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Relative monads are a generalisation of ordinary monads where the underlying functor need not

be an endofunctor. In this paper, we describe a formalisation of the basic theory of relative
monads in the interactive theorem prover and dependently typed programming language Agda.

The formalisation comprises the requisite basic category theory, the central concepts of the theory
of relative monads and adjunctions, which are compared to their ordinary counterparts, and two

running examples from programming theory.

1. INTRODUCTION

Relative monads [ACU10] are a generalisation of ordinary monads to cover similar
structures where the underlying functor need not be an endofunctor. Our interest
in this generalisation was triggered by structures from programming theory that,
in many ways, are strikingly similar to monads (even respecting the same laws) and
have similar programming applications, but nonetheless fail to be monads. Some
examples of relative monads include untyped and typed λ-terms, finite-dimensional
vector spaces, and Hughes’s arrows.

In this paper, we describe a formalisation of the basic theory of relative monads
in the interactive theorem prover and dependently typed programming language
Agda [Agda]. This formalisation work is motivated by a number of basic observa-
tions.

First of all, by moving from a conventional functional programming language like
Haskell [Haskell] to a dependently typed language like Agda [Agda], we gain the
opportunity to formally certify our programs. Indeed, we are able to move from
programs to “deliverables”, which pair programs with proofs of correctness with
respect to a given specification; the correctness proof can be automatically verified
by a type checker.

Second, since monads are the most successful pattern in conventional functional
programming, we should expect that they play a central role in dependently typed
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functional programming. But in fact, with dependent types, we should go be-
yond monads. Sticking to conventional functional programming practice and using
dependent types for certified programming (à la deliverables) would be a missed
opportunity, we should reconceive programming, in one sense by fusing our pro-
grams and proofs but also by writing new programs made possible by dependent
types, from which one cannot simply extract a Haskell program with a less precise
type.

Once we move to a more fine-grained type system, such as Agda’s, it becomes
clear that the conventional notion of a monad is unnecessarily restrictive, since it
fails to account for the monad-like structures we encounter in programming that are
not endofunctors. We would like to contend that, in a dependently typed setting, it
is only natural to go on from monads to relative monads, as they are more general,
but not more complex. In Haskell, the opportunity arises only in a restricted form:
we can speak of functors from subcategories of the category of Haskell types [O12].

Third, we think that the present work is an interesting example of the mutual
influence of theoretical work and formalisation. Not only does the formal develop-
ment necessitate a review and refinement of structures inherited from mathematics,
but the development generates demands on the language and system used — Agda.
In fact, in the case of our study of relative monads, we worked on the formalisation
in parallel with the theoretical work and indeed both influenced each other.

The third point is reflected in our approach to extensionality. Agda’s propo-
sitional equality is proof irrelevant but not extensional with respect to functions.
We use both properties of propositional equality in our formalisation. We prove
proof irrelevance and assume extensionality of functions. At first, it sounds some-
what drastic to just assume extensionality: Is it not dangerous? Why do we not
just assume absurdity and have done with it? However, it has been shown by
Hofmann [H95] that extensionality is a conservative extension of intensional type
theory. Altenkirch et al. [AMS07] have shown that it is possible to introduce a type
theory with an extensional propositional equality without giving up decidable type
checking and other computational properties of the system. Another deficiency of
Agda’s propositional equality is that it does not support quotients, but we have no
need for them in this formalisation. If we did need them we would postulate them,
as we do in another formalization effort [CUV14].

Previous formalisations of category theory in type theory and higher-order logic
include [D85, AP90, DG94, HS98, C98, W05, CS07, S10, OK04, D07]. The formal-
isations in intensional type theory have used setoids (i.e., sets with an equivalence
relation) to model the homsets of a category while being content with a set for the
collection of objects. Our experience is that using setoids quickly becomes unwieldy
and introduces an unacceptable overhead to the formal development. Moreover, it
is not clear what should be a set and what should be a setoid. E.g., in the case of a
category, one could argue that both objects and homsets should be setoids to give
a direct account of constructions such as the arrow category. These choices would
then lead to many related but different implementations of the same concept, which
is clearly unacceptable and also unfeasible.

Our intention in this work is not to develop a category theory library for Agda
and we do not argue that the approach taken here is the only way or even the
best way to do this. Instead, this development has been carried out as part of our
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research on relative monads not as an after-the-fact verification, but as a day-to-day
tool for prototyping and sanity checking. However, this development is intended to
be a substantial experiment in formalising category theory in Agda for the purposes
of finding out whether our approach and the type theory and implementation of
Agda are fit for purpose. We will address these points in the conclusion.

We have striven to make the development as self-contained as possible, not relying
on libraries for stability in this situation. As already mentioned above, we make
extensive use of proof-irrelevance of propositional equations (provable in Agda)
and extensionality of functions (assumed). Both developments are available online
[C14].

Apart from some necessary basics of categories, the formalisation covers essen-
tially Section 2 of [ACU10] on relative monads, relative adjunctions, Kleisli and
Eilenberg-Moore adjunctions, with a special focus on two examples: well-scoped
untyped λ-terms and typed λ-terms. We are in the process of formalizing the later
sections on relative monads as monoids in suitable functor categories and the ex-
amples of finite-dimensional vector spaces and Hughes’s arrows. Progress in some
of these directions depends on further improvements to Agda.

The paper is organised as follows. In Section 2, we introduce our approach
using the example of monoids. As we discuss this example, we introduce Agda’s
syntax and develop the required utilities for our formalisation. In Section 3, we
introduce the background category theory that we need in order to discuss relative
monads and our examples: categories, functors, natural transformations, and set-
indexed categories (a special case of functor categories). Next, we introduce relative
monads and several examples (well-scoped and well-typed λ-terms) in Section 4.
When we introduce relative versions of structures, we always relate them to their
ordinary counterparts as a pedagogical device. In Section 5, we introduce relative
adjunctions, describe how they can be composed to form relative monads, and how
relative monads can be split into relative adjunctions. We also develop the examples
further.

The paper assumes no knowledge of category theory or monads and adjunctions,
in the sense that we define everything as we go along. But familiarity with these
topics will help the reader appreciate what we do.

2. MONOIDS

Basic algebraic structures can be defined as follows: first we define some data (e.g.,
a set and some operations on it), which provides the basic structure; and second
we define some laws, which govern how the data (e.g., an operation) behaves. An
example which fits this pattern is a monoid. A monoid is given by the following
data: a set; a distinguished element; and a binary operation on the set.

(S, ε, ·)
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These data are subject to the following laws:

Left unit law
ε ·m = m where m ∈ S

Right unit law
m · ε = m where m ∈ S

Associativity
(m · n) · o = m · (n · o) where m,n, o ∈ S

In Agda [Agda], we can use a dependent record to represent a monoid quite nat-
urally. Both the data and the laws are contained in the record as a sequence of
fields. The laws are represented as propositional equations. The data is explicitly
represented as a sequence of fields in a record which is itself a Set (Agda’s notation
for a type). Each field has an explicit type which can refer to the fields that came
before (Eg. ε’s type is the preceding field suc). The three equational laws are
represented as fields in the same record:

record Monoid : Set where

field S : Set

ε : S

_·_ : S → S → S

lid : {m : S} → ε · m ∼= m

rid : {m : S} → m · ε ∼= m

ass : {m n o : S} → (m · n) · o ∼= m · (n · o)

Let us look more closely at the Agda syntax introduced in this definition: first, we
begin the definition with record then the name of the record (Monoid in this case);
next, we could give some parameters, but none are necessary here; finally, we say
that this has type Set and end the line with where. The fields of the record are
preceded by the field keyword. Next, we name three fields and give their types.
Agda supports unicode characters, so ε is a perfectly good identifier. Infix operators
(like _·_) are named with underscores, indicating where the arguments go, and _→_

is the non-dependent function space, indicating that, in the case of _·_ that it takes
two elements of suc and always returns an element of S. Next we give the laws.
They are fields, so they must have names and their types are the equations which
they enforce. Universal quantification (or Π-type, they are the same in Agda) is
written as (a : A) → B. In this definition we use implicit universal quantification
{a : A} → B, as these arguments can often be inferred. This is just a notational
convenience: we are free to leave explicit arguments implicit (by giving them as
an underscore _) or give implicit arguments explicitly (by enclosing them in curly
braces {n}).

Compare this type of definition with Haskell, we can define the operations of
a monoid and define an instance of a monoid (e.g. natural numbers, zero and
addition), but we cannot show inside the system that this instance would obey the
laws of a monoid. In Agda, we can do both: we can write programs that make
use of algebraic structure and we can reason about them, and in the process make
extra guarantees that the we really have the structures that we say we do. In fact,
we go further than just allowing such guarantees to be stated; we insist that they
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are met. A monoid carries with it the guarantee that the monoid laws are satisfied.
If it does not satisfy the laws, we cannot give it the type of monoid.

Our intention is not to encode monoids in type theory, but to explain what a
monoid is in type theory, and then from this point on, use the language of type
theory, as opposed to informal mathematical notation, to discuss monoids and other
structures. Having given the example of monoids in both informal notation and
formally in type theory, we will from now on give only formal definitions. If type
theory is to be a language of mathematics, then one should be able to use it as a
language of mathematical explanations. It is our opinion that Haskell is already
quite effective as a language for explaining programming ideas, on a computer,
on a whiteboard, or on the back of an envelope. It is our hope that type theory
(as it is in Agda and related languages) can be a language for explaining not just
programming ideas but also mathematical ideas.

Before moving on to consider the categorical machinery we will need later, we
will first show, by way of an example, that natural numbers with zero and addition
form a monoid.

First, we give the inductive definition of natural numbers in Agda. We define
an inductive datatype with two constructors: zero for zero; and suc for successor
which takes a natural number and returns another natural number.

data N : Set where

zero : N
suc : N → N

Any natural number can be seen to have either zero or suc as its outermost con-
structor. For this reason when writing functions that consume natural numbers we
need only consider the canonical cases of zero or suc n.

We define addition as an infix operator _+_ by recursion on the first argument. In
Agda, we do not need to indicate that we are doing recursion on the first argument
in our definition, instead Agda’s termination checker checks that our recursion is
valid after the fact. It is valid in this case, as our recursive call takes a structurally
smaller first argument m. Indeed, we use only structural recursion in this paper.

_+_ : N → N → N
zero + n = n

suc m + n = suc (m + n)

Next, we can show that N, zero and _+_ form a monoid:

NMon : Monoid

NMon = record{

S = N;
ε = zero;

_·_ = _+_;

lid = refl;

rid = ?;

ass = ?}

We have defined a new record NMon with type Monoid and begun to fill in the fields.
The data is as follows: the underlying set is N; the unit element is zero; and the
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binary operation is given by _+_. Next we must give proofs of the laws, specialised
to this monoid. The left unit law is trivial; its type is zero + m = m. This law
holds up to definitional equality (=). It is just the first line of the definition of _+_.
Hence, it automatically computes to m = m and can be proved by reflexivity. The
other two laws, whose types are m + zero = m and (m + n) + o = m + (n + o)

respectively, do not compute any further automatically and require more involved
proofs. In Agda, unfinished parts of a definition are denoted by a question mark
?. It should be noted that the formalisation contains no unfinished parts. In this
paper we will give some incomplete definitions and fill them in later (as we do
here) and also leave some definitions incomplete. In the latter case we will give a
sketch of the missing term but omit its precise form due to reasons of space and/or
readability.

Before proving the laws as separate lemmas and filling in the two question marks,
we take the opportunity to examine propositional equality and a useful general
lemma. In this paper, we rely on the following definition of propositional equality:

data _∼=_ {A : Set} : {A’ : Set} → A → A’ → Set where

refl : {a : A} → a ∼= a

This is a heterogeneous version of Martin-Löf’s identity type (known to some as
John Major equality). It allows us to state an equality between elements of different
types. However, its only canonical inhabitant is reflexivity, where both the types
and the terms on the either side of the equation are identical. At first glance this def-
inition appears very restrictive, in fact it isn’t, refl is the only primitive rule (con-
structor) but the definition admits a lot of useful derived rules (functions/lemmas)
such as transitivity, symmetry, substitutivity, etc. One could instead make these
derived rules primitive but having only one primitive rule means we need only con-
sider one case when pattern matching on equality proofs. Pattern matching on
refl is in itself a powerful device as it can trigger unification as explained below.

A useful lemma (derived rule), which we will use very soon, states that functions
take equal arguments to equal results:

cong : ∀{A}{B : A → Set}(f : ∀ a → B a){a a’ : A} →
a ∼= a’ → f a ∼= f a’

cong f p = ?

Using the notation ∀, we can introduce an universally quantified variable, but leave
its type to be inferred. In this case, the type of A must be Set, as it is the domain
of B, and the type of a must be A, as it is applied to B. The type of the question
mark is f a ∼= f a’. To carry out the proof, we pattern-match on p, which is a
proof of the equation a ∼= a’. The only inhabitant of an equation is refl, and
hence a and a’ must be identical. By performing this pattern match, a and a’ get
unified in the context and the goal (the type of the question mark) is simplified to
f a ∼= f a, which is inhabited by refl as well. The finished proof is just:

cong f refl = refl

In a situation where we observe the same function is on the outside on both sides of
an equation we are trying to prove, we can use cong to make a backwards reasoning
step and ‘rip off’ the function from both sides and reduce our problem to proving
equality of what is underneath.
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Having stated and proved this lemma, we can now prove the right unit law for
the NMon monoid: {n : N} → n + zero ∼= n. The proof proceeds by induction
(induction and recursion are the same in Agda) on the implicit argument n, which
we provide explicitly here, so we can pattern-match on it. In the zero case, it is
given by refl of type zero ∼= zero. In the successor case, the goal computes to
suc (n + zero) ∼= suc n. We use cong to peel off the function suc and then
apply our inductive hypothesis rid+ {n} : n + zero ∼= n.

rid+ : {n : N} → n + zero ∼= n

rid+ {z} = refl

rid+ {s n} = cong suc (rid+ {n})

We can prove the associativity condition in a similar way. Here we need only refer
to the first implicit argument explicitly:

ass+ : {m n o : N} → (m + n) + o ∼= m + (n + o)

ass+ {z} = refl

ass+ {s m} = cong suc (ass+ {m})

Having proved these two lemmas, we can finish NMon:

NMon : Monoid

NMon = record{

S = N;
ε = zero;

_·_ = _+_;

lid = refl;

rid = rid+;

ass = ass+}

3. BASIC CATEGORY THEORY

In this section, we develop some basic category theory that we will make use of
later. A category is an algebraic structure like any other. We define it as before:
we introduce some data, a set of objects, a set of morphisms between two objects,
for any object, an identity morphism and, for any two morphisms between three
objects, a composition morphism. Then we give some equations which govern how
this structure behaves: identity is left and right unit of composition, and composi-
tion is associative. These conditions are often represented pictorially as commuting
diagrams. Commuting diagrams are a very nice representation of equations be-
tween compositions of maps, where all objects involved are explicitly displayed. In
Agda, we just represent the equations directly using propositional equality. Here
we typically suppress the implicit object arguments to improve readability.

record Cat : Set where

field Obj : Set

Hom : Obj → Obj → Set

iden : ∀{X} → Hom X X

comp : ∀{X Y Z} → Hom Y Z → Hom X Y → Hom X Z

idl : ∀{X Y}{f : Hom X Y} → comp iden f ∼= f

idr : ∀{X Y}{f : Hom X Y} → comp f iden ∼= f
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ass : ∀{W X Y Z}{f : Hom Y Z}{g : Hom X Y}{h : Hom W X} →
comp (comp f g) h ∼= comp f (comp g h)

A simple example of a category is the category of small sets. The objects are sets
and the morphisms are simple functions between them. The identity is given by
the identity function and the composition is given by function composition. The
laws hold definitionally.

SetCat : Cat

SetCat = record{

Obj = Set;

Hom = λ X Y → X → Y;

iden = id;

comp = λ f g → f ◦ g;

idl = refl;

idr = refl;

ass = refl}

Given any category, another simple example is to form the opposite category by
turning round all the arrows. In Agda, we define this as a postfix operator _Op.
The category C Op has the same objects as C. The morphisms from X to Y in C Op

are the morphisms from Y to X in C. The identity in C Op is given by the identity
of C and the composition in C Op is given by reversing the order of the composition
of C. The left unit law follows from right unit law of C, and the right unit law from
the left unit law of C. The associativity follows from the associativity of C after
applying symmetry.

_Op : Cat → Cat

C Op = record{

Obj = Obj C;

Hom = λ X Y → Hom C Y X;

iden = iden C;

comp = λ f g → comp C g f;

idl = idr C;

idr = idl C;

ass = sym (ass C)}

For the first time in the definition of _Op, we are referring to the fields of one record
in the definition of another and how this works warrants further explanation. The
type of the Obj field is Set, so we must give a set on the right of the = sign. But
Obj appears again on the right and this time takes an argument C. When we define
a record (e.g., Cat) Agda defines projection functions with the same names as the
field names (e.g., Cat.Obj). The projections are functions from the record type
to the field type (e.g., Cat.Obj : Cat → Set). We can open the name space of
the record (e.g., open Cat) to bring the projections into scope and avoid having
to give the name of the record as part of the projection name. We do this after
every record and hence we can refer to the projections directly (e.g., Obj). Hence
in the line Obj = Obj C, the Obj on the left is the field name of C Op and the Obj

on the right is the projection function from the record Cat. The remainder of the
definition proceeds as described above.
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Next we define functors. This time the record Fun is parameterised by the cate-
gories (C and D) at the domain and codomain of the functor. The record has fields
for the object map and the morphism map. It also has fields for the two functor
laws which guarantee that the morphism map does the right thing with the identity
and composition morphisms, i.e., that identity in C is mapped to identity in D and
that composition in C is mapped to composition in D. By including these laws in
the definition of a functor, we guarantee that anything that has the right to call
itself a functor respects the functor laws.

record Fun (C D : Cat) : Set where

field OMap : Obj C → Obj D

HMap : ∀{X Y} → Hom C X Y → Hom D (OMap X) (OMap Y)

fid : ∀{X} → HMap (iden C {X}) ∼= iden D {OMap X}

fcomp : ∀{X Y Z}{f : Hom C Y Z}{g : Hom C X Y} →
HMap (comp C f g) ∼= comp D (HMap f) (HMap g)

Having defined functors (morphisms between categories), we can define natural
transformations (morphisms between functors):

record NatT {C D}(F G : Fun C D) : Set where

field cmp : ∀ {X} → Hom D (OMap F X) (OMap G X)

nat : ∀{X Y}{f : Hom C X Y} →
comp D (HMap G f) cmp ∼= comp D cmp (HMap F f)

The natural transformation is made up of its components, given by a function
which for any object X in C (taken implicitly) gives us a morphism from OMap F X

to OMap G X, and a naturality condition, which states that, given any morphism f

in C, we can go along the morphism f and then the component morphism or we
can go along the component morphism first and then the morphism f.

Given definitions of categories, functors and natural transformations we might
like to define a functor category where the objects are functors and the morphisms
are natural transformations. Let us start to realise this:

FunctorCat : Cat → Cat → Cat

FunctorCat C D = record{

Obj = Fun C D;

Hom = NatT;

id = ?;

comp = ?;

idl = ?;

idr = ?;

ass = ?}

The morphisms in this category are natural transformations, so we need to define
the identity natural transformation and composition of natural transformations.
The identity natural transformation is from a functor F to itself. The component
at X in C must be a morphism in D from OMap F X to itself. This is just the iden-
tity morphism in D on the object OMap F X. The naturality condition computes to
comp D (HMap F f) (iden D) ∼= comp D (iden D) (HMap F f). which follows
from the left and right unit laws (lid and rid) in D. We use Agda’s equational
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reasoning style (delimited by proof and �) for equational proofs of greater than
one step.

idNat : ∀{C D}{F : Fun C D} → NatT F F

idNat {C}{D}{F} = record{

cmp = iden D;

nat = λ{X}{Y}{f} →
proof

comp (HMap F f) iden
∼=〈 idr 〉
HMap F f
∼=〈 sym idl 〉
comp iden (HMap F f)

�}

Composition proceeds analogously. Just like the components of the identity natural
transformation are given by identity in D, the components of composition are given
by composition in D, specifically, composition of the components of the natural
transformation α and β. We omit the proof term of the naturality condition and
leave it as ?. The omitted proof follows from the associativity law for D and the
naturality of α and β.

compNat : ∀{C D}{F G H : Fun C D} →
NatT G H → NatT F G → NatT F H

compNat {C}{D} α β = record {cmp = comp D (cmp α) (cmp β); nat = ?}

To have a category, we must prove the that idNat is left and right unit of compNat
and compNat is associative. Let us look at the left unit law first:

idlNat : ∀{C D}{F G : Fun C D}{α : NatT F G} → compNat idNat α ∼= α
idlNat = ?

To prove idlNat we must prove that the natural transformations compNat idNat α

and α are (propositionally) equal. Natural transformations are records, and to prove
that two records are equal we must prove that their fields are equal. In this case
this means we must prove that the components are equal and also the the proofs(!)
of naturality are equal. Help is at hand in the form of proof irrelevance:

ir : {A A’ : Set}{a : A}{a’ : A’}{p q : a ∼= a’} → p ∼= q

ir {p = refl}{q = refl} = refl

In Agda, all proofs of a particular propositional equation are equal. The proof
proceeds from the observation that the only canonical inhabitant of a propositional
equations is refl. When writing a program or proving a theorem by pattern
matching, we need only consider canonical representatives of the arguments, and
refl equals refl by (surprise, surprise) refl. So, we can just use proof irrelevance
to avoid proving that the naturality proofs are equal right? Well, no. The problem
is that the types of the two proofs (the equations of which they are proofs) are
different. The naturality condition for compNat (idNat G) α is

comp D (HMap G f) (comp D (iden D) (cmp α)) ∼=
comp D (comp D (iden D) (cmp α)) (HMap F f)
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and for α it is

comp D (HMap G f) (cmp α) ∼= comp D (cmp α) (HMap F f)

These equations are different, but their respective left and right hand sides are
provably equal. We just need to plug in the proofs that the components are equal
in the right place. We define a lemma fixtypes to deal with this common situation
where we have two equality proofs of different equations where the left and right
hand sides of each of the equations are all provable equal.

fixtypes : ∀{A A’ A’’ A’’’ : Set}

{a : A}{a’ : A’}{a’’ : A’’}{a’’’ : A’’’}

{p : a ∼= a’}{q : a’’ ∼= a’’’} → a ∼= a’’ → p ∼= q

fixtypes {p = refl} {q = refl} refl = refl

Given this principle, we are now in a position to prove that the naturality conditions
are equal, or we would be, were it not for the fact that the naturality conditions are
actually functions: they hold for any X, Y and f. Here Agda’s notion of propositional
equality lets us down. We really need extensionality: we would like functions to
be equal, if they do the same thing on all possible arguments. We postulate this
principle as follows:

postulate ext : {A : Set}{B B’ : A → Set}

{f : ∀ a → B a}{g : ∀ a → B’a} →
(∀ a → f a ∼= g a) → f ∼= g

For Agda a postulate is a function without definition or lemma without proof.
Attempting to evaluate (an application of) a postulate will get stuck.

We could now prove the left identity law above by proving only that the compo-
nents are equal and dispensing with the naturality conditions, using the facilities we
just introduced. However, we can do better than this, we can prove once-and-for-all
that two natural transformations are equal, if their components are equal. We can
prove that the naturality conditions are always equal, by plugging in the proof that
components are equal using extensionality and by invoking proof irrelevance via
fixtypes. We omit the proof term.

NatTEq : {C D : Cat}{F G : Fun C D}{α β : NatT F G} →
cmp α ∼= cmp β → α ∼= β

NatTEq p = ?

This turns out to be a common pattern in our formalisation: whenever we need to
prove that two records are equal and the records are made up of some fields giving
some data and some laws that govern it, we need only prove equality of the data.

Having defined NatTEq, we can use it to reduce the problem of proving the three
lemmas to proving that the components are equal.

idlNat : ∀{C D}{F G : Fun C D}{α : NatT F G} → compNat idNat α ∼= α

idrNat : ∀{C D}{F G : Fun C D}{α : NatT F G} → compNat α idNat ∼= α
assNat : ∀{C D}{E F G H : Fun C D}

{α : NatT G H}{β : NatT F G}{η : NatT E F} →
compNat (compNat α β) η ∼= compNat α (compNat β η)
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Their components are equal by the left and right identity, and associativity laws of
the category D respectively (and extensionality).

Having proved these three lemmas, we can now complete our definition of a
functor category:

FunctorCat : Cat → Cat → Cat

FunctorCat C D = record{

Obj = Fun C D;

Hom = NatT;

id = idNat;

comp = compNat;

idl = idlNat;

idr = idrNat;

ass = assNat}

We do not need the full power of functor categories in this paper. The only functor
category that arises has a discrete category at its domain. A discrete category is
simply a set and hence we use the much more basic structure of a category indexed
by a set which we call Fam:

Fam : Set → Cat

Fam I = record {

Obj = I → Set;

Hom = λ A B → ∀ {i} → A i → B i;

iden = id;

comp = λ f g → f ◦ g;

idl = refl;

idr = refl;

ass = refl}

4. MONADS AND RELATIVE MONADS

Relative monads are a generalisation of monads from endofunctors on one cate-
gory to functors that may go between two different categories. We define ordinary
monads first before introducing relative monads. In Manes’ style, a monad on a
category C consists of three pieces of data: a map T from objects of C to objects of
C; an operation η that for any object X of C gives a morphism in C from X to T X;
and an operation on morphisms of C called bind that (for any objects X and Y) lifts
morphisms from X to T Y to a morphism from T X to T Y.

record Monad (C : Cat) : Set where

field T : Obj C → Obj C

η : ∀ {X} → Hom C X (T X)

bind : ∀{X Y} → Hom C X (T Y) → Hom C (T X) (T Y)

law1 : ∀{X} → bind (η {X}) ∼= iden C {T X}

law2 : ∀{X Y}{f : Hom C X (T Y)} → comp C (bind f) η ∼= f

law3 : ∀{X Y Z}{f : Hom C X (T Y)}{g : Hom C Y (T Z)} →
bind (comp C (bind g) f) ∼= comp C (bind g) (bind f)

A simple example of a monad is the so-called maybe monad:
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data Maybe (A : Set) : Set where

Just : A → Maybe A

Nothing : Maybe A

Note first that this is not yet a monad; it is just a datatype. Maybe gives a canonical
way to add a distinguished element to a set A. This extra element is often used to
denote the failed result of an unreliable function that should really return an element
of A. We define a function mbind which lifts an unreliable function on reliable input
to an unreliable function on unreliable input:

mbind : {X Y : Set} → (X → Maybe Y) → Maybe X → Maybe Y

mbind f (Just x) = f x

mbind f Nothing = Nothing

Next we prove two properties about mbind (corresponding to the first and third
monad laws): that giving it Just as an argument (quite a reliable unreliable func-
tion) is the same as the identity function;

mlaw1 : ∀{A}(a : Maybe A) → mbind Just a ∼= id a

mlaw1 (Just a) = refl

mlaw1 Nothing = refl

and that, given two appropriate functions, composing their lifted versions, or lifting
one, composing, and then lifting the result gives the same outcome:

mlaw3 : ∀{A B C}{f : A → Maybe B}{g : B → Maybe C}(a : Maybe A) →
mbind (mbind g ◦ f) a ∼= (mbind g ◦ mbind f) a

mlaw3 (Just a) = refl

mlaw3 Nothing = refl

Having defined the Maybe type, mbind, and proved the two properties, we have all
we need to define the Maybe monad on the category SetCat. We use extensionality
and mlaw1 and mlaw3 to prove the first and third monad laws, the second one holds
definitionally.

MaybeMonad : Monad SetCat

MaybeMonad = record{

T = Maybe;

η = Just;

bind = mbind;

law1 = ext mlaw1;

law2 = refl;

law3 = ext mlaw3}

The definition of relative monads is quite similar to that of ordinary monads:

record RMonad {C D : Cat}(J : Fun C D) : Set where

field T : Obj C → Obj D

η : ∀{X} → Hom D (OMap J X) (T X)

bind : ∀{X Y} → Hom D (OMap J X) (T Y) → Hom D (T X) (T Y)

law1 : ∀{X} → bind (η {X}) ∼= iden D {T X}

law2 : ∀{X Y}{f : Hom D (OMap J X) (T Y)} →
Journal of Formalized Reasoning Vol. 7, No. 1, 2014.
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comp D (bind f) η ∼= f

law3 : ∀{X Y Z}

{f : Hom D (OMap J X) (T Y)}

{g : Hom D (OMap J Y) (T Z)} →
bind (comp D (bind g) f) ∼= comp D (bind g) (bind f)

The record RMonad takes the source and target categories C and D as implicit ar-
guments and a functor J between them as an explicit argument. The idea is that
functor J is some kind of embedding-like thing which repairs the mismatch in the
categories in the remainder of the definition. T is a mapping from objects of C to
objects of D, so η’s type must be adjusted from the previous definition: for any
object X in C, η gives a morphism in D from OMap J X to T X. bind must also be ad-
justed: this time, it takes as input maps in D from OMap J X to T X. The three laws
remain the same, but their types are adjusted by replacing C with D and inserting
OMap J where necessary.

An ordinary monad can be seen as a special case of a relative monad where the
functor J is just the identity functor:

IdF : ∀ C → Fun C C

IdF C = record{OMap = id; HMap = id; fid = refl; fcomp = refl}

To define the special case there is nothing to prove we just plug in the contents of
the fields of the monad into the fields of the relative monad:

specialM : {C : Cat} → Monad C → RMonad (IdF C)

specialM M = record {

T = T;

η = η;

bind = bind;

law1 = law1;

law2 = law2;

law3 = law3}

where open Monad M

There is another way to get a relative monad from an ordinary one. Given a monad
on some category D, we can restrict it to a relative monad by post-composing it
with any functor J into D.

restrictM : {C D : Cat}(J : Fun C D) → Monad D → RMonad J

restrictM J M = record {

T = T ◦ OMap J;

η = η;

bind = bind;

law1 = law1;

law2 = law2;

law3 = law3}

where open Monad M

Under favourable conditions, restriction is the right adjoint of an interesting ad-
junction. Its left adjoint is investigated in Section 4 of [ACU10].
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4.1 Morphisms

A morphism between monads M and M’ on a category C is given a family of mor-
phisms such that for any object X : Obj C the morphism morph {X} has type
Hom C (T M X) (T M’ X). It is subject to two laws governing its interaction with
η and bind.

record MonadMorph {C : Cat}(M M’ : Monad C) : Set where

open Cat C

field morph : ∀ {X} → Hom (T M X) (T M’ X)

lawη : ∀ {X} → comp morph (η M {X}) ∼= η M’ {X}

lawbind : ∀ {X Y}{k : Hom X (T M Y)} →
comp (morph {Y}) (bind M k)
∼=
comp (bind M’ (comp (morph {Y}) k)) (morph {X})

A morphism between relative monads is almost identical except for the morph {X}

is a morphism in D but X is an object in C:

record RMonadMorph {C D : Cat}{J : Fun C D}(M M’ : RMonad J) : Set

where

open Cat D

field morph : ∀ {X} → Hom (T M X) (T M’ X)

lawη : ∀ {X} → comp morph (η M {X}) ∼= η M’ {X}

lawbind : ∀ {X Y}{k : Hom (OMap J X) (T M Y)} →
comp (morph {Y}) (bind M k)
∼=
comp (bind M’ (comp (morph {Y}) k)) (morph {X})

A ordinary monad morphism can be seen as a special case of a relative monad
morphism:

specialMM : ∀{C : Cat}{M M’ : Monad C} → MonadMorph M M’ →
RMonadMorph (specialM M) (specialM M’)

specialMM MM = record {

morph = morph;

lawη = lawη;

lawbind = lawbind}

where open MonadMorph MM

Also, we can restrict a monad morphism to a relative monad morphism:

restrictMM : {C D : Cat}{M M’ : Monad D}(J : Fun C D) →
MonadMorph M M’ →
RMonadMorph (restrictM J M) (restrictM J M’)

restrictMM J MM = record {

morph = λ{X} → morph {OMap J X};

lawη = lawη;

lawbind = lawbind}

where open MonadMorph MM
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4.2 Well-scoped λ-terms

Now we will look at two examples of relative monads, well-scoped (but untyped)
and well-typed λ-terms.

Well-scoped λ−terms over a (potentially infinite) set of variables are standard
example of monads. The restriction to finite sets of variables is not. We will show
that this restriction naturally leads to a relative monad in both cases.

The well-scoped λ-terms are well-scoped because their type Tm is indexed by the
number of variables in scope (the length of the context) and ensures that they
cannot refer to any others. We will show that Tm is the object map T of a relative
monad on where J is functor whose object map is given by Fin:

data Fin : N → Set where

zero : ∀{n} → Fin (suc n)

suc : ∀{n} → Fin n → Fin (suc n)

Variables are de Bruijn indices, represented as elements of finite sets. The finite
set Fin 0 is empty, the finite set Fin 1 contains one element zero, the finite set
Fin 2 contains two elements zero and suc zero, etc.

Con = N
Var = Fin

data Tm : Con → Set where

var : ∀{n} → Var n → Tm n

lam : ∀{n} → Tm (suc n) → Tm n

app : ∀{n} → Tm n → Tm n → Tm n

Looking at the definition of the type Tm, we see that the var constructor embeds
elements of Var n (variables from a n-element scope) into the set Tm n (terms over
this scope). The lam constructor is a scope-safe λ-abstraction. It takes a body
over suc n variables and gives back a term over n variables (the bound variable
has been abstracted by the λ). The app constructor is for scope-safe application
of a function over n variables to an argument over n variables. If the function and
argument are over different numbers of variables we cannot even form the term
corresponding to their application.

To show that the well-scoped terms form a relative monad, we must first fix J

and the categories between which it operates.
The source category is the category of contexts ConCat whose objects numbers,

to be understood as possible context sizes. The morphisms are functions from
Var m → Var n. These morphisms can be thought of as renamings from m vari-
ables to n variables. Identity and composition are given by the identity function
and composition of functions respectively. As in the category of sets (where the
morphisms are also functions), the laws hold definitionally. First, we define some
type synonyms for renamings, the identity renaming, and composition of renaming.
This makes the types that follow easier to read.

Ren : Con → Con → Set

Ren m n = Var m → Var n
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renId : ∀{n} → Ren n n

renId = id

renComp : ∀{m n o} → Ren n o → Ren m n → Ren m o

renComp f g = f ◦ g

The category ConCat is defined as follows:

ConCat : Cat

ConCat = record{

Obj = Con;

Hom = Ren;

iden = renId;

comp = renComp;

idl = refl;

idr = refl;

ass = refl}

The target of the functor J is the category of sets SetCat defined earlier. We now
give the definition for the functor J. On objects, it is Var and, on maps, it is the
identity function. The laws hold definitionally due to the trivial operation on maps:

VarFun : Fun ConCat SetCat

VarFun = record{

OMap = Var;

HMap = id;

fid = refl;

fcomp = refl}

We can now begin to show that we have a relative monad on VarFun:

TmRMonad : RMonad VarFun

TmRMonad = record{

T = Tm;

η = var;

bind = ?;

law1 = ?;

law2 = ?;

law3 = ?}

We fix the object map T to be Tm which gives η the type {n : Con} → Var n → Tm n.
It is just the constructor var. The type of bind is more interesting: {m n : Con}

→ (Var m → Tm n) → Tm m → Tm n. A function from Var m → Tm n is a sub-
stitution; for every variable in Var m it gives a term over n variables. var is the
identity substitution: it replaces a variable with itself (seen as term). bind per-
forms a substitution; it applies a substitution from m variables to terms over n

variables to a term over m variables to give a term over n variables. Put another
way it lifts a substitution, which is an operation on variables, to an operation on
terms. There are several ways to proceed from here to define substitution. We
chose to first define renaming (we already have a category of contexts) and use it to
define substitution. This approach has a clear mathematically structure, a simple
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termination argument (all our definitions are structurally recursive), and makes the
proofs of the monad laws relatively straightforward.

Next, we define the action of renaming ren which applies a renaming to a term,
or, put another way, takes a renaming from m to n and lifts it to a function from
terms over m variables to terms over n variables. We define it by recursion on the
term. In the variable case, we peel off the var constructor, apply the renaming,
and replace the var. In the application case, we can just push the renaming down
to the subterms. In the case of λ-abstraction, we weaken the renaming using wk

(defined below) and then apply it to the body.

ren : ∀{m n} → Ren m n → Tm m → Tm n

ren f (var i) = var (f i)

ren f (app t u) = app (ren f t) (ren f u)

ren f (lam t) = lam (ren (wk f) t)

To push renaming under a binder, we need a helper function wk which weakens a
renaming: the variable zero is passed straight through and the others are mapped
to the successor (the weakening of variables) of their original values:

wk : ∀{m n} → Ren m n → Ren (suc m) (suc n)

wk f zero = zero

wk f (suc i) = suc (f i)

Next, we prove that wk maps the identity renaming to itself and ren maps the
identity renaming to the identity function:

wkid : ∀{n}(i : Var (suc n)) → wk renId i ∼= renId i

wkid zero = refl

wkid (suc i) = refl

renid : ∀{n}(t : Tm n) → ren renId t ∼= id t

renid (var i) = refl

renid (app t u) = cong2 app (renid t) (renid u)

renid (lam t) =

proof

lam (ren (wk renId) t)
∼=〈 cong (λ f → lam (ren f t)) (ext wkid) 〉
lam (ren renId t)
∼=〈 cong lam (renid t) 〉
lam t

�

Notice that, in the proof renid, we need the proof wkid, as, in the program ren,
we needed the program wk.

Next, we prove the wk takes composition of renamings to composition of renam-
ings and ren takes composition of renamings to composition of functions. Notice
again that the lam cases require the corresponding properties for wk.

wkcomp : ∀{m n o}(f : Ren n o)(g : Ren m n)(i : Var (suc m)) →
wk (renComp f g) i ∼= renComp (wk f) (wk g) i

Journal of Formalized Reasoning Vol. 7, No. 1, 2014.



Relative monads formalised · 19

wkcomp f g zero = refl

wkcomp f g (suc i) = refl

rencomp : ∀{m n o}(f : Ren n o)(g : Ren m n)(t : Tm m) →
ren (renComp f g) t ∼= (ren f ◦ ren g) t

rencomp f g (var i) = refl

rencomp f g (app t u) = cong2 app (rencomp f g t) (rencomp f g u)

rencomp f g (lam t) =

proof

lam (ren (wk (renComp f g)) t)
∼=〈 cong (λ f → lam (ren f t)) (ext (wkcomp f g)) 〉
lam (ren (renComp (wk f) (wk g)) t)
∼=〈 cong lam (rencomp (wk f) (wk g) t) 〉
lam (ren (wk f) (ren (wk g) t))

�

These properties indicate that wk and ren are morphism maps of two functors. wk
is a morphism map for the object endomap suc on the category of contexts and
ren the morphism map for the object map Tm from the category of contexts to the
category of sets. We stop short of defining these functors explicitly; we define only
what we will need later.

Having dealt with renaming, we can now move on to substitution. We define a
type synonym for substitution, as we did for renaming, but defer the definition of
identity and composition until later:

Sub : Con → Con → Set

Sub m n = Var m → Tm n

The first operation we define is analogous to wk; we must be able to weaken a
substitution to push it under a λ-abstraction. As before, the variable zero is
passed straight through. In the other case we apply the substitution and weaken
the resultant term. Notice that suc weakens a variable and ren fs weakens a term.

lift : ∀{m n} → Sub m n → Sub (suc m) (suc n)

lift f zero = var zero

lift f (suc i) = ren suc (f i)

Having defined lift, we can define the action of substitutions on terms. In the
variable case, we apply the substitution; in the application case, we pass it to the
subterms; in the λ case we weaken it and pass it to the body.

sub : ∀{m n} → Sub m n → Tm m → Tm n

sub f (var i) = f i

sub f (app t u) = app (sub f t) (sub f u)

sub f (lam t) = lam (sub (lift f) t)

The identity substitution is just var. When applied, it removes the var constructor
and then reapplies it again:

subId : ∀{n} → Sub n n

subId = var
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To compose substitutions, we must lift the first one f to a function from terms to
terms sub f. Then we can compose:

subComp : ∀{m n o} → Sub n o → Sub m n → Sub m o

subComp f g = sub f ◦ g

As we did for renamings we prove that lift takes the identity substitution to itself
and that sub take the identity substitution to the identity function on terms:

liftid : ∀{n}(i : Var (suc n)) → lift subId i ∼= subId i

liftid zero = refl

liftid (suc i) = refl

subid : ∀{n}(t : Tm n) → sub subId t ∼= id t

subid (var i) = refl

subid (app t u) = cong2 app (subid t) (subid u)

subid (lam t) =

proof

lam (sub (lift subId) t)
∼=〈 cong lam (cong (λ f → sub f t) (ext liftid)) 〉
lam (sub subId t)
∼=〈 cong lam (subid t) 〉
lam t

�

To prove the required properties of lift and sub for composition, we need some
extra lemmas. We have defined ren using wk, lift using ren and sub using lift.
Hence, we need some lemmas regarding how they interact:

liftwk : ∀{m n o}(f : Sub n o)(g : Ren m n)(i : Var (s m)) →
(lift f ◦ wk g) i ∼= lift (f ◦ g) i

liftwk f g zero = refl

liftwk f g (suc i) = refl

subren : ∀{m n o}(f : Sub n o)(g : Ren m n)(t : Tm m) →
(sub f ◦ ren g) t ∼= sub (f ◦ g) t

subren f g (var i) = refl

subren f g (app t u) = cong2 app (subren f g t) (subren f g u)

subren f g (lam t) =

proof

lam (sub (lift f) (ren (wk g) t))
∼=〈 cong lam (subren (lift f) (wk g) t) 〉
lam (sub (lift f ◦ wk g) t)
∼=〈 cong lam (cong (λ f1 → sub f1 t) (ext (liftwk f g))) 〉
lam (sub (lift (f ◦ g)) t)

�

renwklift : ∀{m n o}(f : Ren n o)(g : Sub m n)(i : Var (s m)) →
(ren (wk f) ◦ lift g) i ∼= lift (ren f ◦ g) i

renwklift f g zero = refl
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renwklift f g (suc i) =

proof

ren (wk f) (ren suc (g i))
∼=〈 sym (rencomp (wk f) suc (g i)) 〉
ren (wk f ◦ suc) (g i)

≡〈〉
ren (suc ◦ f) (g i)
∼=〈 rencomp suc f (g i) 〉
ren suc (ren f (g i))

�

rensub : ∀{m n o}(f : Ren n o)(g : Sub m n)(t : Tm m) →
(ren f ◦ sub g) t ∼= sub (ren f ◦ g) t

rensub f g (var i) = refl

rensub f g (app t u) = cong2 app (rensub f g t) (rensub f g u)

rensub f g (lam t) =

proof

lam (ren (wk f) (sub (lift g) t))
∼=〈 cong lam (rensub (wk f) (lift g) t) 〉
lam (sub (ren (wk f) ◦ (lift g)) t)
∼=〈 cong (λ f → lam (sub f t)) (ext (renwklift f g)) 〉
lam (sub (lift (ren f ◦ g)) t)

�

Having proved these lemmas relating wk, ren, lift and sub, we can now prove the
properties of composition we need. lift takes composition of substitutions to com-
position of substitutions and sub takes composition of substitutions to composition
of functions:

liftcomp : ∀{m n o}(f : Sub n o)(g : Sub m n)(i : Var (s m)) →
lift (subComp f g) i ∼= subComp (lift f) (lift g) i

liftcomp f g zero = refl

liftcomp f g (suc i) =

proof

ren suc (sub f (g i))
∼=〈 rensub suc f (g i) 〉
sub (ren suc ◦ f) (g i)
∼=〈 sym (subren (lift f) suc (g i)) 〉
sub (lift f) (ren suc (g i))

�

subcomp : ∀{m n o}(f : Sub n o)(g : Sub m n)(t : Tm m) →
sub (subComp f g) t ∼= (sub f ◦ sub g) t

subcomp f g (var i) = refl

subcomp f g (app t u) = cong2 app (subcomp f g t) (subcomp f g u)

subcomp f g (lam t) =

proof

lam (sub (lift (subComp f g)) t)
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∼=〈 cong (λ f → lam (sub f t)) (ext (liftcomp f g)) 〉
lam (sub (subComp (lift f)(lift g)) t)
∼=〈 cong lam (subcomp (lift f) (lift g) t) 〉
lam (sub (lift f) (sub (lift g) t))

�

Similarly to renaming, there are two functors lurking here. lift is the morphism
map of an endofunctor on the category of substitutions and sub is the morphism
map of a functor from the category of substitutions to the category of sets.

Having defined sub and proved subid and subcomp, we can fill in the rest of the
definition of the relative monad. bind is sub, the first law follows from subid, the
second law holds definitionally and the third law follows from subcomp.

TmRMonad : RMonad VarFun

TmRMonad = record{

T = Tm;

η = var;

bind = sub;

law1 = ext subid;

law2 = refl;

law3 = ext (subcomp _ _)}

We would also get a relative monad if we quotiented each set Tm n by the βη-
equality. Crucially bind can be given the correct type as substitution respects
βη-equality. We refrain from pursuing this here.

4.3 Well-typed λ-terms

The well-typed λ-terms also form a relative monad. First we define some types: an
inert base type; and a simple function space.

data Ty : Set where

ι : Ty

_⇒_ : Ty → Ty → Ty

Contexts are just sequences of types. They will play the role that natural numbers
played in the well-scoped terms: indicating how many variables are in scope, but
also what their types are. In this sense, they can be thought of as like natural
numbers where the successor is labelled with a type.

data Con : Set where

ε : Con

_<_ : Con → Ty → Con

Variables are de Bruijn indices as before. The type of variables is very much like
before, but contexts are typed and the variable’s type is given as an extra type
index. For the zeroth variable zero, we can see that its type is guaranteed to be
the same as the type at the end of the context. The successor suc is essentially
weakening restricted to variables, it introduces a new variable at the end of the
context and preserves the type.

data Var : Con → Ty → Set where
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zero : ∀{Γ σ} → Var (Γ < σ) σ

suc : ∀{Γ σ τ} → Var Γ σ → Var (Γ < τ) σ

The type Tm receives the same treatment. It guarantees the that terms are well-
scoped as before, but now they are also well-typed. An ill-typed term is not a term
at all.

data Tm : Con → Ty → Set where

var : ∀{Γ σ} → Var Γ σ → Tm Γ σ

app : ∀{Γ σ τ} → Tm Γ (σ ⇒ τ) → Tm Γ σ → Tm Γ τ

lam : ∀{Γ σ τ} → Tm (Γ < σ) τ → Tm Γ (σ ⇒ τ)

To show that this datatype gives a relative monad, we must define substitution and
prove the same properties of it as before (that it respects identity and composition).
The programs we must write are very similar and so are the proofs. We give
the programs in full, but omit the proofs of the substitution properties. Having
proved these properties, we must also fix some categorical structures (What are the
categories? What is J?) to complete the relative monad definition. We will describe
these in full.

Given two contexts, renaming is defined to be a type of functions which takes a
type as an implicit argument and returns a function from variables over one context
to variables over the other. Notice that the types of the variables are preserved.
Identity and composition are given by identity and composition of functions.

Ren : Con → Con → Set

Ren Γ Δ = ∀ {σ} → Var Γ σ → Var Δ σ

renId : ∀{Γ} → Ren Γ Γ

renId = id

renComp : ∀{B Γ Δ} → Ren Γ Δ → Ren B Γ → Ren B Δ

renComp f g = f ◦ g

Before defining the action of a renaming on a term, we explain how to weaken a
renaming (to push it under a λ-abstraction) by introducing a new type (for the
bound variable) at the end of the context. The type is taken implicitly. The
action ren is defined by recursion on the term. In the variable case, the renaming
is applied, in the application case, it is passed to the subterms and, in the λ-
abstraction case, it is weakened before being passed to the body.

wk : ∀{Γ Δ σ} → Ren Γ Δ → Ren (Γ < σ) (Δ < σ)

wk f zero = zero

wk f (suc i) = suc (f i)

ren : ∀{Γ Δ} → Ren Γ Δ → ∀ {σ} → Tm Γ σ → Tm Δ σ

ren f (var x) = var (f x)

ren f (app t u) = app (ren f t) (ren f u)

ren f (lam t) = lam (ren (wk f) t)

We require the following properties of wk and ren:
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wkid : ∀{Γ σ τ}(x : Var (Γ < τ) σ) → wk renId x ∼= renId x

renid : ∀{Γ σ}(t : Tm Γ σ) → ren renId t ∼= id t

wkcomp : ∀ {B Γ Δ}(f : Ren Γ Δ)(g : Ren B Γ)

{σ τ}(x : Var (B < σ) τ) →
wk (renComp f g) x ∼= renComp (wk f) (wk g) x

rencomp : ∀ {B Γ Δ}(f : Ren Γ Δ)(g : Ren B Γ){σ}(t : Tm B σ) →
ren (renComp f g) t ∼= (ren f ◦ ren g) t

We omit the proofs, as they have exactly the same structure as their counterparts
for the well-scoped terms.

Given two contexts, substitution is defined to be a type of functions which takes a
type as an implicit argument and returns a type-preserving function from variables
over one context to terms over the other.

Sub : Con → Con → Set

Sub Γ Δ = ∀{σ} → Var Γ σ → Tm Δ σ

Before defining the action of a substitution on a term, we explain how to weaken
a substitution. The zeroth variable is passed straight through, for other variables,
we apply the substitution and weaken the result (ren suc weakens a term).

lift : ∀{Γ Δ σ} → Sub Γ Δ → Sub (Γ < σ) (Δ < σ)

lift f zero = var zero

lift f (suc x) = ren suc (f x)

The action of substitution on a term is defined by recursion on the term. In the
variable case, the substitution is applied, in the application case, it is passed to the
subterms, in the λ-abstraction case, it is weakened and then passed to the body.

sub : ∀{Γ Δ} → Sub Γ Δ → ∀{σ} → Tm Γ σ → Tm Δ σ

sub f (var x) = f x

sub f (app t u) = app (sub f t) (sub f u)

sub f (lam t) = lam (sub (lift f) t)

The identity substitution is given by the var constructor. Composition of substitu-
tions is given by lifting the first substitution to an operation on terms by applying
sub and then using function composition.

subId : ∀{Γ} → Sub Γ Γ

subId = var

subComp : ∀{B Γ Δ} → Sub Γ Δ → Sub B Γ → Sub B Δ

subComp f g = sub f ◦ g

We require the following properties of substitution:

liftid : ∀{Γ σ τ}(x : Var (Γ < σ) τ) → lift subId x ∼= subId x

subid : ∀{Γ σ}(t : Tm Γ σ) → sub subId t ∼= id t

liftwk : ∀{B Γ Δ}(f : Sub Γ Δ)(g : Ren B Γ)

{σ τ}(x : Var (B < σ) τ) →
(lift f ◦ wk g) x ∼= lift (f ◦ g) x

subren : ∀{B Γ Δ}(f : Sub Γ Δ)(g : Ren B Γ){σ}(t : Tm B σ) →
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(sub f ◦ ren g) t ∼= sub (f ◦ g) t

renwklift : ∀{B Γ Δ}(f : Ren Γ Δ)(g : Sub B Γ)

{σ τ}(x : Var (B < σ) τ) →
(ren (wk f) ◦ lift g) x ∼= lift (ren f ◦ g) x

rensub : ∀{B Γ Δ}(f : Ren Γ Δ)(g : Sub B Γ){σ}(t : Tm B σ) →
(ren f ◦ sub g) t ∼= sub (ren f ◦ g) t

liftcomp : ∀{B Γ Δ}(f : Sub Γ Δ)(g : Sub B Γ)

{σ τ}(x : Var (B < σ) τ) →
lift (subComp f g) x ∼= subComp (lift f) (lift g) x

subcomp : ∀{B Γ Δ}(f : Sub Γ Δ)(g : Sub B Γ){σ}(t : Tm B σ) →
sub (subComp f g) t ∼= (sub f ◦ sub g) t

The proofs are omitted.
We now consider the categorical structure. We start with a category of contexts

as before. This time, the renamings are typed and the objects of the category
are lists of types instead of natural numbers, the morphisms are renamings as be-
fore. Identity and composition morphisms are given by identity and composition of
renamings, these are in turn given by the identity function and composition of func-
tions, hence the categorical laws hold definitionally (after applying extensionality
for functions with implicit arguments iext).

ConCat : Cat

ConCat = record{

Obj = Con;

Hom = Ren;

iden = renId;

comp = renComp;

idl = iext λ _ → refl;

idr = iext λ _ → refl;

ass = iext λ _ → refl}

Instead of just having a J be a functor from ConCat to SetCat this time it is a
functor from ConCat to a Fam Ty the category of Ty-indexed sets.

Next we define the functor VarFun that plays the role of J. It is defined analo-
gously to the functor VarFun from the previous section. On objects it is Var and
on morphisms it is identity. The laws hold definitionally due to the operations on
morphisms being the identity (in SetCat).

VarFun : Fun ConCat (Fam Ty)

VarFun = record {

OMap = Var;

HMap = id;

fid = refl;

fcomp = refl}

Lastly, we can fill in the proof that Tm forms a relative monad over the functor
VarFun. T is the Tm type constructor, η is the var constructor, bind is substitution
sub, the first law follows from subid, the second law holds definitionally and the
third law follows from subcomp.
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TmRMonad : RMonad VarFun

TmRMonad = record {

T = Tm;

η = var;

bind = sub;

law1 = iext λ _ → ext subid ;

law2 = refl;

law3 = λ{_ _ _ f g} → iext λ σ → ext (subcomp g f)}

Similarly to the well-scoped case terms could be quotiented by βη-equality and
would still yield relative monad.

5. ADJUNCTIONS AND RELATIVE ADJUNCTIONS

An adjunction is a structure between two categories C and D. It is carried by two
functors L and R. There are many options regarding how to present further data
and laws. We choose to accompany the two functors by a natural bijection be-
tween Hom D (OMap L X) Y and Hom C X (OMap R Y) natural in X and Y. The
fields rightt and leftt give the functions in the two directions, lawa and lawb

assert they are mutually inverse, and natrightt and natleftt assert the natural-
ity conditions. We could excise the definition of natural isomorphism, but as we
only use it here, we stick with this flat definition to avoid unnecessary packing and
unpacking.

record Adj (C D : Cat) : Set where

field L : Fun C D

R : Fun D C

rightt : {X : Obj C}{Y : Obj D} →
Hom D (OMap L X) Y → Hom C X (OMap R Y)

leftt : {X : Obj C}{Y : Obj D} →
Hom C X (OMap R Y) → Hom D (OMap L X) Y

lawa : {X : Obj C}{Y : Obj D}(f : Hom D (OMap L X) Y) →
leftt (rightt f) ∼= f

lawb : {X : Obj C}{Y : Obj D}(f : Hom C X (OMap R Y)) →
rightt (leftt f) ∼= f

natrightt : {X X’ : Obj C}{Y Y’ : Obj D}

(f : Hom C X’ X)(g : Hom D Y Y’)

(h : Hom D (OMap L X) Y) →
comp C (HMap R g) (comp C (rightt h) f)
∼=
rightt (comp D g (comp D h (HMap L f)))

natleftt : {X X’ : Obj C}{Y Y’ : Obj D}

(f : Hom C X’ X)(g : Hom D Y Y’)

(h : Hom C X (OMap R Y)) →
leftt (comp C (HMap R g) (comp C h f))
∼=
comp D g (comp D (leftt h) (HMap L f))

Relative adjunctions are defined analogously. A relative adjunction goes between a
functor J : Fun C D and a category E. It is a given by two functors L : Fun C E
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and R : Fun E D and further data. The bijection is between Hom E (OMap L X) Y

and Hom D (OMap J X) (OMap R Y). As X is taken from C not D, we must apply
OMap J to rectify this mismatch in the type of the bijection. The isomorphism and
naturality conditions are adjusted accordingly.

record RAdj {C D : Cat}(J : Fun C D)(E : Cat) : Set where

field L : Fun C E

R : Fun E D

rightt : {X : Obj C}{Y : Obj E} →
Hom E (OMap L X) Y → Hom D (OMap J X) (OMap R Y)

leftt : {X : Obj C}{Y : Obj E} →
Hom D (OMap J X) (OMap R Y) → Hom E (OMap L X) Y

lawa : {X : Obj C}{Y : Obj E}(f : Hom E (OMap L X) Y) →
leftt (rightt f) ∼= f

lawb : {X : Obj C}{Y : Obj E}

(f : Hom D (OMap J X) (OMap R Y)) →
rightt (leftt f) ∼= f

natrightt : {X X’ : Obj C}{Y Y’ : Obj E}

(f : Hom C X’ X)(g : Hom E Y Y’)

(h : Hom E (OMap L X) Y) →
comp D (HMap R g) (comp D (rightt h) (HMap J f))
∼=
rightt (comp E g (comp E h (HMap L f)))

natleftt : {X X’ : Obj C}{Y Y’ : Obj E}

(f : Hom C X’ X)(g : Hom E Y Y’)

(h : Hom D (OMap J X) (OMap R Y)) →
leftt (comp D (HMap R g) (comp D h (HMap J f)))
∼=
comp E g (comp E (leftt h) (HMap L f))

An ordinary adjunction can be seen as a special case of a relative adjunctions where
the functor J is the identity functor IdF.

Also, given an ordinary adjunction between two categories D and E, we can restrict
it to a relative adjunction between a functor J : Fun C D and the category E by
post-composing (using functor composition _◦_) the left adjoint L with J. The
bijection follows from the bijection of the adjunction where X = OMap J X. The
naturality follows from the naturality of the adjunction where f = HMap J f:

restrictA : {C D E : Cat}(J : Fun C D) → Adj D E → RAdj J E

restrictA J A = record{

L = L ◦ J;

R = R;

rightt = rightt;

leftt = leftt;

lawa = lawa;

lawb = lawb;

natrightt = natrightt ◦ HMap J;

natleftt = natleftt ◦ HMap J}

where open Adj A
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The adjoint functors of any adjunction can be composed to form a monad. This
construction can be generalised to relative monads. Given a relative adjunction
on J between functors L and R the object map of the relative monad T arises by
composing the object maps of the functors OMap R ◦ OMap L. To define η, we must
produce a map from OMap J X to OMap R (OMap L X) which we do by applying
rightt at the identity in D at OMap L X. For bind, we need to define a function
which takes morphisms of from OMap J X to OMap R (OMap L Y) to morphisms
from OMap R (OMap L X) to OMap R (OMap L Y) for any X and Y. We first apply
then leftt to give a morphism of type OMap L X to OMap L Y and then we apply
HMap R. The laws follow from the laws of the monad and from the functor laws.
We omit the proof terms.

RAdj2RMon : ∀{C D E}{J : Fun C D} → RAdj J E → RMonad J

RAdj2RMon {C}{D}{E}{J} A = record{

T = OMap R ◦ OMap L;

η = rightt (iden E);

bind = HMap R ◦ leftt;

law1 = ?;

law2 = ?;

law3 = ?}

where open Adj A

Any monad can be split into an adjunction. There are two canonical ways to do
this: one is due to Kleisli; and the other is due to Eilenberg and Moore. These
constructions can be generalised to relative monads. We consider the relative Kleisli
adjunction first.

5.1 Kleisli

The relative Kleisli category is defined for a relative monad M on J : Fun C D.
The category Kl M is has objects of C as its objects. Its morphisms are given by
morphisms in D from OMap J X to T M Y. Identity is given by the η of the relative
monad M and composition of two functions f : Hom D (OMap J Y) (T M Z) and
g : Hom D (OMap J X) (T M Y) is given by composition in D of bind M f with g.
The left identity law follows from the first law of the relative monad and the left
identity law of the category D, the right identity law follows immediately from the
second relative monad law, and the associativity law follows from the third relative
monad law and associativity in D.

Kl : ∀{C} → Monad C → Cat

Kl {C} M = let open Cat C; open Monad M in record{

Obj = Obj;

Hom = λ X Y → Hom X (T Y);

iden = η;

comp = λ f g → comp (bind f) g;

idl = λ{X}{Y}{f} →
proof

comp (bind η) f
∼=〈 cong (λ g → comp g f) law1 〉
comp iden f
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∼=〈 idl 〉
f

�;
idr = law2;

ass = λ{W}{X}{Y}{Z}{f}{g}{h} →
proof

comp (bind (comp (bind f) g)) h
∼=〈 cong (λ f → comp f h) law3 〉
comp (comp (bind f) (bind g)) h
∼=〈 ass 〉
comp (bind f) (comp (bind g) h)

�}
where open Cat C; open Monad M

The Kleisli category of an ordinary monad can be recovered by setting C = D and
J = IdF.

We define the left adjoint of the relative Kleisli adjunction as follows:

RKlL : ∀{C D}{J : Fun C D}(M : RMonad J) → Fun C (Kl M)

RKlL {C}{D}{J} M = record{

OMap = id;

HMap = λ f → comp D (η M) (HMap J f);

fid = ?;

fcomp = ?}

On objects, it does nothing (the objects are the underlying objects of C). On
morphism is lifts a morphism f : Hom C X Y to a morphism HMap J f : Hom D

(OMap J X) (OMap J Y) and composes it with η M Y to give a morphism in Hom D

(OMap J X) (T M Y). The fid law follows from the fid law for J and right identity
of D. The fcomp law follows from fcomp for J, associativity in D, and the second
relative monad law for M.

The right adjoint is even more straightforward:

RKlR : ∀{C D}{J : Fun C D}(M : RMonad J) → Fun (Kl M) D

RKlR M = record{OMap = T; HMap = bind; fid = law1; fcomp = law3}

where open Monad M

We can show that this forms a relative adjunction by defining:

KlAdj : ∀{C D}{J : Fun C D}(M : RMonad J) → RAdj J (Kl M)

KlAdj M = record{

L = RKlL M;

R = RKlR M;

rightt = id;

leftt = id;

lawa = λ _ → refl;

lawb = λ _ → refl;

natrightt = ?;

natleftt = ?}
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The bijection holds definitionally and both naturality conditions follow from the
second relative monad law for M and associativity in D. We omit the proof terms.

Again, we can recover the the ordinary Kleisli adjunction by setting C = D and J

= IdF C. The Kleisli categories for the examples of the well-typed and well-scoped
terms are their respective categories of substitutions. We omit the the definitions
but note that we have already defined and proved all the pieces we need to do so.

5.2 Eilenberg-Moore

The Eilenberg-Moore category of a monad is the category of algebras for the monad
and algebra morphisms between them. The ordinary notion of an algebra for a
monad T : C → C is given by a pair of an object A in C and a morphism a from
T A to A, subject to some laws. Instead of attempting to generalise this notion
directly we take an alternative, but equivalent, version and generalise that. We
take an algebra for a monad T to be pair of an object A in C as before and an
operation a on morphisms that, for any object X in C and for any morphism from
X to A, gives a morphism from T X to A. Applying a to A and the identity
morphisms on A recovers the usual presentation.

An algebra for a relative monad M over a functor J : Fun C D is defined as
follows:

record RAlg : Set where

open Cat D

field acar : Obj

astr : ∀ {Z} → Hom (OMap J Z) acar → Hom (T Z) acar

alaw1 : ∀ {Z}{f : Hom (OMap J Z) acar} →
f ∼= comp (astr f) η

alaw2 : ∀{Z}{W}{k : Hom (OMap J Z) (T W)}

{f : Hom (OMap J W) acar} →
astr (comp (astr f) k) ∼= comp (astr f) (bind k)

It has a carrier acar in D and an algebra structure astr that, for any Z : Obj C

(taken implicitly), takes a morphism from OMap J Z to acar to a morphism from
T M Z to acar, subject to two laws which state that the algebra structure astr

interacts appropriately with the η and bind of the monad. These laws play the
same role as the usual laws for an algebra of a monad and in the case of an ordinary
monad (a relative monad on the identity functor) they are equivalent.

The definition of an algebra morphism for a relative monad contains a morphism
on the underlying objects of the algebra, as usual, and a homomorphism condition
stating we can follow the morphism first and then the algebra structure, or the
other way around, to yield the same result. The formulation of this condition is
slightly different from the usual formulation of an algebra morphism for a monad
as we have a different notion of algebra structure.

record RAlgMorph (A B : RAlg) : Set

where

open Cat D

open RAlg

field amor : Hom (acar A) (acar B)

ahom : ∀{Z}{f : Hom (OMap J Z) (acar A)} →
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comp amor (astr A f) ∼= astr B (comp amor f)

We define a useful lemma stating that any two algebra morphisms are equal, if
the underlying morphisms are equal. This is analogous to the NatTEq lemma for
natural transformations and such properties are very useful, whenever we define a
category where the morphisms are records. We give only its type here. The proof
follows from extensionality and proof irrelevance after using the fixtypes lemma.

RAlgMorphEq : ∀{C D}{J : Fun C D}{M : RMonad J}{X Y : RAlg M}

{f g : RAlgMorph X Y} → amor f ∼= amor g → f ∼= g

Next we define identity and composition of morphisms:

IdMorph : ∀{C D}{J : Fun C D}{M : RMonad J}{A : RAlg M} →
RAlgMorph A A

IdMorph {C}{D} = record{amor = iden D; ahom = ?}

CompMorph : ∀{C D}{J : Fun C D}{M : RMonad J}{X Y Z : RAlg M} →
RAlgMorph Y Z → RAlgMorph X Y → RAlgMorph X Z

CompMorph {C}{D} f g = record{

amor = comp D (amor f) (amor g);

ahom = ?}

The underlying morphisms are just formed from identity and composition (of the
underlying morphisms of the algebra morphisms being composed) in D. For the
identity morphism, the naturality condition follows from left unit law in D and, for
the composition morphism, it follows from the naturality properties of the mor-
phisms being composed and associativity in D. To be able to define the relative EM
category we must also prove the left and right unit laws, and associativity laws
for algebra morphisms. After applying RAlgMorphEq, they each follow from the
corresponding property of the category D:

idlMorph : ∀{C D}{J : Fun C D}{M : RMonad J}

{X Y : RAlg M}{f : RAlgMorph X Y} →
CompMorph IdMorph f ∼= f

idlMorph {C}{D} = RAlgMorphEq (idl D)

idrMorph : ∀{C D}{J : Fun C D}{M : RMonad J}

{X Y : RAlg M}{f : RAlgMorph X Y} →
CompMorph f IdMorph ∼= f

idrMorph {C}{D} = RAlgMorphEq (idr D)

assMorph : ∀{C D}{J : Fun C D}{M : RMonad J}{W X Y Z : RAlg M}

{f : RAlgMorph Y Z}

{g : RAlgMorph X Y}

{h : RAlgMorph W X} →
CompMorph (CompMorph f g) h ∼= CompMorph f (CompMorph g h)

assMorph {C}{D} = RAlgMorphEq (ass D)

Having defined, algebras, algebra morphism, identity, composition, and proved the
laws, we can put them together to define the EM category:
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EM : ∀{C D}{J : Fun C D} → RMonad J → Cat

EM M = record{

Obj = RAlg M;

Hom = RAlgMorph;

iden = IdMorph;

comp = CompMorph;

idl = idlMorph;

idr = idrMorph;

ass = assMorph}

Having defined the category EM, we can now define the left and right adjoint functors
that make up the relative EM adjunction:

REML : ∀{C D}{J : Fun C D}(M : RMonad J) → Fun C (EM M)

REML {C}{D}{J} M = record {

OMap = λ X → record{

acar = T X;

astr = bind;

alaw1 = sym law2;

alaw2 = law3};

HMap = λ f → record {

amor = bind (comp η (HMap J f));

ahom = sym law3};

fid = ?;

fcomp = ?}

where open Cat D; open Monad M

For objects of C, the left adjoint creates algebras by applying the monad map T to
them and defining the algebra structure to be bind. The laws follow from the second
and third monad laws. It is interesting to note that in the case of ordinary monads
(where C = D and J = IdF), this version of algebras uses bind exactly where the
standard version would use the multiplication of the monad µ. For morphisms, we
lift morphisms from X to Y in C to morphisms in D from T X to T Y by applying
HMap J, composing with η Y and then applying bind. The homomorphism condi-
tion ahom of the algebra morphism follows from the third monad law. It remains
to prove the functor laws for the left adjoint. These follow from the corresponding
functor laws for J, the monad laws (first and third respectively) and the laws of the
category D.

The right adjoint is much simpler as it simply throws away the algebra structure.
On objects, it projects the underlying object and on morphisms it projects the
underlying morphism. The functor laws hold definitionally.

REMR : ∀{C D}{J : Fun C D}(M : RMonad J) → Fun (EM M) D

REMR M = record{OMap = acar; HMap = amor; fid = refl; fcomp = refl}

Next we combine these functors to form a relative adjunction. This time the bijec-
tion does not hold definitionally and we have to do some work:

REMAdj : ∀{C D}{J : Fun C D}(M : RMonad J) → RAdj J (EM M)

REMAdj {C}{D} M = record{
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L = REML M;

R = REMR M;

rightt = λ f → comp D (amor f) (η M);

leftt = λ{X}{B} f → record{

amor = astr B f;

ahom = sym (alaw2 B)};

lawa = ?;

lawb = ?;

natrightt = ?;

natleftt = ?}

To go right, we must construct a morphism of type Hom D (OMap J X) (AObj B)

from an algebra morphism f between an algebra whose object is T M X and an
algebra B. amor f gives us a morphism of type Hom D (T M X) (acar B) and by
composing with η M X we get a morphism of the right type. To go left, we must
reverse the process: given a morphism f : Hom D (OMap J X) (acar B), we must
construct an algebra morphism. We apply the algebra structure of B at X to f to
give the underlying morphism (whose type is Hom D (T M X) (acar B)) and the
homomorphism condition follows from the second algebra law for B. The laws lawa,
lawb, natrightt, and natleftt follow from the first monad law for M, the first
algebra law for B, the second monad law for M, and the first algebra law for B

respectively.

5.3 Category of adjunctions

The adjunctions for a particular monad form a category. The objects of category
are the adjunctions that split the monad. The morphisms are functors between the
target categories of the respective adjunctions that ‘agree’ with the adjunctions by
preserving the source adjunction’s bijection. Given this setup we can characterise
exactly how the Kleisli and EM adjunctions are canonical: they are respectively the
initial and terminal objects of this category. This situation lifts cleanly to relative
monads: we can form the category of relative adjunctions for a relative monad; and
the relative Kleisli and relative EM adjunctions are the initial and terminal objects.

Objects of the category of relative adjunctions are defined as follows:

record ObjAdj {C D : Cat}{J : Fun C D}(M : RMonad J) : Set where

open RMonad M

field E : Cat

adj : RAdj J E

open RAdj adj

field law : R ◦ L ∼= TFun M

ηlaw : ∀{X} → rightt (iden E {OMap L X}) ∼= η {X}

bindlaw : ∀{X Y}{f : Hom D (OMap J X) (T Y)} →
HMap R (leftt (subst (Hom D (OMap J X))

(fcong Y (cong OMap (sym law))) f))
∼= bind f

The data of ObjAdj consists of the target category of the adjunction, and the
adjunction itself. The laws ensure that composing the right and left adjoint func-
tors does indeed give the monad and that the bijection of the adjunction agrees
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with the operations of the monad. The subst in the bindlaw is necessary as
bind expects a map in Hom D (OMap J X) (T Y) and right expects a map in
Hom D (OMap J X) (OMap (R ◦ L) Y).

record HomAdj {C D : Cat}{J : Fun C D}{M : RMonad J}(A B : ObjAdj M)

: Set where

open RAdj

field K : Fun (E A) (E B)

Llaw : K ◦ L (adj A) ∼= L (adj B)

Rlaw : R (adj A) ∼= R (adj B) ◦ K

lefttlaw : {X : Obj C}{Y : Obj (E A)}

{f : Hom D (OMap J X) (OMap (R (adj A)) Y)} →
HMap K (leftt (adj A) {X}{Y} f)
∼=
leftt (adj B)

{X}

{OMap K Y}

(subst (Hom D (OMap J X))

(fcong Y (cong OMap Rlaw))

f)

The data of HomAdj consists of simply a functor K between target categories of the
adjunctions A and B, (E A) and (E B) respectively. This functor is subject to the
laws that K ◦ L (adj A) ∼= L (adj B) and R (adj A) ∼= R (adj B) ◦ K, and
that the bijection is preserved: HMap K (leftt (adj A) f) ∼= leftt (adj B) f.
To make the bijection preservation condition type check we use subst again as on
one side we need a morphism in Hom D (OMap J X) (OMap (R (adj A)) Y) and
on the other we need a morphism in Hom D (OMap J X) (OMap (R (adj B) ◦ K)) Y).

We define identity and composition of morphisms of adjunctions as follows:

idHomAdj : {C D : Cat}{J : Fun C D}{M : RMonad J}{f : ObjAdj M} →
HomAdj X X

idHomAdj {C}{D}{J}{M}{f} = record {

K = IdF (E f);

Llaw = ?;

Rlaw = ?;

lefttlaw = ?}

compHomAdj : {C D : Cat}{J : Fun C D}{M : RMonad J}

{X Y Z : ObjAdj M} →
HomAdj Y Z → HomAdj X Y → HomAdj X Z

compHomAdj {C}{D}{J}{M}{X}{Y}{Z} f g = record {

K = K f ◦ K g;

Llaw = ?;

Rlaw = ?;

lefttlaw = ?}

Notice that data K for identity is just given by the identity functor and for com-
position it is given by functor composition. To prove the three proof conditions in
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each case we use the a lemma

FunctorEq : ∀{C D}(F G : Fun C D) →
OMap F ∼= OMap G →
(∀{X Y}(f : Hom C X Y) → HMap F f ∼= HMap G f) →
F ∼= G

which allows us to prove that functors are equal analogously the NatTEq and
RAlgMorphEq. The presence of subst in the type of lefttlaw introduces com-
plications but these can largely be dispensed with by introducing auxiliary lemmas
which abstract over the proofs of functor composition Rlaw and Llaw for the ad-
junctions f, and f and g. In these lemmas we can then pattern match on these
proofs which makes all the substs compute. Having defined identity idHomAdj and
composition compHomAdj we define a lemma which says that if the morphisms of
adjunctions are equal of their underlying functors are equal

HomAdjEq : {C D : Cat}{J : Fun C D}{M : RMonad J}{A B : ObjAdj M}

(f g : HomAdj A B) → K f ∼= K g → f ∼= g

and prove the categorical laws (omitted). We can then define the category:

AdjCat : {C D : Cat}{J : Fun C D}(M : RMonad J) → Cat

AdjCat M = record{

Obj = ObjAdj M;

Hom = HomAdj;

iden = idHomAdj;

comp = compHomAdj;

idl = idlHomAdj;

idr = idrHomAdj;

ass = assHomAdj}

5.4 Kleisli is initial

An initial object in a category C is given by an object I, for any other object X a
map i : Hom C I X and a proof that for any other map f : Hom C I X, i ∼= f:

record Init (C : Cat) : Set where

field I : Obj C

i : ∀{X} → Hom C I X

law : ∀{X}{f : Hom C I X} → i {X} ∼= f

To prove that Kleisli is initial we first define the object I which is an ObjAdj

given by a target category E, an adjunction adj and three proofs. We plug in the
Kleisli category and its adjunction:

KlObj : {C D : Cat}{J : Fun C D}(M : RMonad J) →
Obj (AdjCat M)

KlObj {C}{D}{J} M = record {

E = Kl M;

adj = KlAdj M;

law = ?;

ηlaw = ?;

bindlaw = ?}
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The proofs follow trivially. The morphism i is given by a morphism KlHom M of ad-
junctions. It is given by a functor K satisfying the law Rlaw,Llaw and lefttlaw. The
object map OMap K is given by the object map of the left adjoint of the target adjunc-
tion A. The morphism map HMap K is given by the leftt operation of the target ad-
junction A. fid and fcomp follow from the fact that R (adj A) ◦ L (adj A) ∼= TFun M,
properties of the bijection in A and ηlaw and bindlaw for A respectively. Llaw,Rlaw
and lefttlaw also follow from the fact that R (adj A) ◦ L (adj A) ∼= TFun M,
properties of the bijection, and ηlaw (Llaw) and bindlaw (Rlaw and lefttlaw).

KlHom : ∀{C D}{J : Fun C D}(M : RMonad J){A : Obj (AdjCat M)} →
Hom (AdjCat M) (KlObj M) A

KlHom {C}{D}{J} M {A} = record {

K = record {

OMap = OMap (L (adj A));

HMap = λ{X}{Y} f →
leftt (adj A)

(subst (Hom D (OMap J X))

(fcong Y (cong OMap (sym (ObjAdj.law A))))

f);

fid = ?;

fcomp = ?};

Rlaw = ?;

Llaw = ?;

lefttlaw = ?}

we can now prove initiality:

KlIsInit : ∀{C D}{J : Fun C D}(M : RMonad J) → Init (AdjCat M)

KlIsInit {C}{D}{J} M = record {

I = KlObj M;

i = KlHom M;

law = ?}

We omit the uniqueness proof. The proof is not complicated, it simply relies on all
three properties of the arbitrary morphism and the fact that R (adj A) ◦ L (adj A)
∼= TFun M for the target object A.

5.5 EM is terminal

A terminal object is defined dually:

record Term (C : Cat) : Set where

field T : Obj C

t : ∀{X} → Hom C X T

law : ∀{X}{f : Hom C X T} → t {X} ∼= f

We plug in the EM adjunction for the object T as follows:

EMObj : {C D : Cat}{J : Fun C D}(M : RMonad J) → Obj (AdjCat M)

EMObj {C}{D}{J} M = record {

E = EM M;

adj = REMAdj M;
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law = ?;

ηlaw = ?;

bindlaw = ?}

The proofs follow trivially as for Kleisli. The morphism t which this time is from
an arbitrary adjunction to the EM adjunction is defined as follows:

EMHom : ∀{C D}{J : Fun C D}(M : RMonad J){A : Obj (AdjCat M)} →
Hom (AdjCat M) A (EMObj M)

EMHom {C}{D}{J} M {A} = record {

K = record {

OMap = λ X → record {

acar = OMap (R (adj A)) X;

astr = λ {Z} f →
subst (λ Z → Hom D Z (OMap (R (adj A)) X))

(fcong Z (cong OMap (law A)))

(HMap (R (adj A)) (leftt (adj A) f));

alaw1 = ?;

alaw2 = ?};

HMap = λ f → record {

amor = HMap (R (adj A)) f;

ahom = ?};

fid = ?;

fcomp = ?};

Llaw = ?;

Rlaw = ?;

lefttlaw = ?}

We omit discussion of the proof conditions due to their number and concentrate on
the data. The morphism in the category of adjunctions is given by a functor K sat-
isfying some laws. This functor is a functor into the EM category whose objects are
algebras and whose morphisms are algebra morphism. The object map OMap K, for a
given object X constructs an algebra given by a carrier acar = OMap (R (adj A)) X

and a structure map astr given by applying the bijection of the source object ad-
junction A and then its right adjoint R (adj A). The morphism map HMap K is
given by applying the right adjoint R (adj A). Having defined EMObj and EMHom

(and the uniqueness proof which we omit) we can prove terminality:

EMIsTerm : {C D : Cat}{J : Fun C D}(M : RMonad J) →
Term (AdjCat M)

EMIsTerm {C}{D}{J} M = record {

T = EMObj M;

t = EMHom M;

law = ?}

5.6 Set-model of the well-typed λ-terms

The set-model of the well-typed λ-terms form a relative EM algebra for the relative
monad TM in quite a natural way. The idea is to define interpretation of object
level types as Agda types, and an evaluator (the interpretation of terms) which
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maps terms to values (the interpretation of types) given a suitable environment
(environments are interpretations of contexts). One could also say that a term
t : Tm Γ σ is interpreted as a function from the interpretation of the context
Env Γ to the interpretation of the type Val σ.

The values form the carrier of the algebra and the evaluator forms the algebra
structure.

Let us look at the construction in detail. First we define the interpretation of
object types Ty as Agda types Set.

Val : Ty → Set

Val ι = N
Val (σ ⇒ τ) = Val σ → Val τ

The inert base type is interpreted as the set of natural numbersN but any other type
would do the same job as it will only contain neutral terms in the case of simply-
typed λ-calculus. The object level function space is interpreted as the meta-level
(Agda) function space. Together with the datatype Ty, the set-valued function Val

is a very simple, and very useful, example of a universe construction.
Next we interpret contexts as environments, they are like substitutions, but emit

values over a type instead of terms over a context and type. We also define an
operation _<<_ to extend an environment by a new value which we will need for
the evaluator.

Env : Con → Set

Env Γ = ∀{σ} → Var Γ σ → Val σ

_<<_ : ∀{Γ σ} → Env Γ → Val σ → Env (Γ < σ)

(γ << v) zero = v

(γ << v) (suc x) = γ x

Given Val, Env and _<<_ we have all that we need to define a simple evaluator:

eval : ∀{Γ σ} → Env Γ → Tm Γ σ → Val σ

eval γ (var x) = γ x

eval γ (app t u) = eval γ t (eval γ u)

eval γ (lam t) = λ v → eval (γ << v) t

It takes a environment over Γ, a term in context Γ of type σ and emits a value
of type σ. In the variable case, it looks up the variable in the environment. In
the case of application, we evaluate the function in the environment to give a real
Agda function which we can then run it on the evaluated argument. In the case of
λ-abstraction, we must produce a function. We define this as a meta level (Agda)
λ-abstraction which takes a value of appropriate type. When this argument value
arrives the evaluator will evaluate the body t in the original environment extended
with the new value v. We have essentially created a closure. That is the end of
our program. We now need to prove some properties and perform some categorical
constructions to show that the set model forms an algebra.

We need five lemmas to proceed. The first lemma shows that we can commute
evaluation with substitution by a type equation:

substeval : ∀{σ τ}(p : σ ∼= τ){Γ : Con}{γ : Env Γ}(t : Tm Γ σ) →
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(subst Val p ◦ eval γ) t ∼= (eval γ ◦ subst (Tm Γ) p) t

substeval refl t = refl

The second lemma show that wk commutes with _<<_:

wk<< : ∀{Γ Δ}(α : Ren Γ Δ)(β : Env Δ){σ}(v : Val σ) →
∀{ρ}(y : Var (Γ < σ) ρ) →
((β ◦ α) << v) y ∼= (β << v) (wk α y)

wk<< α β v zero = refl

wk<< α β v (suc x) = refl

The third shows that we can commute renaming and evaluation:

reneval : ∀{Γ Δ σ}(α : Ren Γ Δ)(β : Env Δ)(t : Tm Γ σ) →
eval (eval β ◦ var ◦ α) t ∼= (eval β ◦ ren α) t

reneval α β (var x) = refl

reneval α β (app t u) =

cong2 (λ f x → f x) (reneval α β t) (reneval α β u)

reneval α β (lam t) = ext λ v →
trans (cong (λ γ → eval γ t) (iext λ _ → ext (wk<< α β v)))

(reneval (wk α) (β << v) t)

The fourth shows that we can lift and context extension in evaluation:

lifteval : ∀{Γ Δ σ τ}(α : Sub Γ Δ)(β : Env Δ)

(v : Val σ)(y : Var (Γ < σ) τ) →
((eval β ◦ α) << v) y ∼= (eval (β << v) ◦ lift α) y

lifteval α β v zero = refl

lifteval α β v (suc x) = reneval suc (β << v) (α x)

The fifth lemma shows that we can commute evaluation and substitution:

subeval : ∀{Γ Δ σ}(α : Sub Γ Δ)(β : Env Δ)(t : Tm Γ σ) →
eval (eval β ◦ α) t ∼= (eval β ◦ sub α) t

subeval α β (var x) = refl

subeval α β (app t u) =

cong2 (λ f x → f x) (subeval α β t) (subeval α β u)

subeval α β (lam t) = ext λ v →
trans (cong (λ γ → eval γ t) (iext λ _ → ext (lifteval α β v)))

(subeval (lift α) (β << v) t)

Given these lemmas, we can show that the set model forms an relative EM algebra:

modelRAlg : RAlg TmRMonad

modelRAlg = record {

acar = Val;

astr = λ {Γ} → λ γ → eval γ;

alaw1 = refl;

alaw2 = λ {Γ Δ α γ} → iext λ σ → ext (subeval α γ)}

The carrier of the algebra is given by Val, the algebra structure is given by the
evaluator eval, the first law alaw2 holds definitionally and the second law alaw2

follows from the lemma subeval which we just proved.
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Since the set-model validates the β and η laws it is also an algebra of the variation
of TmRMonad where each Tm Γ σ is quotiented by βη-equality.

5.7 Extensional λ-models of the well-scoped λ-calculus

The is no set-model of the well-scoped (untyped) λ-terms. So, instead we do some-
thing more general: we give a specification for a model and show that any such
model yields a relative EM-algebra.

We define an extensional λ-model in the same style as we have defined other
mathematical structures. It has some data: a set S; an operation eval that, given
an appropriate environment, evaluates a well-scoped term to give a value in S; and
an operation ap which performs application on values in S. The behaviour of these
data is governed by four laws: three laws governing how the syntax is evaluated
(notice that the law for lam applies only in the presence of an argument); and an
extensionality principle.

record LambdaModel : Set where

field S : Set

eval : ∀{n} → (Var n → S) → Tm n → S

ap : S → S → S

lawvar : ∀{n}{i : Var n}{γ : Var n → S} →
eval γ (var i) ∼= γ i

lawapp : ∀{n}{t u : Tm n}{γ : Var n → S} →
eval γ (app t u) ∼= ap (eval γ t) (eval γ u)

lawlam : ∀{n}{t : Tm (s n)}{γ : Var n → S}{s : S} →
ap (eval γ (lam t)) s ∼= eval (γ << s) t

lawext : ∀{f g : S} →
((a : S) → ap f a ∼= ap g a) → f ∼= g

In the definition of lamlaw, we need to be able to extend the environment, so we
implement an operation to do this:

_<<_ : ∀{n X} → (Var n → X) → X → Var (s n) → X

(f << x) zero = x

(f << x) (suc i) = f i

To define an EM-algebra, we require versions of exactly the same lemmas as we
required for the set-model in the typed-case. We omit their proofs and give only
the types. There is one key difference in the proofs which is that we must explicitly
use the equations lawvar, lawapp, lawlam. In the case of the set-model, where
eval and ap are functions, these principles hold definitionally and are invisible in
the proofs.

wk<< : ∀(l : LambdaModel){m n}

(α : Var m → Var n)(β : Var n → S l)

(v : S l) → (y : Var (s m)) →
((β ◦ α) << v) y ∼= (β << v) (wk α y)

reneval : ∀(l : LambdaModel){m n}

(α : Var m → Var n)(β : Var n → S l)

(t : Tm m) →
eval l (eval l β ◦ (var ◦ α)) t ∼= (eval l β ◦ ren α) t
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lift<< : ∀(l : LambdaModel){m n}

(γ : Var m → Tm n)(α : Var n → S l)

(a : S l)(i : Var (s m)) →
((eval l α ◦ γ ) << a) i ∼= (eval l (α << a) ◦ lift γ) i

subeval : ∀(l : LambdaModel){m n}(t : Tm m)

(γ : Var m → Tm n)(α : Var n → S l) →
eval l (eval l α ◦ γ) t ∼= (eval l α ◦ sub γ) t

Having proved subeval (using the three previous lemmas), we can define a relative
EM algebra on the monad TmRMonad:

TmRAlg : LambdaModel → RAlg TmRMonad

TmRAlg l = record{

acar = S;

astr = eval;

alaw1 = ext λ _ → sym lawvar;

alaw2 = ext λ t → subeval t _ _}

where open LambdaModel l

The object is given by the set S and the map by eval. The first law follows from
lawvar (recall that this followed definitionally in the set-model) and the second
from the lemma subeval.

6. CONCLUSION

We have presented a self-contained and detailed account of our formalisation of
relative monads and relative adjunctions, with some examples.

Due to reasons of space, we have not described everything we have formalised.
Every construction we have performed for relative monads has also been carried
out for ordinary monads as well. Here in the paper we have included only the
definitions of ordinary monads and adjunctions. We have done this for both styles
of monads, i.e., for Manes style with an object mapping T and operations η bind
and also as a functor T with natural transformations η and μ.

Formalisation of the further theory of relative monads (Sections 3, 4 of [ACU10])
requires Kan extensions. We expect that our calculus of coends as presented in
Section 3.1 of [ACU10] lends itself to formalisation, but this is future work. We
also plan to advance our running examples, as we add more of the relative monads
machinery, and also to give a treatment of the further example of arrows as relative
monads (Section 5 of [ACU10]).

We have already discussed the question of extensionality. For the formalisation
done so far it is sufficient to assume functional extensionality but going further
would require quotient types in particular to develop the coend calculus. This can
be achieved by adding further postulates which state that every setoid gives rise
to a set. Formally this corresponds to using a type theory with exact coequalizers,
this is often referred to as a predicative topos [vdB10]. Clearly, adding postulates
to Agda is unsatisfying for several reasons: first of all arbitrary postulates could be
easily unsound, and second the resulting type theory is computationally not well
behaved forcing us to prove equations which should just be definitional equalities.
We hope that the situation will improve once implementations of Observational
Type Theory [AMS07] become available and ready for serious formalisations.
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