on trusting that MathXpert had no relevant bugs. But because MathXpert
is designed to be logically sound, there was no other soundness risk.

The resulting proofs therefore have a level of trustworthiness less than what
one would get from Coq or HOL Light, but greater than what one would get
from Maple, Sage, or Mathematica. If the aim of formalization is to find errors in
putative proofs, this level of trustworthiness could be valuable. If the aim is to
achieve absolute certainty, it is not sufficient.

10. THE WEIERSTRASS PROVER

An earlier attempt to link computational code from MathXpert to a theorem-prover
was called Weierstrass, because originally I used it for epsilon-delta proofs in the
style introduced by Weierstrass. The theorem-prover used a form of backwards
search for a Gentzen sequent-calculus proof, and added new inference rules that
incorporated calculation rules. The code to implement these rules came from Math-
Xpert.

After enough tinkering the program could automatically find a proof that e is
irrational [Bee01]. The irrationality of e = Y -1 is a famous result. It is not trivial,
but not terribly difficult either. It mixes logic and computation very thoroughly.
Although the automatic finding of the proof is not relevant to QED, other aspects of
this proof are very relevant, as they illustrate several of the difficulties in combining
proof and calculation. The proof involves various mathematical techniques:

—inequalities

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

Mixing Computations and Proofs : 95

—Dbounds on infinite series

—type distinctions (between real and natural numbers)
—simplification of expressions involving factorials
—summing an infinite geometrical series

—proving a formula 2"~971(¢ + 1)! < n! by induction on n.

From the point of view of the sociology of the QED project, the reception of this
work is interesting. I gave a couple of mathematics colloquium talks about this
proof in 2000 or 2001. The questions asked indicated that (at least some) people
were very willing to believe that soon computers would be proving much more
complicated theorems, perhaps new ones. 1 was surprised, since it was obvious to
me that this result had been achieved as a “dog and pony show” and one could not
hope, e.g., to prove the irrationality of Euler’s «, which is an open problem.

Another aspect of this experiment that is relevant to QED concerns the presen-
tation of the computer proof. By contrast to the difficult-to-read resolution proofs
produced by OTTER, Weierstrass produced a TEX version of its proof, a structured
proof that Leslie Lamport would like, with the structure shown by indentations.
Some steps are justified by “simplification.” Not every internal detail of the cal-
culations so summarized is shown. In general, I believe people will be happy to
accept “simplification” as a justification, if they trust the simplifier, and the miss-
ing steps are not too many. If there are 20 million omitted steps, then the trust in
the simplifier must be correspondingly great.

Ten years after the Weierstrass proof of the irrationality of e, Jesse Bingham
[Binl1] used HOL Light to formalize a proof of the transcendence of e, which is
more difficult than the irrationality of e. His 3000-line proof is distributed with
HOL Light. Curiously, it uses only finite series, not infinite series.

11. SUMMARY AND CONCLUSION

The difficulties in incorporating computations into proofs include

—the use (or avoidance) of undefined terms;

—the tracking of assumptions needed;

—how to handle assumptions when they are needed;
—whether to trust external code or not;

—in using reflection, whether to compile proved-correct internal code to external
code for the advantage of speed.

After about 25 years of experience, the community has found workable solutions to
all these problems. The only remaining small leak in our boat is the last point, since
running translated code exposes us to possible errors in the translator, compiler,
or operating system.

References

[BB02] Henk Barendregt and Erik Barendsen. Autarkic computations in formal
proofs. Journal of Automated Reasoning, 28:321-336, 2002.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

96

[BCO1]

[BCZ96]

[Bee89a]

[Bee89b]

[Bee89c]

[Bee95]

[Bee97]
[Bee01]
[Bee06]

[Ber02]

[Binl1]
[BM79]
[Boo06)

[Bou97]

Michael Beeson

Henk Barendregt and Arjeh M. Cohen. Electronic communication of
mathematics and the interaction of computer algebra systems and proof
assistants. Journal of Symbolic Computation, 32:3—22, 2001.

Andrej Bauer, Edmund Clarke, and Xudong Zhao. Analytica — an
experiment in combining theorem proving and symbolic computation. In
Artificial Intelligence and Symbolic Mathematical Computation, volume
1138 of Lecture Notes in Computer Science, pages 21-37. Springer, 1996.

Michael Beeson. Logic and computation in Mathpert: An expert system
for learning mathematics. In Computers and Mathematics ‘89, pages
202-214. Springer-Verlag, Berlin Heidelberg New York, 1989. Mathpert
was the original name of MathXpert.

Michael Beeson. Mathpert: An expert system for learning mathematics.
In Proceedings of the Conference on Technology in Collegiate Mathemat-
ics Education, Columbus, Ohio, October, 1988, pages 9-14. Addison-
Wesley, 1989. Mathpert was the original name of MathXpert.

Michael Beeson. The user model in Mathpert, an expert system for
learning mathematics. In Bierman, Breuker, and Sandberg, editors,
Artificial Intelligence and Education ’89, pages 9-14, Amsterdam, 1989.
I0S. Mathpert was the original name of MathXpert.

Michael Beeson. Using nonstandard analysis to verify the correctness
of computations. International Journal of Foundations of Computer
Science, 6(3):299-338, 1995.

Michael Beeson. MathXpert Calculus Assistant, 1997. The current
version of this software is sold by Help With Math.

Michael Beeson. Automatic generation of a proof of the irrationality of
e. Journal of Symbolic Computation, 32(4):333-349, 2001.

Michael Beeson. Mathematical induction in Otter-lambda. Journal of
Automated Reasoning, 36(4):311-344, 2006.

Stefan Berghofer. Program extraction in simply-typed higher order
logic. In Jean-Christophe Filliatre, Christine Paulin-Mohring, and Ben-
jamin Werner, editors, Types for Proofs and Programs, International
Workshop, (TYPES 2002), number 2646 in Lecture Notes in Computer
Science, pages 21-38. Springer, 2002.

Jesse Bingham. Formalizing a proof that e is transcendental. Journal
of Formalized Reasoning, 4(1):71-84, 2011.

Robert Boyer and J. Strother Moore. A computational logic. Academic
Press, New York, 1979.

A. R. Booker. Turing and the Riemann hypothesis. Notices of the
American Mathematical Society, 53(10):1208—1211, 2006.

Samuel Boutin. Using reflection to build efficient and certified deci-
sion procedures. In Martin Abadi and Takayuso Ito, editors, TACS’97,
volume 1281 of Lecture Notes in Computer Science, pages 515-529.
Springer-Verlag, 1997.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

[Buc06]

[Bun01]

[BWO5]

[Coel0]

[dB70]

[dB94]

[Far93]

[FGT93]

[GAA+13]

[Geu09]

[Gon]

[Gon08]
[Gru96]

[GWZ00]

Mixing Computations and Proofs : 97

Bruno Buchberger. Theorema: Towards computer-aided mathematical
theory exploration. Journal of Applied Logic, 4(4):470-504, December
2006.

Alan Bundy. The automation of proof by mathematical induction. In
Alan Robinson and Andre Voronkov, editors, andbook of Automated
Reasoning, Volume II, chapter 13. MIT Press, 2001.

Michael Beeson and Freek Wiedijk. The meaning of infinity in calcu-
lus and computer algebra systems. Journal of Symbolic Computation,
39(5):523-538, 2005.

Claudio Sacerdoti Coen. Declarative representation of proof terms.
Journal of Automated Reasoning, 44:25-52, 2010.

N. G. de Bruijn. The mathematical language AUTOMATH, its us-
age and some of its extensions. In M Laudet, Daniel Lacombe, and
M Schuetzenberger, editors, Symposium on Automatic Demonstration,
INRIA, Versailles, volume 125 of Lecture Notes in Computer Science,
pages 29-61, Berlin, 1970. Springer-Verlag. reprinted in [?].

N. G. de Bruijn. Reflections on automath. In R. P. Nederpelt, J. H.
Geuvers, and R. C. de Vrijer, editors, Selected Papers on Automath,
number 133 in Studies in Logic, pages 201-228. North-Holland, Ams-
terdam, 1994.

William M. Farmer. A simple type theory with partial functions and
subtypes. Annals of Pure and Applied Logic, 64:211-240, 1993.

William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS:
An interactive mathematical proof system. Journal of Automated Rea-
soning, 11:213-248, 1993.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, Francois Garillot, Stéphane Le Roux, Assia Mahboubi, Rus-
sell O’Connor, Sidi Ould Biha, Toana Pasca, Laurence Rideau, Alexey
Solovyev, Enrico Tassi, and Laurent Théry. A machine-checked proof of
the odd order theorem. In Sandrine Blazy, Christine Paulin-Mohring,
and David Pichardie, editors, Interactive theorem proving, 4th interna-
tional conference, ITP 2013, volume 7998 of Lecture Notes in Computer
Science, pages 163-179. Springer, 2013.

Hermann Geuvers. Proof assistants: History, ideas and future. Sadhaa,
34(1):3-25, 2009.

Georges Gonthier. A computer-checked proof of the
four colour theorem. http://research.microsoft.com/en-
us/um/people/gonthier/4colproof.pdf.

Georges Gonthier. Formal proof-the four-color theorem. Notices of the
American Mathematical Society, 55(11):1382—-1393, December 2008.

D. Gruntz. On computing limits in a symbolic manipulation system.

PhD thesis, ETH Zurich, 1996.

Hermann Geuvers, Freek Wiedijk, and J. Zwanenburg. Equational rea-
soning via partial reflection. In M. Aagaard and John Harrison, editors,
Theorem Proving in Higher Order Logics, TPHOLs 2000, (Portland),

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

98

[HAB*15]

[Har95a]

[Har95b]

[Har09a]

[Har09b)

[Har11]

[Harar]

[HN10]

[Hows8]

[HT9g]

[Kal0g]

[KWOS]

Michael Beeson

volume 1689 of Lecture Notes in Computer Science, pages 162-178,
Berlin, 2000. Springer.

Thomas Hales, Mark Adams, Gertrude Bauer, Dan Tat Dat, John
Harrison, Hoang Le Truong, Cezary Kaliszyk, Victor Magron, Sean
McLaughlin, Nguyen Tat Thang, Nguyen Quang Truong, Tobias
Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev,
Ta Thi Hoai An, Tran Nam Trung, Trieu Thi Diep, Josef Urban,
Vu Khac Ky, and Roland Zumkeller. A formal proof of the Kepler
conjecture. http://arxiv.org/pdf/1501.02155.pdf, January 2015.

John Harrison. Meta theory and reflection in theorem proving: a survey
and critique. Technical Report CRC-053, SRI International Cambridge
Computer Science Research Center, 1995.

John Harrison. Metatheory and reflection in theorem proving: A
survey and critique. Technical Report CRC-053, SRI Cambridge,
Millers Yard, Cambridge, UK, 1995. Available on the Web as
http://www.cl.cam.ac.uk/~jrh13/papers/reflect.dvi.gz.

John Harrison. Formalizing an analytic proof of the prime number
theorem. Journal of Automated Reasoning, 43:243-261, 2009.

John Harrison. Handbook of Practical Logic and Automated Reasoning.
Cambridge University Press, Cambridge, UK, 2009.

John Harrison. Hol light tutorial (for version 2.20). on line, January
2011.

John Harrison. Formal proofs of hypergeometric sums. Journal of Au-
tomated Reasoning, to appear.

Florian Haftmann and Tobias Nipkow. Code generation via higher-order
rewrite systems. In Matthias Blume, Naoki Kobayashi, and Germ&an
Vidal, editors, Functional and Logic Programming, 10th International
Symposium, FLOPS 2010, Sendai, Japan, April 19-21, 2010. Proceed-
ings, volume 6009 of Lecture Notes in Computer Science, pages 103-117.
Springer, 2010.

Doug Howe. Computation meta theory in Nuprl. In E. Lusk and
R. Overbeek, editors, Proceedings of the Ninth International Confer-
ence of Automated Deduction, volume 310 of Lecture Notes in Computer
Science, pages 238-257. Springer-Verlag, 1988.

John Harrison and Laurent Théry. A skeptic’s approach to combining
HOL and Maple. Journal of Automated Reasoning, 21:279-294, 1998.
Cezary Kaliszyk. Automating side conditions in formalized partial func-
tions. In Serge Autexier, John Campbell, Julio Rubio, Volker Sorge,
Masakazu Suzuki, and Freek Wiedijk, editors, Intelligent Computer
Mathematics, 9th International Conference, AISC 2008, 15th Sym-
posium, Calculemus 2008, 7th International Conference, MKM 2008,
Birmingham, UK, July 28-August 1, 2008, Proceedings, volume 5144 of
Lecture Notes in Computer Science. Springer, 2008.

Cezary Kaliszyk and Freek Wiedijk. Merging procedural and declara-
tive proof. In Stefano Berardi, Ferruccio Damiani, and Ugo de’Liguoro,

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

[Lam95]
[Lam12]
[McC]
[Nit89]

[OSR92]

[PWZ96]
[Sha90]
[Sha09]

[SS99]

[Sto91]

[Tit51]

[Wen99|

[Wie99]

[Wie04]

[Wie08]

Mixing Computations and Proofs : 99

editors, Proc. of the Types for Proofs and Programs International Con-
ference (TYPES’08), volume 5497 of LNCS, pages 203—-219. Springer
Verlag, 2008.

Leslie Lamport. How to write a proof. American Mathematical Monthly,
102(7):600-608, September 1995.

Leslie Lamport. How to write a 21st century proof. Journal of Fized
Point Theory and Applications, pages doi:10.1007/s11784-012-0071-6,
March 2012.

William McCune. OTTER. http://www.mcs.anl.gov/AR /otter.
Johannes C. C. Nitsche. Lectures on Minimal Surfaces, volume 1. Cam-
bridge University Press, Cambridge, UK, 1989.

Sam Owre, Natarajan Shankar, and John Rushby. PVS: A prototype
verification system. In Deepak Kapur, editor, Automated Deduction—
CADE-11, volume 607 of Lecture Notes in Computer Science. Springer,
Berlin Heidelberg, 1992.

Marko Petkovvsek, Herbert S. Wilf, and Doron Zeilberger. A=B. A.
K. Peters, Wellesley, MA, 1996.

John Shackell. Growth estimates for exp-log functions. Journal of Sym-
bolic Computation, 10:611-632, 1990.

Natarajan Shankar. Automated deduction for verification. ACM Com-
puting Surveys, 41(4), October 2009.

Bruno Salvy and John Shackell. Symbolic asymptotics: Multiseries of
inverse functions. Journal of Symbolic Computation, pages 543-563,
1999.

David R. Stoutemyer. Crimes and misdemeanors in the computer al-
gebra trade. Notices of the American Mathematical Society, 38(7):778—
785, 1991.

E. C. Titchmarsch. The theory of the Riemann zeta-function. Clarendon
Press, Oxford, 1951.

Markus Wenzel. Isar — a generic interpretative approach to readable for-
mal proof documents. In Yves Bertot, Gilles Dowek, Andre Hirschowitz,
Christing Paulin, and Laurent Théry, editors, TPHOLs ’99 Proceedings
of the 12th International Conference on Theorem Proving in Higher Or-
der Logics, volume 1690 of Lecture Notes in Computer Science, pages
167-184. Springer-Verlag, 1999.

Freek Wiedijk. Formalizing 100 theorems
http://www.cs.ru.nl/F.Wiedijk,/100/index.html, 1999.

Freek Wiedijk. Formal proof sketches. In Stefano Berardi, Mario Coppo,
and Ferruccio Damiani, editors, Types for Proofs and Programs: Third
International Workshop, TYPES 2003, Torino, Italy, volume 3085 of
Lecture Notes in Computer Science, pages 378-393. Springer, 2004.
Freek Wiedijk. Formal proof-getting started. Notices of the American
Mathematical Society, 55(11):1408-1414, 2008.

Journal of Formalized Reasoning Vol. 9, No. 1, 2016.

