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We study several formal proofs and algorithms related to the number π in the context of Coq’s

standard library. In particular, we clarify the relation between roots of the cosine function and

the limit of the alternated series whose terms are the inverse of odd natural numbers (known as
Leibnitz’ formula). We give a formal description of the arctangent function and its expansion as

a power series. We then study other possible descriptions of π, first as the surface of the unit

disk, second as the limit of perimeters of regular polygons with an increasing number of sides. In
a third section, we concentrate on techniques to effectively compute approximations of π in the

proof assistant by relying on rational numbers and decimal representations.

1. INTRODUCTION

The number π has been a fascinating object for mathematicians for many centuries.
It is both a very concrete number and an abstract one. It is concrete because it
is a simple ratio between either the respective surfaces of a circle and a square
or between the perimeter of a circle and its diameter. It is abstract because its
transcendantal status places it beyond the reach of most constructions starting from
natural numbers (through integers, rational numbers, and algebraic numbers). For
formalized mathematics, which thrive on elementary approaches to objects, this
number represents a small challenge of its own.

There are several approaches to the π number. This variety of approaches imposes
a dilemma on the teacher or the developer of a formalized mathematics library:
what should be used as the definition, and what should be understood as provable
properties of the number?

The investigations in this paper started with a study of the library for real num-
bers in the Coq system [4] between 2002 and 2012. In this library, the trigonometric
functions were initially (in 2002) given by axiomatic properties, mainly about the
sine and cosine of added angles, derivatives, and values in π. In 2003, definitions
of sine and cosine as limits of power series were provided.

sinx =

∞∑
i=0

(−1)i
x2i+1

2i+ 1!
cosx =

∞∑
i=0

(−1)i
x2i

2i!
.

At that point, most of the axioms were removed. With these definitions as limits
of power series, these two functions seem to have no relation with the measure of
triangles or with circles. However, two of the main properties were proved from
that time:

(1) The value of cos(x+ y) is cosx cos y − sinx sin y (lemma named cos plus).
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(2) for a given x the sum sin2 x+ cos2 x is always 1 (lemma named sin2 cos2)

These two properties express that (cosx, sinx) can really be understood as the
Cartesian coordinates of a point on the unit circle, and that the value x can be
viewed as an angle. It feels natural that the number π should be defined from the
sin and cos functions directly, but instead the designer of the Reals library chose
to define this number as a multiple of the limit of the infinite sum whose terms are
the alternated inverse of odd numbers:

π
∆
= 4× (1− 1

3
+

1

5
− 1

7
+

1

9
· · ·) = 4

∞∑
i=0

(−1)i

2i+ 1

This formula revolves around the series expansion of atan. The history of this
formula dates back to the 17th century in Europe and to the 14th century in
India. In Europe, it is often referred to as Leibnitz’ formula for π, but precedence
can probably be given to James Gregory’s work on the computation of surfaces of
circles and hyperboles. In India, the whole theory of power series to approximate
trigonometric functions and their inverses was probably established by Madhava of
Sangamagrama.

The relation between this value and the surface of the circle is not immediate,
and for this reason the properties of π with respect to the sin and cos functions is
not immediate either. The initial developer of the library thus chose to leave the
relation between π and the trigonometric functions as an axiom.

Axiom sin_PI2 : sin (PI / 2) = 1.

The main contribution in this paper is the description of the work performed to
remove this axiom, in such a way that all facts that were formally proved for the
value of π remain formally proved.

We performed this task by changing the definition of π: we showed that the
cosine function changes sign between 1 and 2 and, using the intermediate value
theorem, we proved the existence of a value α between 1 and 2 such that cosα = 0.
We also showed that this value α was the unique root of cos in this interval. We
then defined π as π = 2α and we were able to prove that sin π

2 = 1. Thus, the
axiom was removed and replaced by a proved property, but the task was shifted to
proving the equality:

π = 4

∞∑
i=0

(−1)i

2i+ 1
.

This proof relied on tan π
4 = 1, in other words π = 4 × atan(1), using a study of

derivatives for inverse functions in general and atan in particular, and on a power
series expansion for atan’s derivative:

d(atan x)

dx
=

1

1 + x2
=

∞∑
i=0

(−1)ix2i.

Taking primitives on both sides of the equality gives the following equality:

atan x =

∞∑
i=0

(−1)i
x2i+1

2i+ 1
.
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And then the case for x = 1 yields the desired result. This piece of mathematics
has to be done carefully, because the right-hand side actually diverges for values
larger than 1.

After this first effort, we extended our reflection to other possible approaches to
the number π and we added the formal proofs needed to show that these other
approaches are equivalent.

(1) The first relies on computing the surface of the upper half of a circle centered in
(0,0) with radius 1. It is simple to notice that the upper boundary of the circle
is the graph of the function satisfying x2 + y2 = 1 with 0 ≤ y, in other words
y =
√

1− x2, or more precisely we want to compute the integral of the function
x 7→

√
1− x2. This approach requires that we formalize another reciprocal

function, namely the arcsine function, but this is easily done after the ground
work has been done for the arctangent.

(2) The second approach uses inscribed or tangential polygons to the circle, thus
reproducing a process that was proposed by Archimedes. The computation
of the perimeter for these polynomials requires some geometric reasoning that
boils down to computing sine and tangent values for half angles, so this is
naturally related to trigonometric functions.

Then we turned our attention to opportunities to compute good approximations
of π with reasonable efficiency inside the Coq system. The description of π by
Leibnitz’ formula is not good for this purpose, because it takes 4× n terms of the
infinite sum to get an approximation of π to a precision of 1

n . However, the series
for computing atan between −1 and 1 is the following one:

atan x =

∞∑
i=0

(−1)i

(2i+ 1)
x2i+1

It appears that this series converges pleasantly fast for values of x such that |x| < 1,
while it converges slowly for |x| = 1. Because the series is alternated, it is also easy
to show that truncated sums with an even number of initial terms will provide
under-approximations, while truncated sums with an odd number of initial terms
will provide over-approximations. We used this to construct a function that pro-
vides an interval with rational bounds containing atan(x) when x is rational.

Then, we proved the simple formulas about atan:

atan(u) + atan(v) = atan

(
u+ v

1− uv

)
.

This makes it possible to compute atan(1) as the sum of values of atan in other
rational positions, all of them smaller than 1. For instance, starting with u = 1
using v = −1

5 repeatedly, we can prove the equality used by Machin in 1706:

π

4
= 4× atan

1

5
− atan

1

239

We used this to define a function that returns certified approximations of π to
a certain number of decimal places, by relying on exact computations of rational
numbers.

Journal of Formalized Reasoning Vol. 7, No. 1, 2014.



108 · Bertot, Allais

2. REMOVING THE UNWANTED AXIOM

In this section, we concentrate on the path followed to provide a new definition
of the number π that aims directly at removing the axiom and then on the path
followed to provide a proof that the property that was used in the old definition is
a consequence of the new definition.

2.1 Context information about series and trigonometry in the Coq library

The description of finite sums relies on a function sum f R0 of type (nat -> R) ->

nat -> R, when applied on a function f and a number n, this function computes
the value

n∑
i=0

f(i).

This computation is simply described by a recursive function on natural numbers.
Note that the design choice imposes that the base case is not an empty sum, but
the value f(0).

To express that an infinite sum of real numbers converges to a limit l, the Coq
library uses a predicate infinite sum of type (nat -> R) -> R -> Prop. As one
could expect, this predicate is based on sum f R0 and relies on the same ε-N scheme
as would be needed to express the convergence towards l of the sequence (un)n∈N
of partial sums defined as follows:

un =

n∑
i=0

f(i).

The usual concept to reason on this kind of convergence is Un cv, a predicate of
type (nat -> R) -> R -> Prop. Due to this strong similarity, the useful theorems
are either theorems about the infinite sum concept or theorems about the Un cv

concept. The definitions of infinite sum and Un cv are given as follows:

Definition infinite_sum (s:nat -> R) (l:R) : Prop :=

forall eps:R,

eps > 0 ->

exists N : nat,

(forall n:nat, (n >= N)%nat -> R_dist (sum_f_R0 s n) l < eps).

Definition Un_cv (Un : nat -> R) (l:R) : Prop :=

forall eps:R,

eps > 0 ->

exists N : nat,

(forall n:nat, (n >= N)%nat -> R_dist (Un n) l < eps).

Since sum f R0 is described as a recursive function on natural numbers, this im-
poses that the index used for each term of the sum is given as a natural number.
When this index is used in the body of the coefficient, it needs to be coerced into the
type of real numbers. The main type coercion is given by the function INR, which
describes the injection of natural numbers in the type of real numbers. This injec-
tion is itself described as a recursive function over the structure of the unary natural
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numbers effectively converting successor constructors in +1 operations. As a result,
the formal transcription of power series is often cluttered with coercion functions,
sometimes inconveniently distinguishing obviously equal values (e.g. INR (m × n)
and INR m× INR n) thus forcing the user to explicitly manipulate them.

For instance, let’s study how the sine function is described. The first step is to

define the generic coefficient (−1)n

(2n+1)! .

Definition sin_n (n:nat) : R := (-1) ^ n / INR (fact (2 * n + 1)).

The library relies on infinite sum to state that the corresponding series converges
towards a given limit thus having an infinite sum.

Definition sin_in (x l:R) : Prop :=

infinite_sum (fun i:nat => sin_n i * x ^ i) l.

There is a general theorem, called d’Alembert’s criterion (Alembert C1 in Coq’s

library) stating that if
∣∣∣an+1

an

∣∣∣ converges towards 0, then for any x,
∑∞
n=0 anx

n

converges. This is used to conclude that the power series defined by sin n is a
total function on R:

Lemma exist_sin : forall x:R, { l:R | sin_in x l }.

However, this states the existence of a limit for the infinite sum

∞∑
i=0

(−1)i

(2i+ 1)!
xi

while sinx is the following different sum:

sinx =

∞∑
i=0

(−1)i

(2i+ 1)!
x2i+1

The two can be reconciled by using the following definition, where Rsqr denotes
the squaring function.

Definition sin (x:R) := let (a,_) := exist_sin (Rsqr x) in x * a.

Since 2003, Coq’s standard library for real numbers also contains a lemma ex-
pressing the known trigonometric formula for the cosine of the sum of two angles:

Theorem cos_plus :

forall x y:R, cos (x + y) = cos x * cos y - sin x * sin y.

The proof of this lemma is ad hoc, but it could have been described as an instanci-
ation of a more general lemma about the convergence of the Cauchy product of two
series, a lemma known as Mertens’ theorem1. A direct consequence of this theorem
requiring only knowledge of sine and cosine’s respective parities is that the sum of
squares of sine and cosine for the same input is always equal to 1.

1We proved this theorem formally, but it has not been included in the library yet.
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2.2 The axiom and its pervasive influence on proofs

Up to Coq version 8.4, there was an axiom stating sin π
2 = 1 in the standard

library of Coq. This property is central in understanding the properties of the
trigonometric functions. The first consequences, in combination with the lemmas
sin2 cos2 and cos plus are

cos
π

2
= 0 sinx = − cos(x+

π

2
).

Then obviously, as soon as one has a description of the derivative of the cosine
function, one can deduce a description of the derivative of the sine function. The
derivation formulas are important, because the derivative for the tangent function is
obtained from the derivatives for the cosine and sine functions. In the organization
of the standard library dating from 2003, the lemmas describing derivatives for
these two functions both relied on the property sin π

2 = 1. But it is crucial to know
the formula:

d tanx

dx
= 1 + tan2 x.

With this, we can establish that the arctangent function has derivative x 7→ 1
1+x2 ,

which is useful to prove the power series formula for arctangent.

2.3 The new definition of π

In this section, we will show how to describe π
2 as the value between 1 and 2 where

cos is 0. Our first step will be to show that such a value exists.
D’Alembert’s criterion is very powerful, as it guarantees absolute convergence

over the whole real line. However, we could also see that the series for sinx and
cosx are alternated series when x is positive. These types of series converge as
soon as the sequence of terms anx

n is decreasing in absolute value, and converges
towards 0. Moreover, the term |anxn| gives a bound to the value of Σ∞i=n+1aix

i.
So we define a function for approximating values of the cosine and sine based on
these results. Basically, sin approx x n computes the first terms of the series for
the sine function up to the term of exponent 2n+ 1 and cos approx x n computes
the first terms of the series for the cosine function up to the term of exponent 2n.

Definition sin_term (a:R) (i:nat) : R :=

(-1) ^ i * (a ^ (2 * i + 1) / INR (fact (2 * i + 1))).

Definition cos_term (a:R) (i:nat) : R :=

(-1) ^ i * (a ^ (2 * i) / INR (fact (2 * i))).

Definition sin_approx (a:R) (n:nat) : R := sum_f_R0 (sin_term a) n.

Definition cos_approx (a:R) (n:nat) : R := sum_f_R0 (cos_term a) n.

We have two theorems to express that these approximation functions make it pos-
sible to find bounds around sinx and cosx respectively. These theorems provide
bounds only because the absolute value sin term x is not guaranteed to be de-
creasing for any x, it is only ultimately decreasing when x is very large. When x is
small enough, the decreasing property is given from the first terms.
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Theorem pre_sin_bound :

forall (a:R) (n:nat),

0 <= a -> a <= 4 ->

sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1)).

Lemma pre_cos_bound :

forall (a:R) (n:nat),

- 2 <= a -> a <= 2 ->

cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1)).

When a is a rational number, the bounds provided by both theorems are rational
numbers, too.

We use these theorems to find bounds for sin 7
8 and cos 7

8 and thus establish that
cos 78 is positive and cos 74 is negative, in preparation for a use of the intermediate
value theorem. With n = 0, the theorem pre sin bound makes it possible to
construct a proof for the following comparisons, since 3 = 2 × (2 × 0 + 1) + 1 and
5 = 2× (2× (0 + 1)) + 1.

7

8
− 1

3!

(
7

8

)3

≤ sin
7

8
≤ 7

8
− 1

3!

(
7

8

)3

+
1

5!

(
7

8

)5

.

Again with n = 0 the theorem pre cos bound makes it possible to construct a
proof for the following comparisons:

1− 1

2

(
7

8

)2

≤ cos
7

8
≤ 1− 1

2

(
7

8

)2

+
1

4!

(
7

8

)4

We can show that sin 7
8 > cos 7

8 by comparing

1− 1

2

(
7

8

)2

+
1

4!

(
7

8

)4

and
7

8
− 1

3!

(
7

8

)3

.

The manipulation of this kind of comparisons is covered by some of the recent
tactics provided in Coq. Let’s illustrate this in the following proof.

Lemma cmp_sin_approx :

1 - 1/2 * (7/8)^2 + 1/INR(fact 4) * (7/8)^4

<= 7/8 - 1/INR(fact 3) * (7/8)^3.

simpl INR; field_simplify.

============================

8073344 / 12582912 <= 18760 / 24576

The tactic simpl reduces the two calls to fact to plain formulas expressed only with
repeated additions of 1 (but fact 4 is a small number). The tactic field simplify

then computes the fractions, in no noticeable time. The best tactic to address the
resulting goal currently is the psatzl [2, 3] tactic. We apply this tactic because this
comparison between constants obviously falls in the category of linear comparisons.

psatzl R.

No more subgoals
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Qed.

Because the theorems we want to establish are meant to be included in the standard
library, it is sensible to find a proof that does not rely on the advanced tactic psatzl,
which may itself rely on the main library. Here is an alternative approach to the
proof.

We start by proving the following elementary lemmas, which rely directly on the
properties of multiplication and addition with respect to order.

Lemma s1 : forall x, 0 < x -> 0 < 2 * x.

Proof.

intros; apply Rmult_lt_0_compat;[apply Rlt_0_2 | assumption].

Qed.

Lemma s2 : forall x, 0 < x -> 0 < 1 + x.

Proof.

intros; apply Rplus_lt_0_compat; [apply Rlt_0_1 | assumption].

Qed.

We then transform the comparison between constants so that all computations
appear in only one side, then we require the computation of constants using the
tactic field simplify.

Lemma cmp_sin_approx’ :

1 - 1/2 * (7/8)^2 + 1/INR(fact 4) * (7/8)^4

<= 7/8 - 1/INR(fact 3) * (7/8)^3.

assert (t : forall x y, 0 <= y - x -> x <= y) by (intros; fourier).

apply t.

============================

0 <=

7 / 8 - 1 / INR (fact 3) * (7 / 8) ^ 3 -

(1 - 1 / 2 * (7 / 8) ^ 2 + 1 / INR (fact 4) * (7 / 8) ^ 4)

simpl; field_simplify.

============================

0 / 1 <= 37644926976 / 309237645312

At this point we simplify the formula 0 / 1 and prove that both the numerator
and the denominator in the right-hand-side fraction are positive.

unfold Rdiv; rewrite Rmult_0_l.

apply Rlt_le, Rmult_lt_0_compat, Rinv_0_lt_compat;

repeat (apply s1 || apply s2); apply Rlt_0_1.

Qed.

Note that the number of theorem applications in the repeat statement is propor-
tional to the logarithm of the numbers being scrutinized, so this repeat statement
is actually very fast to execute.

Using lemma pre cos bound we can also verify that cos 7
8 is positive, and using

sin 7
8 > cos 7

8 together with the lemma cos plus about the cosine of the sum of two
angles, we can deduce that cos 7

4 is negative.
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It is then possible to use the intermediate value theorem, already provided in the
library, with the following statement:

Lemma IVT :

forall (f:R -> R) (x y:R),

continuity f ->

x < y -> f x < 0 -> 0 < f y -> { z:R | x <= z <= y /\ f z = 0 }.

In plain english, this lemma says : if f is continuous, if x < y and f(x) < 0 and
0 < f(y), then we can obtain a z between x and y such that f(z) = 0. Note that this
theorem is not directly applicable to the cos function, because cos has a negative
value for 7

4 , which is larger than 7
8 where it has a positive value, but the opposite

function is suitable. We can then conclude that this function has a root between
these values.

Definition PI_2_aux : {z | 7/8 <= z <= 7/4 /\ -cos z = 0}.

In a sense, the value PI 2 aux is a qualified real value, that is, a plain value together
with proofs that this value is between 7

8 and 7
4 and that the function − cos returns

0 for that input. The number π can then be defined as the double of the value
described in this definition, and the fact that cos π2 = 0 is a consequence of the
definition.

Definition PI2 := proj1_sig PI_2_aux.

Definition PI := 2 * PI2.

Lemma cos_pi2 : cos (PI/2) = 0.

Then, using the lemma cos plus, it is easy to prove the following facts:

cos(
π

2
− x) = sinx

sin(
π

2
) = 1

sin(x+ y) = sinx cos y + cosx sin y

It is also possible to prove that the derivative of sin is cos and the derivative of
cos is − sin. Also, pre sin bound guarantees that sin is positive between 0 and 7

4 ,
thus cos is decreasing between 0 and 7

4 , so cos is positive between 0 and π
2 and so

is sin. Then we can deduce that sin is positive between 0 and π, and thus cos is
decreasing between 0 and π, as stated by the following lemma:

Lemma cos_decreasing_0 :

forall x y:R, 0 <= x -> x <= PI -> 0 <= y -> y <= PI ->

cos x < cos y -> y < x.

This guarantees that there is only one value between 7
8 and 7

4 such that cosx = 0,
this value is x = π

2 .

2.4 First techniques to compute approximations of π

The polynomial function provided by cos approx can already be used to compute
approximants of π. The standard library does that to establish that 3

2 < π
2 . We

shall now see how to use this for closer approximations.
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For instance, any value a inside the interval ( 7
8 ,

7
4 ) such that cos approx a (2 *

(n + 1)) < 0 is guaranteed to be an over-approximant. Similarly, if cos approx

a (2 * n + 1) is positive, the value a is guaranteed to be an under-approximant.
When performing the numeric computations, we need to be careful not to com-

pute the factorial function using natural numbers, because such computations have
a cost proportional to the end value. If the computations are done in real numbers
by well-designed tactics or in integers by the direct definition of multiplication in
integers, then the proofs can be performed fairly quickly.

A good illustration is the proof that π/2 < 31416
20000 , which can be done in the

following way.

Lemma over1 : PI/2 < 31416/20000.

assert (t := PI2_3_2).

t : 3 / 2 < PI / 2

============================

PI / 2 < 31416 / 20000

The first tactic adds the fact π
2 >

3
2 to the context, to make sure the next calls to

psatzl R will succeed for most formulas that entail π. The next theorems we use
are cos decreasing 0 and cos PI2. The former has a collection of side-conditions
to satisfy, but they are mostly taken care of by psatzl R.

apply cos_decreasing_0; try psatzl R; rewrite cos_PI2.

t : 3 / 2 < PI / 2

============================

cos (31416 / 20000) < 0

We can then use pre cos bound, so that we only have to compare the value of
a polynomial in 31416/2000 to 0. We determined by trials and errors that a
polynomial of degree 12 was enough to conclude, so we give the parameter 2 = 12

4 −1
to the theorem.

destruct (pre_cos_bound (31416/20000) 2) as [_ t’]; try psatzl R.

apply Rle_lt_trans with (1 := t’).

t : 3 / 2 < PI / 2

t’ : cos (31416/20000) <= cos_approx (31416 / 20000) (2 * (2 + 1))

============================

cos_approx (31416 / 20000) (2 * (2 + 1)) < 0

We need to expand the definition of cos approx to obtain mostly pure expressions.
Notice that we do not expand the computation of the factorial function using the
simpl tactic, which would run us into a complexity wall. So we use simpl before
expanding cos term. This only expands the function sum f R0.

unfold cos_approx; simpl; unfold cos_term.

t : 3 / 2 < PI / 2

t’ : cos (31416/20000) <= cos_approx (31416 / 20000) (2 * (2 + 1))

============================

(-1) ^ 0 * ((31416 / 20000) ^ (2 * 0) / INR (fact (2 * 0))) +
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(-1) ^ 1 * ((31416 / 20000) ^ (2 * 1) / INR (fact (2 * 1))) +

(-1) ^ 2 * ((31416 / 20000) ^ (2 * 2) / INR (fact (2 * 2))) +

(-1) ^ 3 * ((31416 / 20000) ^ (2 * 3) / INR (fact (2 * 3))) +

(-1) ^ 4 * ((31416 / 20000) ^ (2 * 4) / INR (fact (2 * 4))) +

(-1) ^ 5 * ((31416 / 20000) ^ (2 * 5) / INR (fact (2 * 5))) +

(-1) ^ 6 * ((31416 / 20000) ^ (2 * 6) / INR (fact (2 * 6))) < 0

We then want to perform some natural number computations (up to 2 * 6) but not
all (we do not want to compute 12! in natural number representation). So we want
to expand natural number multiplications before expanding the factorial function,
then expand the factorial function to express its behavior using multiplications that
we do not want to expand. This is carefully done as follows:

simpl mult; rewrite !fact_simpl; simpl fact.

rewrite !mult_1_r, !mult_INR.

t : 3 / 2 < PI / 2

t’ : cos (31416/20000) <= cos_approx (31416 / 20000) (2 * (2 + 1))

============================

(-1) ^ 0 * ((31416 / 20000) ^ 0 / INR 1) +

(-1) ^ 1 * ((31416 / 20000) ^ 2 / INR 2) +

(-1) ^ 2 * ((31416 / 20000) ^ 4 / (INR 4 * (INR 3 * INR 2))) +

...

(-1) ^ 6 *

((31416 / 20000) ^ 12 /

(INR 12 *

(INR 11 *

(INR 10 *

(INR 9 *

(INR 8 *

(INR 7 *

(INR 6 * (INR 5 * (INR 4 * (INR 3 * INR 2)))))))))))

We do not want to print the whole 24 lines of text for the resulting goal. It is
enough to say that the biggest argument of INR in this expression is 12, so that the
complexity of expanding these functions remains manageable. We can conclude the
proof with the following tactics.

simpl INR; psatzl R.

Qed.

The whole proof takes around 3 seconds on a laptop, so it is manageable. A similar
proof makes it possible to prove that π

2 is larger than 31415
20000 .

This staging of computation is necessary because simpl relies on the built-in
notion computation provided for all recursive functions defined on inductive types,
and this notion of computation would normally compute any natural number until
it is expressed solely with O and repeated applications of S. In other theorems where
there is no such built-in notion of computation, one can choose to use other “stan-
dard forms”, on which all computation is represented by rewrite theorems. For
instance, in HOL-light, the standard form actually uses a binary representation,
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and a collection of theorems is provided to show how most basic arithmetic oper-
ations act with respect with this binary representation. The parsing and display
machinery is also fine-tuned to handle this binary representation, so that the usual
computation tactic for arithmetic actually can compute a number like !12 without
difficulty. To the regular user, HOL-light may feel simpler to user, but on the other
hand, one needs to know one computation tactic for arithmetic, another for com-
puting with lists, and so on. In Coq, computations capabilities are more powerful,
but in the case of computation with the natural numbers, this extra power runs in
a complexity wall as soon as the considered numbers are little hight. To alleviate
this problem, Coq also provides an alternative type noted N, where the structure of
the data follows the binary representation. However, using this extra data-type is
still unwieldy because one need to navigate between this type and the type nat.

3. PROVING THE ALTERNATED SERIES FOR π

In spite of its beautiful simplicity, the Leibnitz formula is not very useful because
its convergence speed is rather poor. However, most alternatives to compute ap-
proximations of π rely on the power series expansion of the arctangent function and
the Leibnitz formula is a particular case. Defining this power series expansion is
the main contribution of this section.

3.1 Defining atan and studying its derivative

To define the atan function, we rely on the intermediate value theorem, but we need
a more general statement than the one used earlier in section 2.3. Indeed, Lemma
IVT requires a function that is continuous over the whole real line, but the tan
function does not satisfy this condition, since it is discontinuous in every point of
the form π

2 + kπ. For the purpose of defining atan, we proved a stronger version of
the intermediate value theorem, with the following statement, which only requires
the function to be continuous inside the interval of interest:

Lemma IVT_interv : forall (f : R -> R) (x y : R),

(forall a, x <= a <= y -> continuity_pt f a) ->

x < y -> f x < 0 -> 0 < f y ->

{z : R | x <= z <= y /\ f z = 0}.

For every value t in the real line, we only need to find two values x and y inside
the open interval (−π2 ,

π
2 ) such that tanx < t and tan y > t. Because the tangent

function is symmetric, it is enough to find a value y such that tan y > |t| and we
can then choose x = −y. We can then distinguish cases between whether t is larger
than 1 or not. If t is smaller than 1, it suffices to use the value 1. If t is larger than
1, then we can use the following value:

π

2
− 1

2× (|t|+ 1)
.

We use the functions sin approx and cos approx to show that the tangent of
this value satisfies the needed comparison. We can thus establish the following
definitions.

Definition frame_tan t : {x | 0 < x < PI/2 /\ Rabs t < tan x}.
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Definition pre_atan (y : R) :

{x : R | -PI/2 < x < PI/2 /\ tan x = y}.

The function frame tan returns an x such that |t| < tanx. The function pre atan

returns an x such that tanx = y.
These are enough to define the function atan and to show that the returned value

is between −π2 and π
2 .

Definition atan x := let (v, _) := pre_atan x in v.

Lemma atan_bound : forall x, -PI/2 < atan x < PI/2.

Proof.

intros x; unfold atan; destruct (pre_atan x) as [v [i _]]; exact i.

Qed.

Lemma atan_right_inv : forall x, tan (atan x) = x.

Proof.

intros x; unfold atan; destruct (pre_atan x) as [v [_ q]]; exact q.

Qed.

As a side note, let’s remark that it is possible to define the arctangent with only
IVT by looking for roots of the function x 7→ sinx− t cosx, which is continuous in
x over the whole line and increasing for x ∈ (0, π2 ). Nevertheless, IVT interv is a
useful addition to the standard library, even if it is not strictly necessary for our
purpose.

3.2 Derivatives for tan and atan

To define the power series for the arctangent function, we rely on the property
that this function’s derivative has a very simple form, which also has a very simple
infinite series.

The derivation formula for the tangent function is as follows:

tan′ x = 1 + tan2 x

This formula is valid only for x 6= π
2 + k × π for any integer k. We proved this

formally using the formal definition of tan as the quotient of cos and sin. The
division operation over real numbers is defined in such a way that x

0 exists for
any x, even though there is no way to prove any properties of this number. As a
consequence, the tangent’s function’s type is R -> R even though the mathematical
object would be ill-defined on countably many points. Correspondingly, the only
intervals for which we can establish properties of this function are the intervals for
which the cosine, i.e. the denominator, is non-zero.

This is illustrated by the following lines in the standard library:

Definition tan (x:R) : R := sin x / cos x.

Lemma tan_plus :

forall x y:R,

cos x <> 0 ->

cos y <> 0 ->
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cos (x + y) <> 0 ->

1 - tan x * tan y <> 0 ->

tan (x + y) = (tan x + tan y) / (1 - tan x * tan y).

For derivation, we have chosen to describe the derivability of the tan function
only on the open interval bounded by −π2 and π

2 .

Lemma derivable_pt_tan :

forall x, -PI/2 < x < PI/2 -> derivable_pt tan x.

Lemma derive_pt_tan : forall (x:R),

forall (Pr1: -PI/2 < x < PI/2),

derive_pt tan x (derivable_pt_tan x Pr1) = 1 + (tan x)^2.

To describe the derivative of a reciprocal function, like the arctangent function,
Coq’s standard library already contained a general formula. It could only be ap-
plied under a collection of important conditions which became quite intricate when
restricting the statement to intervals. We added two theorems in the library to
handle this case. The first theorem indicates under which conditions the reciprocal
function of a derivable function is derivable. the second one indicates what the
value of the reciprocal’s derivative is. Here is the statement of the first theorem2.

Lemma derivable_pt_recip_interv :

forall (f g:R->R) (lb ub x : R)

(lb_lt_ub:lb < ub) (x_encad:f lb < x < f ub)

(f_eq_g:forall x : R, f lb <= x -> x <= f ub ->

comp f g x = id x)

(g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub)

(f_incr:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y)

(f_derivable:

forall a : R, lb <= a <= ub -> derivable_pt f a),

derive_pt f (g x)

(derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub

x_encad f_eq_g g_wf f_incr f_derivable)

<> 0 ->

derivable_pt g x.

The conditions of this theorem express that we work between two bounds lb and
ub, and with two functions f and g, where f is the right inverse of g inside the
interval (f lb, f ub), the image of the interval (f lb, f ub) by the function
g is inside the interval [lb, ub], the function f is increasing over the interval
[lb, ub], and the derivative of f is different from 0. Under these conditions g is
derivable. We note here that Coq’s standard library makes a heavy use of depend
types to describe the derivative of functions only at places where this derivative is
proved to exist.

The second theorem relies on the same conditions. Note that the final equality
of this theorem expresses the equality between derivatives, but both the left-hand

2In Coq 8.4pl2, these two theorems are not loaded by default with the Reals library, one must
require the Ranalysis5 sub-library.
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side and the right-hand side need to contain proof components to express that the
derivatives being considered do exist.

Lemma derive_pt_recip_interv :

forall (f g:R->R) (lb ub x:R)

(lb_lt_ub:lb < ub) (x_encad:f lb < x < f ub)

(f_incr:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y)

(g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub)

(Prf:forall a : R, lb <= a <= ub -> derivable_pt f a)

(f_eq_g:forall x, f lb <= x -> x <= f ub -> (comp f g) x = id x)

(Df_neq:

derive_pt f (g x)

(derivable_pt_recip_interv_prelim1 f g lb ub x

lb_lt_ub x_encad f_eq_g g_wf f_incr Prf)

<> 0),

derive_pt g x

(derivable_pt_recip_interv f g lb ub x lb_lt_ub x_encad

f_eq_g g_wf f_incr Prf Df_neq)

=

1 / (derive_pt f (g x)

(Prf (g x)

(derive_pt_recip_interv_prelim1_1 f g lb ub x

lb_lt_ub x_encad f_incr g_wf f_eq_g))).

With the help of these new theorems we were able to establish a theorem with
the following statements:

Lemma derivable_pt_atan : forall x, derivable_pt atan x.

Lemma derive_pt_atan : forall x,

derive_pt atan x (derivable_pt_atan x) =

1 / (1 + x ^ 2).

Note that the sub-formula x ^ 2 in the second theorem’s statement comes from
the simplification of tan (atan x) ^ 2.

3.3 The power series for atan

The next step is to describe the power series for the function x 7→ 1
1+x2 and for

the arctangent function. Part of this work was copied from Guillaume Melquiond’s
interval package, where the atan function was already studied.

It requires a simple proof by induction to show that

n∑
i=0

(−1)ix2i =
1− (−x2)n+1

1 + x2
.

When n goes to infinity, the left-hand side of this equality is an alternated series
whose generic term is decreasing in absolute value and has limit 0. There is a generic
theorem in Coq’s standard library to show that such an infinite sum converges (and
the modulus of convergence is given by the last term). In the right-hand side of the
equality above, we also see that the limit is easy to compute. Moreover, we show
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that the function x 7→ xn is increasing for every positive natural number n, and this
implies that the convergence of the series towards 1

1+x2 is uniform in any closed
interval inside the interval (−1, 1). We define a function ps atan that coincides
with the limit of this power series on the interval [-1,1] and coincides with atan

outside this interval. In this name the ps prefix is an acronym for power series.
Then we rely on a general theorem about the derivatives of uniformly converging

sequences of functions to prove that the derivative of ps atan inside the open
interval (−1, 1) is the function x 7→ 1

1+x2 , relying on a general theorem about the
derivatives of uniformly converging sequences of functions, which we added to Coq’s
standard library.

Lemma derivable_pt_lim_CVU : forall (fn fn’:nat -> R -> R)(f g:R->R)

(x:R) c r, Boule c r x ->

(forall y n, Boule c r y -> derivable_pt_lim (fn n) y (fn’ n y))->

(forall y, Boule c r y -> Un_cv (fun n => fn n y) (f y)) ->

(CVU fn’ g c r) ->

(forall y, Boule c r y -> continuity_pt g y) ->

derivable_pt_lim f x (g x).

Because we wanted to state this theorem at the right level of abstraction, we took
care of expressing it with concepts taken from metric spaces and topology (hence
the word Boule, which is French for Ball and was already present in Coq’s standard
library).

With the help of this theorem, we prove the following lemma about ps atan:

Lemma derivable_pt_lim_ps_atan : forall x, -1 < x < 1 ->

derivable_pt_lim ps_atan x ((fun y => /(1 + y ^ 2)) x).

Moreover, we prove that ps atan has value 0 in 0, like atan, and since they have
the same derivative over the open interval (-1,1), they coincide inside this interval.
On the other hand, we also proved that the function ps atan is continuous in 1.
All combined, we can use the mean value theorem to express that ps atan - atan

must coincide with the 0 function everywhere in the interval [0,1]. Since atan

is related to the trigonometric functions, it is related to the new definition of π.
Moreover, ps atan is related to the power series and thus it is related to the old
definition of π. This reconciles the new definitions with the old one and we can
prove the property, now named PI ineq. In this definition / x is the notation for
the inverse 1

x .

Definition PI_tg (n:nat) := / INR (2 * n + 1).

Lemma PI_ineq :

forall N : nat,

sum_f_R0 (tg_alt PI_tg) (S (2 * N)) <= PI / 4 <=

sum_f_R0 (tg_alt PI_tg) (2 * N).

In mathematical notation, after expanding the definitions of tg alt and PI tg, this
means

∀N,
2N+1∑
n=0

−1n

2n+ 1
≤ π

4
≤

2N∑
n=0

−1n

2n+ 1
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4. ALTERNATIVE APPROACHES TO DESCRIBING π

We now look at three other methods to describe π and we describe the formal proofs
that show that these other methods return the same value of π.

4.1 The surface of the circle as an integral

An elementary way to describe π is to compute the surface of a disk by simple
means. For instance, the equation of the unit circle is given by:

x2 + y2 = 1

Looking only at the upper half of the circle, this means computing y as a function
of x, we simply have y =

√
1− x2.

The value of the surface for the half disk can be computed approximately by
taking regularly spaced numbers x0 = −1, x1 = −1 + 2/k, . . . , xk = −1 + 2k/k =
1, and adding the corresponding y values for each of these numbers, and then
dividing by k. As k grows, the approximation gets better and better. This actually
corresponds to computing the integral of step functions that get closer and closer
to the function

√
1− x2. This is the principle of Riemann integration.

Riemann integration is already described in Coq’s standard library, and its re-
lation to computing derivatives is also covered. In particular, every continuous
function is Riemann integrable and we could thus have defined π by the following
lines:

Definition circle_aux x := Rabs (1 - x ^ 2).

Definition circle_curve x := sqrt (circle_aux x).

Lemma circle_curve_ct : forall x, continuity_pt circle_curve x.

...

Lemma cmpm1_1 : -1 <= 1.

...

Definition hPI_pr :=

continuity_implies_RiemannInt cmpm1_1

(fun x _ => circle_curve_ct x).

Definition PI_sf := 2 * RiemannInt hPI_pr.

In principle, the value PI sf3 should be exactly π. However, it has not been defined
using trigonometric functions. The exercise we study in this section is to show the
equality between the values.

It boils down to studying the following integral:

πsf =

∫ 1

−1

√
1− x2dx

Computing this integral relies on the arcsine function, asin.

3The suffix sf refers to surface.
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To define asin, we use the same approach as for defining atan. We first prove for
every x between −1 and 1 the existence of a value y between −π2 and π

2 such that
sin y = x. This proof of existence is quite simple: if x is −1 or 1 we return −π2
or π

2 respectively. For other values, we simply use the intermediate value theorem
between −π2 and π

2 . The existence statement is written in Coq in the following
manner:

Lemma exists_asin : forall x,

-1 <= x <= 1 -> {t | -PI/2 <= t <= PI/2 /\ sin t = x}.

We can then define the asin function by extracting the value from this existential
statement for inputs between −1 and 1. To make this function easy to use, it is
better to define it with type R -> R. In this case, we must also define the value the
function takes for inputs smaller than -1 and for inputs larger than 1. We choose to
return −π2 when the input is smaller than −1 and π

2 when the input is larger than
1. We also provided a proof that the function defined in this way is continuous.

Since the arcsine function is the reciprocal function of the sine function and since
the sine function has positive derivative between −1 and 1, we can prove that
the arcsine function is continuous and derivable in that open interval and that its
derivative is

asin′x =
1√

1− x2
.

The usual approach to computing the integral πsf is to note that we can perform
a variable change x = sinu, so dx = cosu du, and

√
1− x2 = cosu. So the integral

becomes: ∫ π
2

−π2
cos2 u du =

∫ π
2

−π2

1 + cos 2u

2
du

The primitive of 1+cos 2u
2 is x

2 + sin2u
4 . Computing with this primitive gives the

desired result.
In practice, variable change is simply justified by the derivation rule for composed

functions:

(f ◦ g)′ = f ′ ◦ g × g′.

This derivation rule is provided in the standard library of Coq and we simply
formalize the computation by relying on the function

(fun x => sin (2 * asin x)/4 + asin x/2)

and showing that its derivative is circle curve between −1 and 1.

4.2 The perimeter of the circle as a limit of polygons

Archimedes computed approximations of π around 250 B.C. His technique relies
on computing the perimeter of regular polygons, starting with hexagons. There
are actually two approaches, the first one uses a sequence of inscribed polygons
and computes under-approximations of π. The second uses tangential polygons
and computes over-approximations. Each polygon in the sequence is obtained by
multiplying the number of sides of the previous polygon by 2. Archimedes himself
repeated this process 4 times (thus computing 5 polygons in each sequence), so
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that he actually computed approximations of π by computing perimeters of regular
polygons with 96 sides.

We formalize the computations of both sequences, showed that each of them con-
verges, and showed that one is strictly increasing and the other strictly decreasing.
Let’s take a closer look at the computation for the first sequence.

We start with an hexagon, given by the points at angles π
6 , π

2 , 5π
6 , 7π

6 , 3π
2 , and

11π
6 . This configuration makes it easy to see that the length of each side is 2 sin π

6 .
When dividing angles by 2 to obtain a dodecagon, we get a new polygon with sides
of length 2 sin π

12 , and so on. At each step we need to compute sin α
2 while we

already know the value of sinα and the comparisons 0 < α < π
2 .

The standard library already contains the formula for computing sinα if we
already know sin α

2 :

Lemma sin_2a : forall x:R, sin (2 * x) = 2 * sin x * cos x.

So we start with the following equality:

sinα = 2 sin
α

2
cos

α

2
.

For α between 0 and π
2 , we know that cos α2 =

√
1− sin2 α

2 . So we need to raise this

equation to the square to obtain a second degree equation. This equation has two
roots, but the one we are looking for can be distinguished thanks to the property
0 < sin α

2 < sinα. This results condenses in the following formalized lemma:

Lemma sin_half :

forall x, 0 <= x < PI/2 ->

sin (x/2) = sqrt (1/2 - sqrt(1 - sin x^2)/2).

To reproduce Archimedes’ approach to describing π, we abstract away from sin α
2

and sinα and make it possible to repeat the process an arbitrary number of times:

Fixpoint archimedes_l_seq n : R :=

match n with

0%nat => 1/2

| S p => sqrt (1/2 - sqrt(1 - archimedes_l_seq p ^ 2)/2)

end.

Since we start with 1
2 = sin π

6 , this function is designed to map any n to sin π
3×2n+1 ,

it remains to multiply this value by 3× 2n+1 to obtain approximations of π.
We proved that this value converges towards π, with the following formalized

statement:

Lemma archimedes_l_pi :

Un_cv (fun n => 3 * 2 ^ (n + 1) * archimedes_l_seq n) PI.

To make this result useful, it is interesting also to show that every value in the
sequence provides a lower bound to π. This is done by showing that the difference
between consecutive terms of the sequence is positive.

Lemma archimedes_l_growing :

forall n, 3 * 2 ^ (n + 1) * archimedes_l_seq n <

3 * 2 ^ (S n + 1) * archimedes_l_seq (S n).

Journal of Formalized Reasoning Vol. 7, No. 1, 2014.



124 · Bertot, Allais

...

Lemma archimedes_l_bound_pi :

forall n, 3 * 2 ^ (n + 1) * archimedes_l_seq n < PI.

For the sequence based on tangential polygons, we also need find the reciprocal
to the function computing tan 2α from tanα. This function is described in the
following formalized lemma:

Lemma tan_2a :

forall x:R, cos x <> 0 -> cos (2 * x) <> 0 ->

1 - tan x * tan x <> 0 ->

tan (2 * x) = 2 * tan x / (1 - tan x * tan x).

The use of this formula is constrained by the necessity of ensuring that the various
divisors are non-zero. When all the conditions are met, the equation can again be
transformed into a second degree equation, where we need to select the relevant
root. Again, selecting the right root is done by choosing the one that is between 0
and 1, this gives us for the tangents of positive angles smaller than π

2 .
The result can then be generalized to all relevant values between −π2 and π

2 .

Lemma tan_half : forall x : R, x <> 0 -> -PI/2 < x < PI/2 ->

tan (x / 2) = (sqrt (1 + tan x^2) - 1)/tan x.

Again, we abstract away from tanα and tan α
2 and define a function that iterates

the process, starting from the value tan π
6 .

Lemma archimedes_u_seq_step :

forall n, archimedes_u_seq n =

match n with

0%nat => 1/sqrt 3

| S p => (sqrt (1 + archimedes_u_seq p^2) - 1)/archimedes_u_seq p

end.

Similarly to previous computations, we showed that the computed value converges
to π and provides upper bounds.

Lemma archimedes_u_pi :

Un_cv (fun n => 3 * 2 ^ (n + 1) * archimedes_u_seq n) PI.

Lemma archimedes_u_bound_pi :

forall n, PI < 3 * 2 ^ (n + 1) * archimedes_u_seq n.

5. COMPUTING π

All the proofs presented so far manipulate mainly real numbers, which are pre-
sented as an abstract data-type in Coq’s standard library. To effectively compute
approximations, it is interesting to concentrate on a data-type that supports com-
putation and is at the same time dense in the real line. An obvious choice is the
data-type of rational numbers, for which some support is already provided in the
standard library.

Journal of Formalized Reasoning Vol. 7, No. 1, 2014.



Views of Pi: definition and computation · 125

5.1 Exact computations with rational numbers

The standard library provides a module called QArith for computing with rational
numbers. Rational numbers are constructed as pairs of an integer and a positive
number, and both types use a binary representation for numerals. As a result,
Coq actually provides means to perform exact computations of rational numbers.
This is done entirely symbolically using inductive types, so that the efficiency of
computation does not compare to finely tuned libraries for high-speed arbitrary
computation libraries, but it still makes it possible to compute around a hundred
decimals of the π number in a matter of seconds.

The QArith module provides ways to describe rational values, simply writing
(a#b) for a

b . Then it provides the operations of addition, multiplication, subtrac-
tion, division, and exponentiation. However, none of the values returned by these
operations are reduced fractions. For instance, multiplying 1

3 with 3
2 returns 3

6 ,
which is equal as a rational number with 1

2 , but is not represented in the same
manner in memory. To produce reduced fractions, we could use the function Qred

provided by the QArith library.
The correspondance with real numbers is established by a function Q2R that maps

rational values (of type Q) to real values (of type R), together with a collection of
morphism theorems, which state that Q2R (0#1) =0, Q2R (1#1)=1, Q2R (a + b)

= Q2R a + Q2R b, and similar theorems for multiplication, subtraction, division,
and exponentiation.

When it comes to “seeing” that we can compute π, the rational values are not
very telling because it is rather difficult to recognize that a number is approximately
the third of another when both numbers are written with several dozens of digits.

To recover the possibility to see the digits of the π number in its fractional decimal
representation, we added a function that computes p digits of a rational number.
The method is to multiply the numerator by 10p and to divide by the denominator.

Definition dec (x: Q) p := Zdiv (Qnum x * 10 ^ p) (QDen x).

We prove that this function is correct, in the sense that the result is the value of
the input rounded by default at precision 10−p.

Lemma dec_correct : forall x p, (0 <= p)%Z ->

(IZR(dec x p))/IZR (10 ^ p) <= Q2R x

< IZR(dec x p + 1)/IZR (10 ^ p).

5.2 Machin-like formulas

To compute π to a high precision, it is unreasonable to use Leibnitz’ formula. The
nth term in the sum is ±1

n , so that computing π
4 with precision 10−p requires 10p

terms in the sum. However, computing atan at other rational values converges
much faster, thanks to the exponent in the general term for the power series of
atan. It is useful to find formulas that relate values of atan 1 with values of atan
at smaller rational inputs.

The general formula for the tangent of a difference of angles is:

tan(x− y) =
tanx− tan y

1 + tanx tan y
.

Journal of Formalized Reasoning Vol. 7, No. 1, 2014.



126 · Bertot, Allais

Replace x with atan a and y with atan b and apply atan on both sides of the
equation, this formula can be rephrased using the arctangent function to obtain the
following formulas:

atan a− atan b = atan
a− b
1 + ab

For instance, using a = 1, b = 1
2 we obtain the following formula:

π

4
= atan

1

2
+ atan

1

3
.

We gave a formal proof of the atan subtraction formula and used it repeatedly
to prove a variety of formulas involving inverses of integers.

Definition atan_sub u v := (u - v)/(1 + u * v).

Lemma atan_sub_correct :

forall u v, 1 + u * v <> 0 -> -PI/2 < atan u - atan v < PI/2 ->

-PI/2 < atan (atan_sub u v) < PI/2 ->

atan u = atan v + atan (atan_sub u v).

Lemma Machin_2_3 : PI/4 = atan(/2) + atan(/3).

Lemma Machin_4_5_239 : PI/4 = 4 * atan (/5) - atan(/239).

Lemma Machin_2_3_7 : PI/4 = 2 * atan(/3) + (atan (/7)).

In particular, the formula Machin 4 5 239 is the one used by John Machin in 1706
to compute π to the hundredth decimal place. It is easy to understand why he
preferred this formula: it involves computing many powers of 1

5 , but each of these
powers is easily computed in decimal notation, since dividing by 5 is the same as
multiplying by 2 (which is fairly easy) and dividing by 10 (which is very easy).

We developed a few functions to encode the computation of Machin’s formula
using rational inputs and outputs.

The first function, atan rat aux, computes the arctangent value for x by adding
n terms of the power series. It returns the sum, the sign of the last term in the sum,
the number 2n + 1 as represented in the type positive, and the rational number
x2n+1. This is designed to avoid recomputing powers of x from scratch at each
term.

Fixpoint atan_rat_aux x n : Q * Z * positive * Q :=

match n with

0%nat => (x, 1%Z, 1%positive, x)

| S p =>

let ’(v, sign, rank, power) := atan_rat_aux x p in

let new_sign := Zopp sign in

let new_rank := (rank + 2)%positive in

let new_power := x * x * power in

(v + (Qmake new_sign new_rank) * new_power, new_sign, new_rank,

new_power)

end.
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The second function atan rat returns the total sum of the first n terms and the
absolute value of the last term. This second component is useful to evaluate the
quality of the approximation. This function is then used to compute approximations
of π and to return an estimate of the error made when truncating the infinite sum
to a finite sum.

Fixpoint div3 n :=

match n with S (S (S p)) => S (div3 p) | _ => 0%nat end.

Definition pi_approx rank pr :=

let (v1, p1) := atan_rat (1#5) rank in

let (v2, p2) := atan_rat (1#239) (div3 rank) in

let v := dec ( (4#1) * ((4#1) * v1 - (v2 + p2))) pr in

(v, dec ((4#1) * ((4#1) * p1 + p2)) pr).

If we compute n terms of the series for atan 1
5 , we compute only n

3 terms of the
series for atan 1

239 . We made this choice because 53 < 239 < 54.
We then proved the correctness of our approximation functions, to obtain the

following statement:

Lemma pi_approx_correct :

forall r p v e, (0 <= p)%Z -> pi_approx r p = (v, e) ->

IZR v/IZR (10 ^ p) < PI < IZR (v + e + 2)/IZR (10 ^ p).

Note that the error is taken into account in the result, but with +2 added, so
that the last digit computed is not guaranteed, but it may only be wrong by one
unit. To compute the first hundred digits of the decimal representation of π, we
estimated that it suffices to compute 35 terms of the power series for atan 1

5 and
the corresponding number for the power series for atan 1

239 . This computation takes
slightly less than a minute on a standard laptop computer.

In practice when performing proofs, it is seldom necessary to obtain an approxi-
mation of π that is more precise than a few digits. But even for such a low precision,
Leibnitz’ formula is not adapted: it requires a thousand terms to obtain the ap-
proximation 3.14 < π < 3.15. On the other hand, using Machin’s formula, only
2 terms of the series for 1

5 and one term of the series for 1
239 are needed at that

precision.

6. CONCLUSION

The work described in Section 1 of this paper has been added in Coq’s standard
library, together with the description of Machin-like formulas (Section 5.2). The
work on computing the surface of the unit disk using an integral, the work on
Archimedes’ technique, and the work on computing rational approximations and
decimal representations are available from the authors and from open archives.

CCorn provide another library for real analysis in Coq, with an emphasis on
constructive mathematics and efficient computations for a variety of mathematical
functions. In that library, π is defined in another way, as a limit using the cos
function

u0 = 0 un+1 = un + cosun.
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CCorn also provides algorithms to compute π relying on Machin-like formulas,
with a more advanced formula suited for faster computation at higher precisions.
In particular, Krebbers Spitters [10] advertise computing a collection of combined
formulas, among which

√
π to 500 digits, in less than 6 seconds. Our implementation

does not compete with this, but this was not really the objective of this work.
Most other theorem provers provide a descriptions of π, but very few consider

the question of computing approximations of this mathematical constant beyond
the first few digits in the theorem prover itself. In Mizar [11] the definition was
added in 1998 [15], first by defining sine and cosine from the exponential function
in complex numbers, so the definition is closely related to the series expansion.
The number π (the circle ratio) is then defined by sin

cos (π4 ) = 1 and π ∈ (0, 4). This
definition does not attempt to provide better approximations of π. In ACL2 [9],
more precisely in [5], the cosine function is defined by its taylor expansion and π is
defined as the only value between 0 and 2 where this function takes the value 0. It
is then proved that any value between 0 and 2 where the cosine function is negative
is an upper bound of π and likewise that any value where this function is positive is
a lower bound. In PVS [13], neither the trigonometric functions nor the π number
seem to be provided by the default standard library, on the other hand the NASA
PVS library [12] provides descriptions of trigonometric functions and the number
π is given with lower and upper bounds to a precision of 8 digits. By studying the
sequence of lemmas, one can infer that these bounds are obtained by computing the
Machin formula. In Isabelle [14], π is defined as twice the root of cos between 0 and
2. Machin’s formula is also provided in the library together with the presentation
of arctangent as a power series and its instantiation at 1. Work has also been done
in Isabelle to provide formally proved computations of real functions, including the
exponential and trigonometric function and the π constant [8]. In this work, an
extensive language of formulas containing transcendental functions and constants
is defined and an interpreter for this langage is described, so that computations
can be performed to a prescribed precision. The computations are performed using
Taylor expansions. The value of π is explicitely computed using the original Machin
formula.

In HOL-light [6] the trigonometric functions are defined once and for all at the
same time as complex exponentials. The constant π is then described as the first
positive value where sin has value 0. An approximation tool is provided with the
help of a function that uses the monotonicity of sin around 1

2 . More precisely, if

a, b are two positive real numbers smaller than 4 such that sin a
6 ≤

1
2 ≤ sin b

6 , then
they provide bound for π. This tool is then used to provide an approximation of
π to a precision of 1

232 (more than 9 digits of accuracy). In [7], a more systematic
approach is also described, which relies on the Machin formula, and automatically
produces approximations of π to any precision (more precisely given an input n it
produces an approximation up to 2−n).

In an extra piece of work about π, we also verified formally an algorithm using
arithmetic-geometric means, which makes it possible to obtain a precision of one
million digits in a matter of hours inside a computation-able proof system like Coq.
Close colleagues also verified the correctness of an algorithm based on the BBP
formula [1], which makes it possible to compute isolated digits (in hexadecimal
format). This work will be described in another publication.
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