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TLS is such a widespread security protocol that errors in its implementation can have disastrous

consequences. This responsibility is mostly borne by programmers, caught between specifications

with the ambiguities of natural language and error-prone low-level parsing of network packets.
We report here on the construction in the Coq proof-assistant of libraries to model, specify, and

verify C programs to process TLS packets. We provide in particular an encoding of the core subset

of C whose originality lies in its use of dependent types to statically guarantee well-formedness
of datatypes and correct typing. We further equip this encoding with a Separation logic that

enables byte-level reasoning and also provide a logical view of data structures. We also formalize a

significant part of the RFC for TLS, again using dependent types to capture succinctly constraints
that are left implicit in the prose document. Finally, we apply the above framework to an existing

implementation of TLS (namely, PolarSSL) of which we specify and verify a parsing function for

network packets. Thanks to this experiment, we were able to spot ambiguities in the RFC and to
correct bugs in the C source code.

1. INTRODUCTION

TLS (Transport Layer Security) [DR08] is such a widespread security protocol that
errors in its implementation can have disastrous consequences. For illustration,
the Heartbleed bug found in OpenSSL [OPE] (CVE-2014-0160) allowed theft of
servers’ private keys, thus compromising completely any security guarantee. This
responsibility for security is mostly borne by programmers, caught between error-
prone low-level programming with C and specifications with the ambiguities of
natural language.

We want to use verification with a proof-assistant to improve the implementa-
tions of TLS. One can think of several ways to use proof-assistants to improve the
implementations of communication protocols in general. For example, Sewell et
al. developed an HOL specification of TCP to test implementations of the Socket
API [BFN+06]; this proves effective but lets open the question of the source code
adequacy to the programmer’s intent. Brady proposed to use a dependently-typed
programming language to specify and verify network packet processing [Bra11]; yet,
such implementations continue to be developed in C for performance reasons.

Our purpose is to provide a framework in the Coq proof-assistant [CDT14] for
the interactive verification of C programs that process TLS packets. Our viewpoint
is the following. Programmers “almost” always get it right when they write a
program. The problem is that when it comes to security, “almost” is everything.
We believe that it should be possible to use proof-assistants to develop programs
that are correct-by-construction by adding just a little overhead at programming-
time. This is a long-term goal but this is our motivation to work on interactive
theorem proving rather than aiming at full automation.

The main element of our framework is a new library for the verification of the
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core subset of C. The originality of our encoding of C is the use of dependent types
to provide what is called an “intrinsic” encoding [BHKM12], i.e., an encoding such
that only correctly-typed C expressions and C commands can be represented (see
Section 4). An intrinsic encoding helps its user by detecting modeling errors as soon
as the target C program is modeled. It also helps during formal proof. Indeed, since
the proofs that the C expressions and the C commands are correctly-typed are part
of the syntax, they can be naturally hidden using Coq notations, and therefore
they do not clutter the display during formal proof. An intrinsic encoding also
helps when developing the verification framework because having to deal with only
correctly-typed programs reduces the number of error cases to be treated when
developing the semantics and the related lemmas. We do not think that there are
any significant drawback to the use of an intrinsic encoding, except maybe less
obvious reporting of errors when developing the framework in Coq. In order to be
able to develop our intrinsic encoding of the core subset of C, we start by providing
an encoding of C types parameterized with a type context (Section 2) together with
functions to calculate alignment and sizeof information (Section 3).

Our verification framework is based on Separation logic [Rey02], a variant of
Hoare logic that deals with pointers, the latter being pervasively used in network
packet processing. We have adapted and encoded the standard Separation logic
for our model of C, and equipped it with the expected lemmas such as the frame
rule. Because direct manipulation of memory in terms of bytes complicates formal
specification by revealing details such as padding, we also provide reasoning rules
that treat C data structures in a “logical” way. This proves useful even for a simple
example such as the mandatory in-place list reversal (Section 5).

The task of processing network packets is disciplined by various standards. RFCs
(Requests For Comments) are published by the IETF (Internet Engineering Task
Force) to document Internet-related innovations. Strictly speaking, RFCs are not
standards, but many of them are authoritative documents. In practice, the RFC
for TLS [DR08] acts as a de facto standard. It describes in particular the format
of network packets, but in a semi-formal fashion. In order not to depart from
common practice, we insist on having a formalization of the RFC for TLS that
can be syntactically compared with the original document. This not only gives us
formal grounds to lay down specifications of the C source code, but also has the
side-effect of improving the original RFC by making precise prose-only statements
(Section 6).

Finally, we apply the above framework to the formal verification of a parsing func-
tion from an existing implementation of TLS, namely PolarSSL [POL] (Section 7).
This experiment was originally motivated by the observation that many security
vulnerabilities of mainstream implementations of TLS are caused by incomplete
parsing of network packets. It seems difficult for a programmer to implement all
the checks that are specified in the RFC, in particular those regarding the length of
payloads, that are partly implicit. Recently, this observation has been confirmed by
security vulnerabilities with much media coverage such as the OpenSSL Hearbleed
bug (CVE-2014-0160) or the GnuTLS buggy parsing of session IDs (CVE-2014-
3466). In fact, we discovered similar implementation errors while performing formal
verification of a parsing function of PolarSSL. Concretely, we formalize the function
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from PolarSSL [POL] that parses initialization packets1, specify it w.r.t. the formal
RFC, and verify it. Section 7.5 comments more specifically on the implementation
errors we found.

Outline. In Section 2, we introduce a non-structural encoding of the core subset of
C types. In Section 3, we explain how we formalize alignment and sizeof calculations
that conform with the C standard. In Section 4, we use the encoding developed
in the previous sections to build a dependently-typed encoding of the core subset
of C. In Section 5, we provide an encoding of Separation logic for reasoning about
C programs. In Section 6, we provide an encoding of the RFC for TLS [DR08] that
helped us find ambiguities in the original prose document. In Section 7, we apply the
above framework to the formal verification of a parsing function of PolarSSL [POL],
in the source code of which we managed to find implementation errors. We review
related work in Section 8 and conclude in Section 9.

About notations in this paper. We display the Coq formalization almost as it is,
using only a few obvious non-ascii symbols to ease reading. Since we work with the
SSReflect extension [GM10] of Coq, we explain, when they appear, SSReflect’s
idiosyncrasies, as well as notations and definitions that are specific to SSReflect.

2. AN ENCODING OF C TYPES USING TYPE CONTEXTS

In C, recursive references in types can only appear as pointers, so as to ensure
that all types have a finite size. This can be modeled with a structurally-recursive
definition of types [Ler12], but at the price of an indirect encoding of mutually
recursive types. We choose to refer to C structures by names, using a type context.
The result is a direct type representation, but also a more involved mechanization
because termination of type traversal is not structural. The next section (Section 3)
completes our model of C types by providing alignment and size calculations.

2.1 Encoding of Type Contexts

We define our subset of the C types as an inductive type2:

Inductive tag ∶= mkTag : string → tag.
Inductive integral : Set ∶= uint | sint | uchar | schar | ulong.
Inductive typ : Set ∶= ityp of integral | ptyp of typ | styp of tag.

The type typ models: main integral types ityp (defined in integral: unsigned
and signed integers, unsigned characters, and unsigned long integers), pointers
types ptyp, and structure types styp (identified by a tag).

To each structure tag, we want to associate a list of pairs of a string and a typ

that models the fields of C structures:

Module Fields <: finmap.EQTYPE.
Definition A ∶= [eqType of seq (string * typ)].
End Fields.

1Even recent security bugs can be found in such apparently well-scrutinized functions (e.g., CVE-
2011-0014 for ClientHello in OpenSSL).
2We have also extended typ to deal with arrays of structures (see [AMS14]) but since we do not
rely on this extension in our case study we skip this explanation.
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([eqType of t] is the type t with a decidable equality; we borrow this definition
from the SSReflect library.)

Type contexts are finally obtained by instantiating a module for finite maps:
Module Γ ∶= compmap TagOrder Fields (TagOrder is a module that equips tag with the
lexicographical order).

We say that a type is covered when all the tags it contains are included in
the domain of the type context (otherwise it is “incomplete” in C parlance). Put
formally:

Definition cover (g : Γ.t) (t : typ) ∶= inc (tags t) (Γ.dom g).

(The function tags collects the tags in a typ.)

2.2 Well-formedness of Type Contexts

In C, a type context is well-formed when (1) it is complete, (2) it has no empty
structure, and (3) recursion only goes through pointers.

(1) Completeness A context is said to be complete when all the types in its
codomain are covered. Completeness can therefore be decided by checking whether
the set of tags in the codomain of the context is included in the domain:

Definition complete g ∶=
∀ tg flds , Γ.get tg g = ⌊ flds ⌋ →
∀ t, t ∈ unzip2 flds →
∀ tg’, tg’ ∈ tags t →

∃ flds ’, Γ.get tg’ g = ⌊ flds ’ ⌋ .
(The notation ⌊ f ⌋ stands for Some f; the function unzip2 retrieves the second
projections of a list of pairs.)

(2) Non-emptiness Contrary to C++, C forbids empty structures:

Definition no_empty g ∶= ∀ flds , flds ∈ Γ.cdom g → size flds ≠ 0.

(3) No cycle No structure can be defined in terms of itself, even indirectly, unless
recursion goes through a pointer. To define this property, we introduce the notion
of nesting of tags:

Definition nested g tg 1 tg 2 ∶=
if Γ.get tg 1 g is ⌊ l ⌋ then

has (fun x ⇒ match x.2 with
| styp tg ⇒ tg 2 == tg | _ ⇒ false
end) l

else false.

(The construct if t1 is p then t2 else t3 matches the term t1 against the pat-
tern p and reduces accordingly to t2 or t3; it is an extension of Coq provided by
SSReflect. The notation x.2 (resp. x.1) is for the second (resp. first) projection
of the pair x. The notation == is for the boolean equality of types with a decidable
equality.) This computable relation states that the tag tg 1 refers to a structure
with at least one field whose type is a structure with tag tg 2. Using this relation,
we build the set of all paths of nested tags:

Module PathNested.
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Record t g n : Type ∶= mkt {
p :> {:n+1.-tuple tag} ;
Hp1 : thead p ∈ Γ.dom g ;
Hp : path (nested g) (thead p) (behead p) }.

End PathNested.

(The notation {:n+1.-tuple tag} is for the type of lists of tags of size n+1. The head
(resp. tail) of such a non-empty list can be taken using the function thead (resp.
behead). A path is a non-empty sequence that obeys a progression relation. We
borrow these datatypes from the library of SSReflect.)

Finally, there is no cycle in a type context when all possible paths (of any size)
do not contain twice the same tag (this is the meaning of the uniq predicate from
the SSReflect library):

Definition no_cycle g ∶= ∀ n (p : PathNested.t g n), uniq p.

So, formally, a well-formed context is defined as follows:

Definition wf_ctxt g ∶= no_cycle g ∧ complete g ∧ no_empty g.

2.3 Deciding Well-formedness of Type Contexts

The well-formedness property in the previous section is a proposition of type Prop.
We also provide a computational version to make Coq automatically enforce well-
formedness of type contexts.

Providing a computational version is a bit involved for (3) No cycle, essentially
because of the universal quantification over the paths’ size in the predicate no_cycle.
We observe that if a path has no cycle then its size is bounded by the size of the
type context. Therefore, to decide the absence of cycles, one only needs to check
a finite number of paths, as provided by the following function, which provably
enumerates all the paths of a given size:

Fixpoint compute_paths (g : Γ.t) n : seq {:n+1.-tuple tag} ∶= ...
Definition all_nestedpaths_in g n (s : seq {:n+1.-tuple tag}) ∶=
∀ (p : PathNested.t g n), PathNested.p _ _ p ∈ s.

Lemma compute_paths_complete g n :
all_nestedpaths_in g n (compute_paths g n).

We can now build a boolean predicate no_cycleb that checks that there is no path
as long as the type context, which implies the uniqness of all the paths and thus
the absence of cycles:

Definition no_cycleb g ∶= compute_paths g (size (Γ.dom g)) == nil.
Lemma no_cycleb_sound g : no_cycleb g → no_cycle g.

(Note that no_cycleb g should actually be read as no_cycleb g = true. In fact, SS-
Reflect systematically injects booleans into propositions using a coercion.) Sim-
ilarly, we provide computational versions of (1) and (2) as the boolean predicates
completeb and no_emptyb, and arrive at a provably sound boolean predicate to check
well-formedness of type contexts:

Definition wf_ctxtb g ∶= no_cycleb g && completeb g && no_emptyb g.
Lemma wf_ctxtb_sound g : wf_ctxtb g → wf_ctxt g.
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We finally encode well-formed contexts as dependent pairs. By combining Coq
lazy-parsing rules and the above soundness lemma, we even provide a notation that
automatically enforces well-formedness:

Record wfctxt ∶= mkWfctxt {
wfctxtg :> Γ.t ;
Hwfctxtg : wf_ctxt wfctxtg }.

Notation "\wfctxt{ g }" ∶= (mkWfctxt g (wf_ctxtb_sound g erefl )).

2.4 Formalization of C Types using Well-formed Type Contexts

We formalized C types as dependent pairs of a type and a proof that the type is
covered by a well-formed type context (i.e., the type is a “complete” type in C
parlance):

Module Ctyp.
Record t (g : wfctxt) : predArgType ∶= mk {

ty :> typ ;
Hty : cover g ty }.

End Ctyp.
Notation "g ’.-typ:’ ty " ∶= (Ctyp.mk g ty erefl).

We also note “ityp: t” the construction of an integral arithmetic C type and “:∗t”
the construction of a pointer C type (provided the type context can be automatically
inferred).

Example of Type Declaration. Let us consider two self-referential C structures:

{struct cell ;
struct header {struct cell *first ;};
struct cell {char data; struct header *head ;};}

To model these C types, we first define two structure tags:

Definition cell_tg ∶= mkTag "cell".
Definition header_tg ∶= mkTag "header".

For each of these structure tags, we define the associated lists of fields together with
their types:

Definition cell_flds ∶=
("data", ityp uchar) :: ("head", ptyp (styp header_tg )) :: nil.

Definition header_flds ∶= ("first", ptyp (styp cell_tg )) :: nil.

These definitions provide us with enough information to define a type context g

that consists of the cell and header structures and to automatically check that it
is well-formed:

Definition g ∶=
\wfctxt{ "cell" ▹ cell_flds, "header" ▹ header_flds, ∅ }.

(The notation ▹ is for Γ.add, that adds a pair tag/fields to a type context, and ∅ is
for Γ.emp, the empty type context.)

Eventually, we can define out of the type context g the model of the cell and
header types (using the notation for the constructor Ctyp.mk introduced just above):
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Definition cell ∶= g.-typ: styp cell_tg.
Definition header ∶= g.-typ: styp header_tg.

We will pursue this example in Section 3.2 by providing sizeof calculations.

3. ALIGNMENT AND SIZE OF C TYPES

In hardware, a memory access is faster when the address is a multiple of the align-
ment of the data. This fact has triggered particular attention for aligned memory
footprints for C types in the C standard. As a consequence, in the case of structures,
preserving alignment of the data often requires to add padding bytes between fields.
For our encoding of C to be realistic, we need to compute alignment and correct size
information for all types. For this purpose, we program a generic traversal function
for C types. This function will also later be used as a part of a pretty-printer for
C programs (Section 4.4).

3.1 A Generic Traversal Function for C Types

Our goal is to produce a function typ_traversal that traverses objects of type g.-typ

to compute some result, such as alignment or sizeof. For arithmetic types or point-
ers, this is simple: alignments and sizes are given by definition. But for structures,
one needs to recursively go through all the fields, and since it is not structural
because of the use of a context, termination must be formally established.

Before all, let us parameterize typ_traversal with a record so that it can be later
instantiated to perform different computations:

Variable g : wfctxt.
Record config {Res Accu : Type} ∶= mkConfig {

f_ityp : integral → Res ;
f_ptyp : typ → Res ;
f_styp_iter : Accu → string * g.-typ * Res → Accu ;
f_styp_fin : tag * g.-typ → (Accu → Accu) → Res }.

The functions f_ityp and f_ptyp treat the cases of the integral types and of the
pointer types. For structures, we will perform a (left-)fold over the fields with
f_styp_iter as the iterator function and f_styp_fin as a “finalizer function” whose
first argument is the structure currently treated.

Although Coq natively accepts only structurally-recursive functions, its standard
library provides well-founded recursion from a well-founded ordering by the Fix

construct from the module Coq.Init.Wf.
Hereafter, let us assume that Res is the return type of the traversal function

typ_traversal, that Accu is the auxiliary type used by the fold on structures, and
that c is a computation configuration:

Variables Res Accu : Type.
Variable c : @config Res Accu.

We now produce a function styp_frec0 such that recursive traversal for structures
will be obtained by using Fix.

Record Trace : Type ∶= mkTrace {
trace_size : nat ;
trace :> PathNested.t g trace_size }.
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Definition remains t ∶= size (Γ.dom g) - trace_size t.
Program Definition styp_frec0 (t : Trace)

(f : ∀ t’, remains t’ < remains t → Res) : Res ∶= ...

The function styp_frec0 has its argument packed in a dependent record of type
Trace: the field trace is the path (of size trace_size) representing the previous
nested calls of the function (with the next structure tag to proceed as the last
element of the path). As observed in Section 2.2, such a path is bounded by the size
of the type context. By defining styp_frec0’s argument measure as the difference
between the current path and its bound (definition remains above), we can prove
that any recursive call will terminate. This gives us the recursive function styp_frec

for structure traversal, that we use to define the traversal function typ_traversal

for any typ traversal:

Definition styp_frec ∶=
Fix well_founded_remains (fun _ ⇒ Res) styp_frec0.

Program Definition typ_traversal (ty : g.-typ) : Res ∶=
match Ctyp.ty _ ty with

| ityp i ⇒ c.( f_ityp) i
| ptyp p ⇒ c.( f_ptyp) p
| styp tg ⇒ styp_frec (mkTrace 0 _)

end.

3.2 Standard-compliant Calculations of Alignment and Size for C Types

Here follows the instantiation of typ_traversal to compute alignment:

0 Definition align_ptr ∶= 4.
1 Definition align_integral t ∶=
2 match t with uint ⇒ 4 | sint ⇒ 4 | uchar ⇒ 1 | ulong ⇒ 8 end.
3 Definition align_config g ∶= mkConfig g
4 align_integral
5 (fun _ ⇒ align_ptr)
6 (fun a x ⇒ maxn x.2 a)
7 (fun _ x ⇒ x 1).
8 Definition align {g} ∶= typ_traversal g (align_config g).

This construction respects the C standard. For example, the fact that the “align-
ment requirement for a structure type will be at least as stringent as for the com-
ponent having the most stringent requirements” [IJ02, p. 158] is encoded by taking
the maximal alignment of the structure’s fields types (line 6 above).

To compute the size of a structure, one needs to compute the padding, as the
C standard requires to have all the fields aligned. We therefore need to use the
previous align function together with a padding function:

Definition padd addr ali ∶=
let r ∶= addr % ali in

if r == 0 then 0 else ali - r.

Here follows the instantiation of typ_traversal to compute the size of datatypes:

0 Definition sizeof_ptr : nat ∶= 4.
1 Definition ptr_len ∶= sizeof_ptr * 8.
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2 Definition sizeof_integral t ∶=
3 match t with uint ⇒ 4 | sint ⇒ 4 | uchar ⇒ 1 | ulong ⇒ 8 end.
4 Definition sizeof_config g ∶= mkConfig g
5 sizeof_integral
6 (fun _ ⇒ sizeof_ptr)
7 (fun a x ⇒ a + padd a (align x.1.2) + x.2)
8 (fun ty a ⇒ a 0 + padd (a 0) (align ty.2)).
9 Definition sizeof {g} ∶= typ_traversal g (sizeof_config g).

This rigorously models the C standard. For example, for structures, the “rule is
that the structure will be padded out to the size the type would occupy as an
element of an array of such types” [IJ02, p.158]. This is achieved by the finalizer
function at line 8.

The above definitions let us prove in Coq the expected properties of alignment
and sizeof, for example the fact that the size is never zero or that alignment always
divides the size:

Lemma sizeof_gt0 (t : g.-typ) : 0 < sizeof t.
Lemma align_sizeof (t : g.-typ) : align t ∣ sizeof t.

Lemmas about alignment and size are used in particular to prove the properties
of pointer arithmetic (whose evaluation is defined using sizeof—see Section 4.2.3)
and to reason about access to the fields of structures (field access, as defined in
Section 4.2.1, returns addresses computed using sizeof, see [AMS14] for details).
The formal verification of our case study (Section 7) requires reasoning using such
properties because the target source code features accesses to fields of structures
and to arrays via pointer arithmetic.

Examples of Alignment and Sizeof Calculations. Let us illustrate with the ex-
ample of Section 2.4 the results of sizeof. For example, it will correctly compute
the 3 bytes of padding between the "data" and the "head" fields of cell structures,
whereas header structures have the same size as the pointer they carry:

Goal (sizeof cell = 1 + 3 + 4). by []. Qed.
Goal (sizeof header = 4). by []. Qed.

The efficiency of the computation of the size of datatypes seems reasonable in
the context of interactive formal verification. Above computations (sizeof cell,
sizeof header) take about 0.1 second. In our case study (Section 7), the computa-
tion of the size of the main data structure (13 fields including two nested structure
with 5 fields each—see Section 7.1) takes 2 seconds.

4. A DEPENDENTLY-TYPED ENCODING OF THE CORE SUBSET C

The salient feature of our encoding of the core subset of C is the use of a dependently-
typed syntax to ensure that only well-typed C programs can be modeled. This is
made possible by the encoding of C types that we introduced in Sections 2 and 3.
This encoding strategy comes in contrast to the standard approach of developing
Separation logics for typed programming languages (e.g., [AB07]) in which values
usually are a tagged union of integers, pointers, etc. In our setting, values are lists
of bytes whose size corresponds to the sizeof of some C type (Section 4.1) and
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expressions are dependently-typed with C types (Section 4.2). This dependently-
typed syntax rejects C programs that are ill-typed, and thus expression evaluation
need not fail because of type mismatch. We take advantage of this fact by mod-
eling expression evaluation as a total function, without resorting to option types
that usually model typing errors (see Section 4.2.3). This dependently-typed en-
coding of expressions naturally extends to C commands. We demonstrate this in
Section 4.3 by extending previous work on formal verification of an assembly lan-
guage [ANY12]. Last, we equip our formalization with pretty-printing functions
developed in Coq so that verified programs can be compiled with a standard C
compiler (Section 4.4).

4.1 The Physical View of C Values

The semantics of C exposes details at the byte-level. A value for C is therefore
essentially a list of bytes, whose size ought to correspond to some type. We therefore
define physical values as any list of bytes (machine integers of size 8 bits, type int 8)
whose size corresponds to a valid C type, as defined by the following dependent
record:

Record phy {g} (t : g.-typ) : Type ∶= mkPhy {
phy2seq :> seq (int 8) ;
Hphy : size phy2seq = sizeof t }.

We note t.-phy the Coq type of physical values of C type t.
It is nevertheless necessary to switch between physical values and list of bytes

(e.g., to perform memory updates, see Section 4.3) or machine integers (to perform
arithmetic operations, casts, etc.). For that purpose, we provide functions for
conversions between lists of bytes and machine integers (e.g., ptr◃ i8 turns a list
of bytes to a machine integer of pointer size, i32◃ i8 turns a list of bytes to a
machine integer of size 32, etc.) as well as functions for conversions between machine
integers and mathematical integers (Z◃u interprets a machine integer as an unsigned
(positive) integer, Z◃s interprets a machine integer as a signed integer, N◃u converts
a machine integer to a natural number, etc.).

The following notations allow for switching directly between physical values and
machine integers. We denote by [ i ]p the physical value corresponding to a ma-
chine integer i that represents an integral type (C type automatically inferred by
Coq). For pointers, phy◂ptr i is the physical value corresponding to a machine
integer i of pointer size (int ptr_len) and ptr◂phy converts a physical value back
to a pointer.

We will use physical values in particular to define the evaluation of C expressions
and the execution of C commands (Sections 4.2.3 and 4.3).

4.2 Dependently-typed C Expressions

Our encoding of C expressions is an inductive type exp indexed by a C type that
varies in the result types of the different constructors. This makes it possible to
build the typing rules into the definition of the syntax, so that terms are well-typed
by construction.

Before giving the complete formal definition of C expressions, let us explain
the idea of this “intrinsic” encoding [BHKM12] using an example. In our formal
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development, the constant 1 seen as a signed integer (the default type in C) is an
expression of type exp (ityp: sint). Let us assume that we are given a variable
buf, noted %"buf" when considered as an expression, of type exp (:∗(ityp: uchar)).
First, we define addition, multiplication, etc. for arithmetic types using the following
constructor:

| bop_n : ∀ t, binop_ne (* numerical operators *) →
exp (ityp: t) → exp (ityp: t) → exp (ityp: t)

For example, the addition is “bop_n add_e” (noted + ), the multiplication “bop_n mul_e”
(noted ∗), etc. Then, we define pointer arithmetic using the following constructor:

| add_p : ∀ t, exp (:∗ t) → exp (ityp: sint) → exp (:∗ t)

(The notation + is overloaded to represent both addition of integral types and
pointer arithmetic, see below.)

Then, %"buf"∗ [ 1 ]sc is forbidden by typing, but %"buf" + [ 1 ]sc is allowed, and
moreover deemed to have type exp (:∗(ityp: uchar)), as desired.

Here follows a more exhaustive definition of C arithmetic and pointer expressions
(to be completed in Sections 4.2.1 and 4.2.2 with structure field access and casts3)
(g is a type context and σ is an environment that associates variables to types):

Variables (g : wfctxt) (σ : g.-env).
Inductive exp : g.-typ → Type ∶=
| var_e : ∀ str t, env_get str σ = ⌊ t ⌋ → exp t
| cst_e : ∀ t, t.-phy → exp t
| bop_n : ∀ t, binop_ne (* numerical operators *) →

exp (ityp: t) → exp (ityp: t) → exp (ityp: t)
| bop_r : ∀ t, binop_re (* relational operators *) →

exp (ityp: t) → exp (ityp: t) → exp (g.-ityp: uint)
| add_p : ∀ t, exp (:∗ t) → exp (ityp: sint) → exp (:∗ t)
| eq_p : ∀ t, exp (:∗ t) → exp (:∗ t) → exp (g.-ityp: uint)
| ifte_e : ∀ t, exp (ityp: uint) → exp t → exp t → exp t.
...

The constructor var_e is the injection from strings to expressions for variables; the
type of variables is fixed by the environment σ; we note %str for a variable with
string identifier str. cst_e is for constants. We note [ pv ]c for the constant built
from the physical value pv. We can build constants directly from a mathematical
integer z (type Z in Coq): [ z ]sc for a signed integer (in two’s complement nota-
tion), [ z ]uc for an unsigned character, [ z ]8sc for a signed character, etc. (the
bit-level representation of z is silently truncated if z is out of bounds). bop_n is for
numerical operations over integral types: addition (noted + ), subtraction (−), mul-
tiplication (∗), bitwise-and (&), bitwise-or ( ∣), left-shift (≪). bop_r is for relational
operators for arithmetic types: testing for equality (noted =), inequality (≠), less-
than (<), less-than-equal (≤), greater-than (>), greater-than-equal (≥), logical or ( ∣∣ ),
logical and (&&). Relational operators return an (unsigned) integer (0 or 1). add_p

is for pointer arithmetic (also noted + using overloading, see below). eq_p is for

3We do not model pointer subtraction and floating-point arithmetic, essentially because it is not
needed by our case study (Section 7).
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testing pointer equality (also noted = using overloading). ifte_e is for conditional
expressions (notation: e ? f : g).

Overloading of Notations using Canonical Structures. The C language overloads
several notations: + is used to add integral types but also to increment pointers,
== is used to compare integral types but also pointers, etc. This overloading can
be disambiguated by looking at the type of operands. Since our Coq model of
C expressions is typed, we can also provide overloading: this helps limiting the
number of Coq notations we introduce for the various syntactic constructs of C we
model.

We illustrate overloading of notations using the example of addition. To represent
both arithmetic and pointer addition as a single construct, we use Coq’s canonical
structures. We first provide a dependent record with a projection that is suitable to
represent the several additions one wants to overload. The notation + is actually
a shortcut for this projection.

Structure Cadd g (σ : g.-env) ∶=
{ Cadd_t1 : g.-typ ;

Cadd_t2 : g.-typ ;
Cadd_add : exp σ Cadd_t1 → exp σ Cadd_t2 → exp σ Cadd_t1 }.

Definition Cadd_add_nosimpl g σ ∶= nosimpl (Cadd_add g σ).
Notation "a ’ + ’ b" ∶= (Cadd_add_nosimpl _ _ _ a b).

For the Coq type inference to be able to decide between the several instantiations
of the above parametric addition, we declare one canonical instance for arithmetic
addition, and another for pointer addition:

Canonical Structure Cadd_i g σ t ∶=
Build_Cadd g σ (ityp: t) (ityp: t) (bop_n σ t add_e).

Canonical Structure Cadd_p g σ t ∶=
Build_Cadd g σ (:∗ t) (ityp: sint) (add_p σ t).

This way, Coq can find out, when typing, which of the canonical structures actually
fits the notation + . The same idea can be applied to other syntactic constructs
such as equality.

We now complete the presentation of the syntax of C expressions of Section 4.2
with structure field access and type conversions.

4.2.1 Structure Field Access. The constructor fldp of exp is for field access:

0 | fldp : ∀ f tg (t : g.-typ) (e : exp (:∗ t)) (H : styp tg = t) t’,
1 assoc_get f (get_fields g tg) = ⌊ t’ ⌋ →
2 exp (:∗ t’)

We use the type of the dereferenced pointer (structure of type t, with tag tg) to
check whether the field f is indeed valid: at line 1, get_fields g tg returns the list
of fields of the C structure tagged tg so that one can check whether the accessed
field f has the right type t’. This equality can in fact be automatically checked by
Coq when involved expressions are ground. Checking such equalities is the purpose
of the erefl proofs hidden in the notation for field access:

Notation "e ’&→’ f" ∶= (@fldp _ _ f _ _ e erefl _ erefl).
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Note that a field access returns a pointer to the field instead of the field itself; this
is because we do not support read side-effects from the heap in expressions. This
is a customary simplification in mechanizations of Separation logic [Jen13, §3.4.4].

4.2.2 Type Conversions. In C, type conversions between arithmetic types may
occur implicitly when necessary for execution. For example, when adding a char-
acter to an integer, the character is promoted to an integer beforehand. These
conversions can lead to data loss and misinterpretations. For example, when signed
integers are used in place of unsigned integers, a type conversion silently occurs
that is in general unsafe when the signed integer is strictly negative.

Our encoding of C expressions supports (safe and potentially unsafe) type con-
versions. We provide three boolean tests to decide safety. UnConv.safe t t’ holds
when conversion from t to t’ is safe (for example, when a small unsigned integer
is converted to a larger unsigned integer). Safe type conversions are modeled by
the constructor safe_cast below. The constructor unsafe_cast is for casts that may
result in data loss or misinterpretation. The boolean test UnConv.data_loss t t’

checks whether data can be lost when converting from t to t’ (for example, when
a large unsigned integer is converted to a smaller integer). UnConv.misinterpret

checks whether data can be misinterpreted as a result of conversion (for example,
when unsigned integers are converted to the corresponding signed integers—the
higher-order bit becomes the sign bit):

| safe_cast : ∀ t t’, exp (ityp: t) →
UnConv.safe t t’ → exp (ityp: t’)

| unsafe_cast : ∀ t t’, exp (ityp: t) →
UnConv.data_loss t t’ || UnConv.misinterpret t t’ →
exp (ityp: t’)

See the Coq formalization [AMS14] or standard literature (e.g., [Sea06, p. 162–163])
for the precise definitions of safe and unsafe casts.

We have chosen to make visible implicit type conversions. We write casts using
notations that hide the boolean tests, the latter being automatically checked by
Coq since they are part of our model of the C syntax (similarly to what we do
for field accesses—see Section 4.2.1). We write unsafe casts with uppercases, e.g.,
“(UINT) e”. In particular, “(int) e” is for safe casts to (signed) integers. To illus-
trate, the addition of a character and an integer is written (int) ([ 5 ]8sc) + [ 5 ]sc.

4.2.3 Evaluation of Expressions. Since expressions are well-typed by construc-
tion, their evaluation need not fail because of type mismatch. We take this opportu-
nity to model evaluation as a total function, thus avoiding option types and proofs
that expressions are well-typed that might clutter formal proofs. Evaluation of an
expression of type t always succeeds by returning a physical value of type t.-phy.
Regarding undefined evaluation results, we rely on the underlying formalization
of machine integers. Concretely, well-typed arithmetic expressions are evaluated
according to the semantics of the type int of machine integers. Operations with
this type are formalized as a module interface with a closed implementation that
does not reveal the meaning of offending operations. For example, the interface
reveals the overflow result of unsigned addition but not the one of signed addition,
which is undefined according to the C standard. As a consequence, nothing can

Journal of Formalized Reasoning Vol. 7, No. 1, 2014.



76 ⋅ R. Affeldt and K. Sakaguchi

be formally proved about the evaluation of well-typed arithmetic expressions that
ought to result in an undefined behavior.

Evaluation of an expression is performed w.r.t. a store, which in essence extends
the type environment by adding to each variable a physical value compatible with
its type. We note [ e ]_s the evaluation of e w.r.t. store s. The complete definition
is a bit long, so for the sake of clarity we just content ourselves with the example
of pointer arithmetic (the complete definition can be found online [AMS14]). Sup-
pose that e 1 + e 2 is of type “pointer to t”. Dependent types impose that e 1 is
also a pointer to t and that e 2 is an integer; in other words, e 1 + e 2 is actually
add_p t e 1 e 2. First, we evaluate e 1 and convert the result to a machine integer of
pointer size (conversion ptr◃i8). Second, we evaluate e 2 and convert the result to a
machine integer of 32 bits (conversion i32◃i8). The latter is further interpreted as
a signed integer (conversion Z◃s). Finally, the pointer is added the product of the
size of the type t and k and converted back to a physical value (conversion phy◂ptr):

Fixpoint eval {g σ t} (s : store σ) (e : exp σ t) : t.-phy ∶=
match e with ...

| add_p t e 1 e 2 ⇒
match [ e 1 ]_s, [ e 2 ]_s with

| mkPhy l 1 H 1, mkPhy l 2 H 2 ⇒
let p ∶= ptr◃i8 l 1 H 1 in
let k ∶= i32◃i8 l 2 H 2 in
phy◂ptr t (add_prod p (sizeof t) (Z◃s k))

end ...

4.2.4 Boolean Expressions. Boolean expressions are formalized using arithmetic
expressions by the following inductive type:

Inductive bexp {g} (σ : g.-env) ∶=
| exp2bexp of exp σ (g.-ityp: uint)
| bneg of bexp σ.

The intent is that an arithmetic expression is interpreted as “true” when its eval-
uation is not 0. exp2bexp e (notation: \b e) injects an arithmetic expression into
boolean expressions and bneg b (notation: ¬ b) is the logical negation of b.

4.3 Syntax and Semantics of The Core Subset of C

The core subset of C that we formalize is a while-language (the control-flow is
expressed using sequences, while-loops, and structured branching) with assignment,
lookup (memory dereference), and mutation (destructive update). It is defined in
such a way that accesses to uninitialized memory are treated as failures. This is
important for our case study (Section 7) because such dangerous memory accesses
are the main source of bugs one can expect from a C implementation of network
packet parsing (see Section 7.5 for concrete examples). We do not provide a malloc
command because it was not required by our case study. Yet, we see no reason
why its addition to our intrinsic encoding could cause any problem (except the
anticipated technicalities of the related Separation logic rules). Also, we do not
provide goto commands and function calls because it is reasonable to encode them
in our case study: there is only one goto command that can be encoded using
an additional local variable and structured control-flow, and function calls can be
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Inductive exec_ cmd0 : option state → cmd0 → option state → Prop ∶=
| exec_skip : ∀ s, ⌊ s ⌋ � skip ; ⌊ s ⌋
| exec_assign : ∀ s h t str Hstr e,

⌊ s, h ⌋ � @assign t str Hstr e ; ⌊ store_upd Hstr [ e ]_s s, h ⌋
| exec_lookup : ∀ s h t str Hstr e v,

let a ∶= N◃u (ptr◂phy [ e ]_s) in
heap_get t a h = ⌊ v ⌋ →
⌊ s, h ⌋ � @lookup _ str Hstr e ; ⌊ store_upd Hstr v s, h ⌋

| exec_lookup_err : ∀ s h t str Hstr e,
let a ∶= N◃u (ptr◂phy [ e ]_s) in
heap_get t a h = ⊥ →
⌊ s, h ⌋ � @lookup t str Hstr e ; ⊥

| exec_mutation : ∀ s h t e 1 e 2 v,
let a ∶= N◃u (ptr◂phy [ e 1 ]_s) in
heap_get t a h = ⌊ v ⌋ →
⌊ s, h ⌋ � @mutation t e 1 e 2 ; ⌊ s, heap_upd t a [ e 2 ]_s h ⌋

| exec_mutation_err : ∀ s h t e 1 e 2,
let a ∶= N◃u (ptr◂phy [ e 1 ]_s) in
heap_get t a h = ⊥ →
⌊ s, h ⌋ � @mutation t e 1 e 2 ; ⊥

where "s � c ; t" ∶= (exec_ cmd0 s c t).

Fig. 1. Big-step operational semantics of basic commands of the core subset of C

inlined (provided some care about scoping rules) since they are not recursive. We
nevertheless plan to address as future work the addition of function calls to our
intrinsic encoding.

We derive the syntax and the semantics (as well as various lemmas) of the
core subset of C by instantiating a parameterized module adapted from previous
work [ANY12]. We only need to provide the syntax and semantics for the basic
commands: assignment, lookup, and mutation.

Like for expressions, the encoding of commands exploits dependent types to en-
force well-typed programs by construction. For example, the lookup constructor
defined below at line 3 requires that the expression to be dereferenced is of pointer
type :∗t and that the destination variable is of the type t:

0 Inductive cmd0 : Type ∶=
1 | skip : cmd0

2 | assign : ∀ t str , env_get str σ = ⌊ t ⌋ → exp σ t → cmd0

3 | lookup : ∀ t str , env_get str σ = ⌊ t ⌋ → exp σ (:∗ t) → cmd0

4 | mutation : ∀ t, exp σ (:∗ t) → exp σ t → cmd0 .

We refer to the complete language (with control-flow) as the type cmd. The type
constraints can be automatically checked when we write down concrete programs,
so that we can hide them in user-friendly notations:

Notation "x ’∶=’ e" ∶= (@assign _ x erefl e).
Notation "x ’ ∶=∗ ’ e" ∶= (@lookup _ x erefl e).
Notation "e 1 ’ ∗∶= ’ e 2" ∶= (@mutation _ e 1 e 2).

Journal of Formalized Reasoning Vol. 7, No. 1, 2014.



78 ⋅ R. Affeldt and K. Sakaguchi

The operational semantics for the basic commands is given in Figure 1. It is a
relation between an optional state (a pair of a store s and a heap h) (⊥ represents an
execution error). The effect of an assignment (constructor exec_assign) is to update
the store. It never fails. In particular, it cannot fail as a result of a type mismatch
because the constructor assign has been defined so that the types of the assigned
variable and of the expression agree. Also, assignment cannot fail as a result of
a memory access since expressions have no side-effect. A lookup (exec_lookup)
evaluates the expression to be dereferenced, turns the resulting physical value into
an address, then uses this address to get a chunk of memory of the appropriate
size from the heap (function heap_get); eventually, the value obtained is saved in
the store (function store_upd). Since lookup accesses the memory, it fails when the
accessed address is not initialized (constructor exec_lookup_err). The constructors
for mutation should now be self-explanatory.

4.4 Example of Formalization of a C Program: In-place Reverse-list

In this section, we model the mandatory example of Separation logic: in-place
reverse-list. We also take this opportunity to introduce pretty-printing functions
to display Coq models of C programs in their usual concrete syntax.

First, we model the following C type of singly-linked lists:

struct Clst {
unsigned int data;
struct Clst (*next); };

This is achieved in the same way as we modeled the self-referential C structures in
Section 2.4. We define a structure tag, then the list of typed fields, that we wrap
up in a context, to be used as the parameter of models of C types:

Definition Clst_tg ∶= mkTag "Clst".
Definition Clst_flds ∶=

("data", ityp uint) :: ("next", ptyp (styp Clst_tg )) :: nil.
Definition g ∶= \wfctxt{ "Clst" ▹ Clst_flds , ∅ }.
Definition Clst ∶= g.-typ: (styp Clst_tg ).

One can check that Clst indeed models the intended type declaration by pretty-
printing:

Eval compute in (typ_to_string_rec g Clst "" "")% string.
= "struct Clst { unsigned int data; struct Clst (*next); } "
: string

Now that the type of singly-linked lists is modeled, we set up an environment
of typed variables for the in-place reverse-list program. More precisely, we declare
three variables "i", "ret", and "rem" that are pointers to singly-linked lists:

Definition σ : g.-env ∶=
("i", :∗ Clst) :: ("ret", :∗ Clst) :: ("rem", :∗ Clst) :: nil.

One can again check by pretty-printing that the modeled environment is the right
one:

Eval compute in (foldl (fun s p ⇒ s ++ typ_to_string
(C_types.Ctyp.ty _ (snd p)) (fst p) (line ";")) "" σ).
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= "struct Clst (*i);
struct Clst (*ret);
struct Clst (*rem);" : string

Given this environment σ, we instantiate a parameterized module that provides
us with a syntax and a semantics (and also a Separation logic, see Section 5) to write
programs using this environment. Eventually, we can use the syntax introduced in
the previous sections to write the in-place reverse-list program:

Definition reverse_list ∶=
"ret" ∶= NULL ;
While (¬ (\b %"i" = NULL)) {

"rem" ∶=∗ (%"i" &→ "next") ;
(%"i" &→ "next") ∗∶= %"ret" ;
"ret" ∶= %"i" ;
"i" ∶= %"rem" }.

Coq notations arguably provide us with a convenient syntax. The dependently-
typed encoding does not clutter Coq’s output with uninformative proofs (checking
the validity of field accesses, the fact that the type of variables and the type of
dereferenced/assigned expressions agree) because they are hidden in Coq notations.
As a matter of fact, we have successfully used this syntax to carry out the case study
of Section 7. We can again check the adequacy of the Coq model by pretty-printing
to C’s concrete syntax. The script

Goal PrintAxiom _ (pp_cmd 0 reverse_list "").
compute -[pp_Z append Z.add Z.sub Z.mul].
rewrite !Z2uK //=.

outputs the proof goal

============================
PrintAxiom string "ret = NULL;

while (!(((i) == (NULL )))) {
rem = *(i)→next;
*(i)→next = ret;
ret = i;
i = rem; }"

from which the C program can be for example copy-pasted for compilation.
We pursue the in-place reverse-list example in Section 5.3.2 by providing the

specification of singly-linked lists in Separation logic.

5. SEPARATION LOGIC FOR THE CORE SUBSET OF C

In this section, we introduce a Separation logic for the core subset of C that we
formalized in the previous section. We start by providing a Hoare logic (Section 5.1).
Then, we propose a formalization of the mapsto connective of Separation logic and
illustrate how we formalize the accompanying Separation logic rules (Section 5.2).
This mapsto connective uses physical values and, therefore, when it deals with
structures, it exposes their padding. To hide padding, we introduce a notion of
“logical view” of C values (duly illustrated with the example of singly-linked lists)
for which we also provide Separation logic rules connecting with the physical values
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(Section 5.3). We conclude this section with an overview of the formalization of
the core subset of C (Section 5.4).

5.1 Hoare Logic for the Core Subset of C

Like for the syntax and the semantics of the core subset of C, the Hoare logic and its
properties are obtained using parameterized modules from previous work [ANY12].
To instantiate these modules, we essentially need to provide the Hoare triples for
the basic commands (assign, lookup, mutation), a proof that they are sound w.r.t.
the operational semantics given in Section 4.3 (so that the module can provide a
soundness proof for the whole Hoare logic with structured control-flow), and a proof
that the weakest liberal precondition is a valid precondition for basic commands (so
that the module can provide a (relative) completeness proof for the whole Hoare
logic). See the Coq formalization [AMS14] for details about soundness and com-
pleteness. Let us briefly comment on the Hoare triples for the basic commands
(inductive relation hoare0, Figure 2). For example, the assignment rule

{P{e/x}}x← e{P}

is encoded by the constructor hoare0_assign. Its precondition is expressed using the
predicate transformer wp_assign. Assertions are shallow-encoded: they have type
assert defined as store → heap → Prop. Because of the shallow encoding, substitu-
tion is encoded by updating the store using store_upd. Other Hoare rules should
be self-explanatory since they follow the operational semantics explained in Sec-
tion 4.3.

5.2 The Mapsto Connective and Separation-logic Triples

5.2.1 The Mapsto Connective of Separation Logic for C. Regarding the encod-
ing of Separation logic, what is new is not the separating conjunction ⋆ or the sep-
arating implication −⋆ (their encoding is as usual, see for example [ANY12]), but
rather the primitive mapsto connective. The mapsto connective is usually noted
e↦ e′ and holds for a heap containing one cell with contents e′ at address e. For the
archetypal language of textbook Separation logic, a cell consists of an (arbitrary-
precision) integer. For C, it would not be practical to make every memory byte a
cell. A cell ought rather be a C (physical) value and the address on the left-hand
side of the mapsto be the starting address of this physical value. This amounts to
provide a version of mapsto parameterized with the accessed type (like the “chunks”
in Appel and Blazy’s Separation logic [AB07]).

The physical values of Section 4.1 bear no relation with the memory of the com-
puter, but C has strict requirements regarding storage. In order to define a meaning-
ful mapsto connective for C, one needs for example to abide by alignment rules and
to guarantee the absence of the null pointer in allocated areas. Before defining the
mapsto connective for C, we first provide a relation phy_mapsto (between a physical
value v, an address a, and a heap h) that specifies what it means for a physical value
to be correctly stored in memory. The following inductive predicate specifies that
the heap h contains exactly the bytes of the physical value v (line 3), that it maps
the sequence of addresses a, a + 1, . . . , a + sizeof t - 1 (written iota a (sizeof t)

in SSReflect) where t is the type of the physical value v (line 4), that this area
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Inductive wp_assign {str t} Hstr e P : assert ∶=
| wp_assign_c : ∀ s h, P (@store_upd _ _ str t Hstr [ e ]_s s) h →

wp_assign Hstr e P s h.

Inductive wp_lookup {str t} Hstr (e : exp σ (:∗ t)) P : assert ∶=
| wp_lookup_c : ∀ s h pv,

heap_get t (N◃u (ptr◂phy [ e ]_ s)) h = ⌊ pv ⌋ →
P (@store_upd _ _ str t Hstr pv s) h →
wp_lookup Hstr e P s h.

Inductive wp_mutation {t} (e 1 : exp σ (:∗ t)) e 2 P : assert ∶=
| wp_mutation_c : ∀ s h v, let a ∶= N◃u (ptr◂phy [ e 1 ]_s) in

heap_get t a h = ⌊ v ⌋ →
P s (heap_upd t a [ e 2 ]_s h) →
wp_mutation e 1 e 2 P s h.

Inductive hoare0 : assert → cmd0 → assert → Prop ∶=
| hoare0_skip : ∀ P, hoare0 P skip P
| hoare0_assign : ∀ P t str Hstr e,

hoare0 (wp_assign Hstr e P) (@assign t str Hstr e) P
| hoare0_lookup : ∀ P t str Hstr e,

hoare0 (wp_lookup Hstr e P) (@lookup t str Hstr e) P
| hoare0_mutation : ∀ P t e 1 e 2,

hoare0 (wp_mutation e 1 e 2 P) (@mutation t e 1 e 2) P.

Fig. 2. Hoare logic for basic commands of the core subset of C

does not overrun the memory (as guaranteed by C’s malloc) (line 5), and that the
physical value v is aligned at the address a (line 6):

0 Inductive phy_mapsto {g} {t : g.-typ} :
1 t.-phy → nat → hp.t → Prop ∶=
2 | mkPhy_mapsto : ∀ a (v : t.-phy) h,
3 hp.cdom h = v →
4 hp.dom h = iota a (sizeof t) →
5 Z◃N a + Z◃N (sizeof t) < 2ˆptr_len →
6 align t ∣ a →
7 phy_mapsto v a h.

(Z◃N injects a natural number into relative integers.) phy_mapsto gives us the
basis to define (a raw form of) the mapsto connective of Separation logic, a ↦p v

(subscript “p” for “physical”) that associates an address a to a (typed) physical
value v:

Notation "a ’↦ p ’ v" ∶= (fun _ ⇒ phy_mapsto v (N◃u (ptr◂phy a))).

5.2.2 Example of Derived Separation-logic Triple. As an example of reason-
ing involving the physical mapsto connective, let us consider the first backward-
reasoning form for lookup [Rey08, p.88]:

{∃v.(e↦ v) ⋆ (e↦ v −⋆ P{v/x})}x←∗e{P}
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Recall that P −⋆Q holds when the heap can be extended with a disjoint part for
which P holds so that Q holds for the extended heap.

First, we provide a definition for the precondition (wp_assign has been explained
in Section 5.1):

Inductive wp_lookup_back {t} x H (e : exp σ (:∗ t)) P : assert ∶=
| wp_lkbr1 : ∀ s h (v : t.-phy),

([ e ]_s ↦ p v ⋆
([ e ]_ s ↦ p v −⋆ wp_assign x H [ v ]c P)) s h →

wp_lookup_back x H e P s h.

Then, the above rule becomes provable using the Hoare triples seen in Section 5.1:

Lemma hoare_lookup_back {t} x H (e : exp σ (:∗ t)) P :
{ wp_lookup_back x H e P } lookup x e H { P }.

5.3 Separation Logic with Logical C Values

5.3.1 The Logical View of C Values. In the previous section, we explained how
to formalize Separation logic using a physical view of C values that exposes byte-
level details such as padding. The advantage of this approach is that it makes for
a simple and convincing semantics. Yet, when it comes to formal verification of
portable C programs, the contents of padding are often irrelevant and it would be
an inconvenience to have to deal with it in the specification or during the formal
proof. To overcome this issue, we provide a “logical view” of C values. In this view,
C structures are decomposed into the list of their fields, all the way down to basic
datatypes. The logical view comes as an add-on to our Separation logic; it provides
an alternate way to specify data structures and Separation logic reasoning rules,
and its cost is just a side-condition (the correspondence between the physical and
the logical value) that trivially holds for data structures with no padding.

Logical values are defined by the (mutually) inductive type log, indexed by a
C type g.-typ (Figure 3). According to this definition, a logical value of an in-
tegral type is a machine integer of the appropriate size (constructors log_of_uint,
log_of_sint, log_of_uchar, log_of_ulong). For any pointer type, it is a machine in-
teger of size ptr_len (constructor log_of_ptr). For a structure, it is an association
list of strings (for the fields’ names) and logical values (of type g.-env). Hereafter,
we note t.-log for the type of logical values of type t.

We write pv© lv when the physical value pv and the logical value lv correspond to
the same list of bytes. In particular, pv© lv holds when pv and lv are respectively a
physical and a logical value of integral types or pointers with the same underlying
byte string, but, with its current definition, it may not be decidable when both
values refer to structures.

Like for physical values, we define a relation between a logical value, an address,
and a heap, stating that the heap contains an encoding of the logical value and
that this encoding is correctly stored. This relation is defined by the (mutually)
inductive predicate log_mapsto (Figure 4). Logical and physical values for integral
types and pointers are the same (phy_of_log just performed a type cast). The dif-
ference between logical and physical values is that logical values leave undefined
the contents of the interleaving padding, if any. This can be observed in the con-
structors for structure types (log_of_styp_mapsto and cons_logs_mapsto) where that
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Inductive log : g.-typ → Type ∶=
| log_of_uint : int 32 → log (ityp: uint)
| log_of_sint : int 32 → log (ityp: sint)
| log_of_uchar : int 8 → log (ityp: uchar)
| log_of_ulong : int 64 → log (ityp: ulong)
| log_of_ptr : ∀ t’, int ptr_len → log (:∗ t’)
| log_of_styp : ∀ tg, logs (get_fields g tg) → log (styp tg)
with logs : g.-env → Type ∶=
| nil_logs : logs nil
| cons_logs : ∀ hd tl, log hd.2 → logs tl → logs (hd :: tl).

Fig. 3. Logical view of C values

part of the heap that corresponds to padding (pad) is universally quantified and
only constrained by its size (pad_sz) (the notation ⊎ is for concatenation of disjoint
heaps).

Like its physical counterpart phy_mapsto, the predicate log_mapsto gives rise to a
“logical mapsto” connective for Separation logic:

Notation "a ’ ↦ l ’ v" ∶= (fun _ ⇒ log_mapsto v (N◃u (ptr◂phy a))).

5.3.2 Example: Singly-linked Lists. We saw in Section 4.4 the formal model
Clst of singly-linked lists, a data structure containing two fields: "data" of type
uint and "next" of type “pointer to a Clst structure”. Using this type, we now
define a Separation-logic assertion that relates a Coq list of int 32 (for the contents
of the "data" fields) with a pointer of type :∗Clst (that points to a singly-linked
list):

0 Inductive sepClst : seq (int 32) → (:∗ Clst).-phy → assert ∶=
1 | lnil : ∀ s, sepClst nil pv0 s hp.emp
2 | lcons : ∀ hd tl a p, a ≠ pv0 →
3 ((a ↦ l mk_cell hd (ptr◂phy p)) ⋆ sepClst tl p) Ô⇒
4 sepClst (hd :: tl) a.

The constructor lnil relates an empty list nil with the NULL pointer pv0. The
constructor lcons relates the list hd::tl with the pointer a (which is non-NULL, as
specified at line 2), provided the latter points to a Clst containing hd as "data" and
whose "next" pointer is related to tl (line 3). Above, mk_cell constructs a logical
value of type log Clst, and Ô⇒ is notation for the entailment relation between
asserts, defined as follows:

Definition entails (P Q : assert) : Prop ∶= ∀ s h, P s h → Q s h.

The complete example of in-place reverse-list example can be found online [AMS14].

5.3.3 Example of Derived Hoare Triple using Logical Values. We formalize a
variant of the first backward-reasoning form for lookup that uses a logical value
lv in the mapsto formula and a convertible physical value pv (i.e., pv© lv) for the
substitution:

pv© lv

{∃lv pv .(e↦ lv) ⋆ ((e↦ lv) −⋆ P{pv/x})}x←∗e{P}
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Inductive log_mapsto {g} : ∀ {t : g.-typ},
t.-log → nat → hp.t → Prop ∶=

| log_of_uint_mapsto : ∀ (v : (g.-ityp: uint).-log) a h,
phy_mapsto (phy◃log v) a h → log_mapsto v a h

| log_of_sint_mapsto : ∀ (v : (g.-ityp: sint).-log) a h,
phy_mapsto (phy◃log v) a h → log_mapsto v a h

| log_of_uchar_mapsto : ∀ (v : (g.-ityp: uchar).-log) a h,
phy_mapsto (phy◃log v) a h → log_mapsto v a h

| log_of_ulong_mapsto : ∀ (v : (g.-ityp: ulong).-log) a h,
phy_mapsto (phy◃log v) a h → log_mapsto v a h

| log_of_ptr_mapsto : ∀ t (v : (:∗ t).-log) a h,
phy_mapsto (phy◃log v) a h → log_mapsto v a h

| log_of_styp_mapsto : ∀ t tg H vs a h pad pad_sz ,
align t ∣ a →
Z◃N (a + size (hp.dom h)) + Z◃N pad_sz < 2 ˆ ptr_len →
logs_mapsto (get_fields g tg) vs a h →
pad_sz = padd (a + size (hp.dom h)) (align t) →
hp.dom pad = iota (a + size (hp.dom h)) pad_sz →
log_mapsto (log_of_styp t tg H vs) a (h ⊎ pad)

with logs_mapsto {g} :
∀ (l : g.-env), logs l → nat → hp.t → Prop ∶=

| nil_logs_mapsto : ∀ a, logs_mapsto nil nil_logs a hp.emp
| cons_logs_mapsto : ∀ hd tl v vs a pad pad_sz h 1 h 2,

pad_sz = padd a (align hd.2) →
hp.dom pad = iota a pad_sz →
log_mapsto v (a + pad_sz) h 1 →
logs_mapsto tl vs (a + pad_sz + sizeof hd.2) h 2 →
logs_mapsto (hd :: tl) (cons_logs hd tl v vs) a (pad ⊎ h 1 ⊎ h 2).

Fig. 4. Logical mapsto connective

The definition of the relation © is currently such that the above rule does not
make it possible to read/write complete padded structures. C programs that ma-
nipulate structures as first-class objects would require us to extend the definition of
convertibility. Fortunately, the current definition is sufficient to already treat many
programs, such as the non-trivial case study we present in Section 7.

Here follows the formalization of the Separation logic rule above:

Inductive wp_lookup_back_conv {t} x H (e : exp σ (:∗t)) P : assert ∶=
| wp_lkbr1_conv : ∀ s h (pv : t.-phy) (lv : t.-log), pv © lv →

([ e ]_ s ↦ l lv ⋆
([ e ]_ s ↦ l lv −⋆ wp_assign x H [ pv ]c P)) s h →

wp_lookup_back_conv x H e P s h.

Lemma hoare_lookup_back_conv {t} x H (e : exp σ (:∗ t)) P :
{ wp_lookup_back_conv x H e P } lookup x e H { P }.

5.4 Overview of Our Separation Logic for the Core Subset of C

For reference and also to help navigation in the Coq scripts, Table I summarizes
in terms of files and lines of code (as given by the standard coqwc command) our
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file contents spec proof

C_types.v Sect. 2 284 821
C_types_fp.v Sect. 3 352 743

C_value.v Sect. 4.1, 5.3.1 671 1287

C_expr.v Sect. 4.2 594 770
C_expr_equiv.v Lemmas about expression rewriting 142 434

C_expr_ground.v Lemmas about ground expressions 125 306

C_seplog.v Sect. 4.3, 5 (except 5.3.1, 5.3.2) 558 1102
C_contrib.v Lemmas about Separation logic [Aff14] 583 866

C_tactics.v Ltac-based automation [Aff14] 1569 458

C_pp.v Sect. 4.4 244 21

C_examples.v Sect. 2.4, 3.2 57 2
C_swap.v Swap of two memory cells 35 56

C_reverse_list_header.v Sect. 4.4, 5.3.2 95 51

C_reverse_list_triple.v Verification with lemmas only 13 152
C_reverse_list_tactics.v Verification with Ltac tactics 30 200

Total 5352 7269

Table I. Overview of the formalization of Separation logic for C (in terms of l.o.c.)

formalization of Separation Logic for the core subset of C. The contents of most
files have actually been explained in the previous sections. In addition, we have also
developed about 30 tactics to automate mundane reasoning steps about entailments
between Separation logic formulas and about Hoare triples. We will comment a bit
more about automation in Section 7.4 when reporting on the application of our
Separation logic to the verification of a network packet parsing function (which is
the purpose of Section 7).

6. FORMALIZATION OF THE RFC OF TLS

TLS enhances network applications by providing, on top of TCP, a cryptographic
layer consisting of four protocols: packets from the Record protocol carry packets
from the Handshake, Alert, or Change Cipher Spec protocols. The description of
all these packet formats in the RFC [DR08] is semi-formal: a dedicated syntax (the
presentation language) is introduced, but its use is not entirely consistent and many
conditions remain described in prose. Despite these defects, the RFC is still a useful
document. Our purpose is therefore not to provide a formal alternative to the RFC
for TLS but more modestly to improve it by providing formal definitions that can
be used to verify programs, while still being convincingly mapped to their informal
counterparts (as will be illustrated in Figures 5, 6 and 7). We use this formal RFC
in Section 7.3 to specify a parsing function taken from an existing implementation
of TLS. Since such a specification is mostly about the format of network packets,
we believe that other parsing functions taken from different implementations can
be specified using the same formal RFC.

6.1 Encoding the TLS Presentation Language

The presentation language [DR08, §4] consists of six datatypes:

(1) opaque is the type of bytes.

Journal of Formalized Reasoning Vol. 7, No. 1, 2014.



86 ⋅ R. Affeldt and K. Sakaguchi

(2) T T’[n] defines the type T’ of fixed-size vectors made of n bytes, where n is a
multiple of the size of T. This explicit number of bytes is an original feature of
the presentation language used in the RFC for TLS.

(3) T T’<a..b> defines the type T’ of variable-size vectors. They comprise a payload,
whose size lies between a and b and that encodes data structures of type T, and
a header (the “length field”) that is large enough (but no larger) to encode the
size of the payload. Again, the explicit mention of the number of bytes used
by data structures is peculiar among the various RFCs.

(4) enum { e1(v1), . . . , en(vn) [[, (m)]] } T defines the enumerated type T. The
size of the payload must be sufficient to encode the largest value: one of the
vi’s or m (m is optional, hence the notation [[ . . . ]]). This payload is preceded
by a “length field”, like the variable-size vectors above.

(5) Structure types are defined as being close to C structures but are in fact often
used as dependent records (see below).

(6) Variants extend structures with fields whose type depends “on some knowledge
that is available within the environment” [DR08, §4.6.1]. This “knowledge”
can be the (implicit) environment (e.g., the “length field” of the enclosing
Handshake packet in the case of ClientHello [DR08, §7.4.1.2]) or the value of
an enumerated that can come from preceding fields in the structure (e.g., the
body field of Handshake [DR08, §7.4]) (in which case we are in fact dealing with
a dependent record).

Putting dependent records aside (see Section 6.2), we encode the presentation
language using the tls_typ inductive type below. Since it is important for bound-
checking in parsing functions, we give tls_typ the minimum and maximum size of
the underlying list of bytes as its arity. We use dependent types to automatically
check divisibility constraints on fixed-length vectors (line 3), the “length field”
(variable k below) of variable-size vectors (line 6) and enumerateds (line 9):

0 Inductive tls_typ : Z → Z → Type ∶=
1 | opaque : tls_typ 1 1
2 | arr : ∀ n, tls_typ n n → ∀ m, 0 ≤ m →
3 m mod n == 0 →
4 tls_typ m m
5 | varr : ∀ n m (t : tls_typ n m) (k : nat) a b, a ≤ b →
6 k ≠ O → b < 2ˆ(k * 8) → 2ˆ((k - 1) * 8) ≤ b → m ≤ Z◃N k + b →
7 tls_typ ( Z◃N k + a) ( Z◃N k + b)
8 | enum : ∀ k l n, uniq l →
9 Zmax(l, n) < 2ˆ(k * 8) → 2ˆ((k - 1) * 8) ≤ Zmax(l, n) →

10 tls_typ ( Z◃N k) ( Z◃N k)
11 | pair : ∀ {n 1 m 1 n 2 m 2},
12 string * tls_typ n 1 m 1 → tls_typ n 2 m 2 →
13 tls_typ (n 1 + n 2) (m 1 + m 2)
14 | typ_nil : tls_typ 0 0.

The arithmetic proofs that are necessary to craft a value of type tls_typ can be
automatically inferred by Coq. We can therefore hide them using Coq notations
that mimic those used in the RFC. The only difference between our notations
and those of the RFC is that we make explicit the “length field” of datatypes.
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enum {
signature algorithms (13), (65535)

} ExtensionType;

struct {
ExtensionType extension type ;

opaque extension data<0..2^16−1>;

} Extension;

Definition signature algorithms ∶= 13.

Definition ExtensionType ∶=

enum 2 { [:: signature algorithms ] } 65535.

Definition extension data type ∶=

opaque < 0 .. 2 ^ 16 − 1 > 2.

Definition Extension ∶= struct{
(" extension type ", ExtensionType) ;

(" extension data ", extension data type ) }.

Fig. 5. Formalization of the Extension type (left: TLS RFC; right: Coq formalization)

For example, the second field of the structure type Extension appears as opaque

extension_data<0..2ˆ16-1> in the RFC; the fact that its “length field” is 2 is implicit.
In the Coq formalization, we need to make it explicit, but still its correctness is
ensured by type-checking:

Definition extension_data_type ∶= opaque < 0 .. 2 ˆ 16 - 1 > 2.

See Figures 5 and 6 for examples and the Coq scripts [AMS14] for definitions.

Consistency of Definitions in the RFC. The type tls_typ gives a syntax to for-
malize many of the packet formats, and its use of dependent types led us to spot
inconsistencies in the RFC. Here is a concrete example. Figure 5 shows on the
left the Extension type [DR08, §7.4.1.4]. By definition, a value of type Extension is
represented by at most 2 + 2 + 216 bytes. The right part of Figure 5 displays the
Coq counterpart using tls_typs: the syntactic match is obvious (the main difference
with the informal syntax is that we make the length field of variable-size vectors
and enumerateds explicit, as explained above). The problem with the Extension

type defined as such is that it is used to define the type of the extensions field of
ClientHello packets using the following declaration ([DR08, §7.4.1.2], or line 13 in
Figure 7):

Extension extensions <0..2ˆ16 -1 >;

The field extensions is therefore limited to 2 + 216 bytes, which is not consistent
with the definition of Extension that accepts values 2 bytes larger. tls_typ defini-
tions cannot type because of this inconsistency. A fix is to restrict a bit more the
definition of extension_data_type in Figure 5:

Definition extension_data_type ∶= opaque < 0 .. 2 ˆ 16 - 1 - 2 > 2.

Another example of dubious specification is about the size of variable-size vectors.
According to the RFC, it “must be an even multiple of the length of a single
element” [DR08, §4.3] which is not possible in general when variable-size vectors
are nested such as in extensions.

6.2 Dealing with Dependent Records in the Presentation Language

The type tls_typ does not give a syntax for variants that are in fact dependent
records. When this occurs, we resort to shallow-embedding using Coq dependent
records. For this purpose, first, we introduce a generic function that decodes lists
of bytes corresponding to the types tls_typ.
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struct {
uint8 major; uint8 minor;

} ProtocolVersion;

struct {
uint32 gmt unix time ;

opaque random bytes [28];

} Random;

opaque SessionID<0..32>;

uint8 CipherSuite [2];

enum { null(0), (255) }
CompressionMethod;

Definition ProtocolVersion ∶= struct{
("major", uint8) ; ("minor", uint8) }.

Definition Random ∶= struct{
(" gmt unix time ", uint32) ;

(" random bytes ", opaque [ 28 ]) }.

Definition SessionID ∶= opaque < 0 .. 32 > 1.

Definition CipherSuite ∶= uint8 [ 2 ].

Definition cipher suites type ∶=

CipherSuite < 2 .. (2 ^ 16 − 2) > 2.

Definition CompressionMethod ∶=

enum 1 { [:: null] } 255.

Definition compression methods type ∶=

CompressionMethod < 1 .. (2 ^ 8 − 1) > 1.

Definition extensions type ∶=

Extension < 0 .. (2 ^ 16 − 1) > 2.

Fig. 6. Formal specification for the types of the fields of ClientHello packets (left: TLS RFC;
right: Coq) (see Figure 5 for the type Extension and Figure 7 for the ClientHello packet itself)

Fixpoint decode ’ k {n m} (t : tls_typ n m) (l : seq byte)
: bool * seq byte ∶= ...

Definition decode {n m} (t : tls_typ n m) ∶= decode ’ (depth t) t.
Definition decodep {n m} (t : tls_typ n m) (l : seq byte) ∶=

let (a, l’) ∶= decode t l in a && (size l’ == O).

The function decode’ takes as arguments a tls_typ (parameterized by n and m, the
minimum and maximum size of the list of bytes it represents, see Section 6.1) and
a list of bytes, and returns a boolean indicating whether the first bytes of the list
conform to this tls_typ, together with the rest of the bytes. The parameter k is a
bound for the recursion. The function decode instantiate this bound to the depth of
the tls_typ being matched. Finally, the boolean predicate decodep decides whether
a list of bytes conforms to a tls_typ. Second, we also introduce the type packet p of
lists of bytes that satisfy the predicate p, where p is typically a decoding function:

Record packet (p : seq byte → bool) : Type ∶= {
body :> seq byte ;
decodable : p body }.

As an example of dependent record from TLS, let us consider the specification
of ClientHello packets ([DR08, § 6.2.1], reproduced on the left of Figure 7). First,
observe that the structure ClientHellop_packet is parameterized by m which is a list
of bytes coming from an outer packet4. Each field of ClientHellop_packet is a packet

that conforms to the appropriate tls_typ. For example, the field cipher_suites is for
list of bytes that conforms to cipher_suites_type (defined in Figure 6) according to
the boolean predicate decodep. There is a dependency between the field extensions

4ClientHello packets belong to the Handshake protocol (whose packets are themselves encapsulated

into the Record protocol). This is illustrated by Figure 8.
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0 struct {
1 ProtocolVersion client version ;

2

3 Random random;

4 SessionID session id ;

5 CipherSuite

6 cipher suites<2..2^16−2>;

7 CompressionMethod

8 compression methods<1..2^8−1>;

9 select ( extensions present ) {
10 case false:

11 struct {};
12 case true:

13 Extension extensions<0..2^16−1>;

14 };
15 } ClientHello;

Structure ClientHello packet

{m} (H : decodep uint24 m) ∶= {
client version : packet (fun x ⇒ decodep

ProtocolVersion x && proverp x) ;

random : packet (decodep Random) ;

session id : packet (decodep SessionID) ;

cipher suites :

packet (decodep cipher suites type ) ;

compression methods :

packet (decodep compression methods type ) ;

extensions : packet ( dselectb(

client extensions present (N◃i8 m)

( var sz session id ) ( var sz cipher suites )

( var sz compression methods ) \) {

(false , decodep struct{}) ;

(true , decodep extensions type ) }) }.

Fig. 7. Formal specification of ClientHello packets (left: TLS RFC; right: Coq) (see Figure 6 for

the definition of the types of the fields)

(see line 13 on the left) and its predecessors: the predicate extensions_present de-
cides the presence of extensions depending on the sizes of session_id, cipher_suites,
and compression_methods (and also the value of m). Yet, this relation is only expressed
in prose in the RFC. In our Coq formalization, each field is represented by a packet

of some predicate. Checking whether extensions_present is true can therefore be
formally expressed by the following boolean predicate (see Figure 7 on the right
where it is used for the meaning of parameters):

Definition client_extensions_present m sid cys cpm ∶=
ClientHello_sz sid cys cpm < Z◃N m.

Contrary to tls_typs, we have no generic decoding function such as decode for
TLS packets formalized as Coq dependent records but we can write case-by-case
decoders in a systematic way using the generic decoding function for tls_typs.
For example, the following function provably decodes the sequence of the fields of
ClientHello packets formalized as in Figure 7:

Definition ClientHello_decode m l : bool * seq byte ∶=
if ¬ decodep uint24 m then (false , l) else
let (a 1, l 1) ∶= let (a 1’, l 1) ∶= decode ProtocolVersion l in
(a 1’ && proverp (take ( N◃Z (fixed_sz ProtocolVersion )) l), l 1) in

let (a 2, l 2) ∶= decode Random l 1 in
let (a 3, l 3) ∶= decode SessionID l 2 in
let (a 4, l 4) ∶= decode cipher_suites_type l 3 in
let (a 5, l 5) ∶= decode compression_methods_type l 4 in
if client_extensions_present (N◃i8 m)

(size l 2 - size l 3 - N◃Z (fixed_sz SessionID ))
(size l 3 - size l 4 - N◃Z (fixed_sz cipher_suites_type ))
(size l 4 - size l 5 - N◃Z (fixed_sz compression_methods_type )) then

let (a 6, l 6) ∶= decode extensions_type l 5 in
([&& a 1, a 2, a 3, a 4, a 5 & a 6], l 6)
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Fig. 8. Format of a Record packet containing a Handshake packet of size n containing a Clien-

tHello packet of size m. RFC [DR08] definition on the top; internal representation used by
PolarSSL [POL] at the bottom.

else
([&& a 1, a 2, a 3, a 4 & a 5], l 5).

(N◃Z denotes the absolute value.)
Using above ideas, we have formalized many of the packet formats of the TLS

protocol. This gives us all the definitions we need to perform the formal verification
of source code implementations of TLS, as we see in the next section.

7. VERIFICATION OF POLARSSL CLIENTHELLO PARSING

We experiment our framework with the verification of the source code of a parsing
function from PolarSSL [POL], an implementation of the TLS protocol. As already
explained in Section 1, this experiment is motivated by the fact that many security
vulnerabilities arise from parsing functions that do not implement all the checks
required by the RFC.

Precisely, We verify the function ssl_parse_client_hello (library/ssl_srv.c, ver-
sion 0.14.0) that parses initialization ClientHello packets. Figure 8 displays a byte-
level representation of the packets that ssl_parse_client_hello is intended to parse.
They are Record protocol packets, containing a Handshake protocol packet starting
at byte index 5 (as indicated by the magic number 22 at byte index 0), the latter
supposed to be a ClientHello packet (as indicated by the magic number 1 at byte
index 5). We also provide in Figure 8 the byte representation used internally by Po-
larSSL. In particular, PolarSSL is a bit more restrictive than the RFC; we indicate
for example some of the restrictions it imposes on incoming ClientHello packets
(see Sections 7.3 and 7.5 for a more precise discussion about these restrictions).

7.1 The Main Data Structure

The central data structure in a PolarSSL server is of C type ssl_context. It records
the characteristics of the TLS connection: the stage of the protocol (field "state"),
the version used (fields "*_ver"), the session number (field "session"), the negotiated
cipher suite (field "cipher" of ssl_session), the session id (field "id" of ssl_session,

Journal of Formalized Reasoning Vol. 7, No. 1, 2014.



An Intrinsic Encoding of a Subset of C and its Application to TLS Network Packet Processing ⋅ 91

the field "length" is the length of the session id), cipher suites of the server (field
"ciphers"), and the nonce for this session (field "randbytes"). The other fields
("in_hdr", "in_msg", "in_left") are for navigation into the buffer that stores the
bytes coming from the network (bottom part of Figure 8). Here follows the corre-
sponding typ definition (Figure 9 provides a pictorial representation):

Definition ssl_sess ∶=
("cipher", ityp sint) ::
("length", ityp sint) ::
("id", ptyp (ityp uchar)) :: nil.

Definition ssl_session ∶= styp (mkTag "ssl_session").
Definition ssl_ctxt ∶=
("state", ityp sint) ::
("major_ver", ityp sint) ::
("minor_ver", ityp sint) ::
("max_major_ver", ityp sint) ::
("max_minor_ver", ityp sint) ::
("session", ptyp ssl_session) ::
("in_hdr", ptyp (ityp uchar)) ::
("in_msg", ptyp (ityp uchar)) ::
("in_left", ityp sint) ::
("fin_md5", md5_context) ::
("fin_sha 1", sha 1 _context) ::
("ciphers", ptyp (ityp sint)) ::
("randbytes", ptyp (ityp uchar)) :: nil.

Definition ssl_context ∶= styp (mkTag "ssl_context").

We can now define the type context g containing the definitions of PolarSSL for
ssl_context, ssl_session, etc.:

Definition g ∶= \wfctxt{"ssl_context" ▹ ssl_ctxt,
"ssl_session" ▹ ssl_sess, "md5_context" ▹ md5_cont,
"sha 1 _context" ▹ sha 1_cont, ∅ }.

7.2 Formalization of The ClientHello Parsing Function

Roughly, the original C function ssl_parse_client_hello is 161 lines long, about 85
lines if we remove comments (many of them are important because they explain the
magic numbers coming from the RFC of TLS) and debugging information. Once
converted to Coq, it is 132 lines long (this includes about 12 lines that had to
be added afterwards to correct implementation errors in the original source code,
see Section 7.5). The language of arithmetic expressions of our subset of C is
sufficiently rich so that C expressions can be almost ported as they are. Yet, we
need to adapt the original code to structured control-flow by replacing one goto with
if-then-else’s and by merging returns. Moreover, since the expression language is
side-effect free, some C expressions need to be split into several commands using
temporary variables. This makes the target program longer in terms of lines of code
but reasoning on individual lines is actually simpler. The main drawback is maybe
the program transformation in itself that needs to be trusted. This is systematic
enough to be automated, and, indeed, this is actually what is done in other proof
assistant-based verification projects such as seL4 [WKS+09].
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Fig. 9. Pictorial representation of PolarSSL’s memory state before parsing a ClientHello packet

(see Figure 10 for the state after)
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The formal model of the PolarSSL function that parses ClientHello packets of
TLS can be found online [AMS14]. Its variables are typed according to the following
environment σ:

Definition σ : g.-env ∶=
("ret", ityp: sint) ::
("ssl", :∗ (g.-typ: ssl_context )) ::
("buf", :∗ (ityp: uchar)) ::
("buf0", ityp: uchar) ::
("buf1", ityp: uchar) ::
("buf2", ityp: uchar) :: ...

Equipped with the environment σ, we use the syntax defined in Section 4 to
translate the original C source code into its Coq model, whose first lines follow
for illustration (recall that the notation &→ is for field access—see Section 4.2.1;
see [AMS14] for the complete model):

Definition ssl_parse_client_hello1 cont ∶=
"ret" ∶=ssl_fetch_input (%"ssl", [ 5 ]sc) ;
If \b %"ret" ≠ [ 0 ]sc Then

Return
Else (
"buf" ∶=∗ %"ssl" &→ "in_hdr" ;
"buf0" ∶=∗ %"buf" ;
If \b (%"buf0" & [ 128 ]uc) ≠ [ 0 ]uc Then

"ret" ∶= [ POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ]c;
Return

Else ( ...

Dealing with Calls to External Functions. ssl_parse_client_hello calls several
library functions, such as PolarSSL-specific functions (e.g., ssl_fetch_input, a func-
tion that reads bytes from the input socket to fill a buffer), or standard C functions
(memset, memcpy, etc.). We axiomatize their correctness in the form of Separation-
logic triples.

Since we do not have yet an encoding of function calls, we formalize external
functions by augmenting the cmd type with axioms. To respect the scoping rules
of C, we axiomatize the fact that no local variable is modified by calls to external
functions. Here follows the example of the standard memcpy function that copies the
contents of the array pointed to by src to the array of the same length pointed to
by dest:

(* MEMCPY (3): void *memcpy(void *d, const void *s, size_t l); *)
Definition size_t ∶= g.-ityp: uint.
Definition void_p ∶= g.-typ: ptyp (ityp uchar).
Axiom memcpy : ∀ ret , env_get ret σ = ⌊ void_p ⌋ →

exp σ void_p → exp σ void_p → exp σ size_t → cmd.

Lemma memcpy_triple ret H e dest src len DEST SRC :
Z◃N (size SRC) = Z◃u len → Z◃N (size DEST) = Z◃u len →
{ ‘! \b e = [ len ]pc ⋆ src ↦ SRC ⋆ dest ↦ DEST }
memcpy ret H dest src e
{ ‘! \b e = [ len ]pc ⋆ src ↦ SRC ⋆ dest ↦ SRC }.
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Admitted.

Lemma memcpy_input_inde ret H dest src len :
modified_vars (memcpy ret H dest src len) = nil.

Admitted.

(The notation ‘! ... is for Separation logic assertions that do not depend on the
heap.)

7.3 Formal Specification of the ClientHello Parsing Function

We want to prove that, given any input from the network (modeled as a list of bytes
SI, for “socket input”), ssl_parse_client_hello either fails (by returning a non-zero
value, assertion error below) or succeeds (by returning 0, assertion success) in
checking that the incoming ClientHello packet is valid. As pictured in Figure 8, a
ClientHello packet is contained in a Handshake protocol packet that is itself con-
tained in a Record protocol packet. In Section 6.2, we explained how we specified
a ClientHello packet and how we write a decoding function (ClientHello_decode)
to test whether a list of bytes represents a ClientHello packet. Similarly, we pro-
vide decoding functions (TLSPlainText_header_decode and Handshake_header_decode)
for headers of Handshake and Record protocol packets. We use above functions to
form a decoding function for complete ClientHello packets, which are the packets
that the function ssl_parse_client_hello expects:

Definition RecordHandshakeClientHello_decode l ∶=
let (a 1, l 1) ∶= S621.TLSPlainText_header_decode l in
let ’(a 2, m, l 2) ∶= S74.Handshake_header_decode l 1 in
let (a 3, l 3) ∶= S7412.ClientHello_decode m l 2 in
(a 1 && a 2 && a 3, l 3).

We are now in a position to formally state the correctness of the parsing function
ssl_parse_client_hello. The most important point of the specification is the use of
the formal specification of ClientHello packets explained just above. It appears in
the postcondition of the following Hoare triple:

0 Lemma POLAR_parse_client_hello_triple (SI : seq (int 8)) ...
1 PolarSSLAssumptions SI →
2 { init_ssl_var ⋆ init_bu ⋆ init_rb ⋆ init_id ⋆ init_ses ⋆
3 init_ciphers ⋆ init_ssl_context }
4 ssl_parse_client_hello
5 { error ∨ (success ⋆
6 !!(( RecordHandshakeClientHello_decode SI).1)) ⋆
7 final_bu ⋆ final_rb ⋆ final_id ⋆ final_ses ⋆ init_ciphers ⋆
8 final_ssl_context }.

(The notation !!( ... ) is for Separation logic assertions that do not depend on
the state of the program.)

About the Precondition. The precondition (lines 2–3) specifies the initial state:
the initial value of the variable "ssl" (assertion init_ssl_var) and the initial state
of the heap. The latter is captured by a Separation logic formula that, intuitively,
formalizes Figure 9. init_bu specifies the existence of a buffer for the incoming bytes;
it is a sensitive storage space and verification must make sure that it is not overrun.
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Similarly, init_rb (resp. init_id, init_ses, init_ciphers, init_ssl_context) is space
for the nonce of the TLS connection (resp. space for the session id, for the session
id data structure, for the ciphers known by the server, and for the ssl_context data
structure).

By way of example, let us look at the init_ssl_context assertion. It formalizes
in terms of a mapsto formula the central data structure of Figures 9 and 10. Ini-
tially, the stage of the protocol is S74.client_hello5, version fields are uninitialized
(variables majv0, minv0, mmaj0, mmin0), in_left is set to 0 (no byte read so far), and
other fields are pointers to other data structures:

Definition Ssl_context server_status majv minv mmaj mmin ses bu
inleft md5s sha1s ciphers rb ∶=
%"ssl" ↦ l mk_ssl_context server_status majv minv mmaj mmin

(ptr◂phy ses) (ptr◂phy bu ‘+ ‘( 8 )_ptr_len)
(ptr◂phy bu ‘+ ‘( 13 )_ ptr_len) inleft md5s sha1s
(ptr◂phy ciphers) (ptr◂phy rb).

...
let init_ssl_context ∶= Ssl_context (zext 24 S74.client_hello)

majv0 minv0 mmaj0 mmin0 ses bu ‘( 0 )_32 md5s sha1s ciphers rb in
...

(‘( i )_ n converts the mathematical integer i to a machine integer of n bits; ‘+

is for the addition of machine integers; zext performs zero-extension of machine
integers.) Parameters md5s and sha1s are for cryptographic functions but we are
not concerned with them in parsing.

About the Postcondition. The postcondition (lines 5–8) specifies in particular that
the state of the heap after parsing has been updated correctly with the incoming
data. As for the precondition, this is captured by a Separation logic formula:
Figure 10 provides a pictorial representation that can be compared with the initial
heap state (Figure 9). final_bu says that the buffer array is filled with the incoming
bytes (note that it is also proved during the verification that this buffer contains
a prefix of the socket input). final_rb says that the array for random bytes RB

has been half-filled with the client nonce. final_id says that the session id has
been saved. final_ses says that the client and the server have agreed on a common
cipher, that the server indeed knows (i.e., it appears in the array CI), and that is
recorded in the session id data structure. final_ssl_context says that the state of
the protocol has moved to S74.server_hello state, that the version fields have been
initialized, etc. For illustration, we display below the definition of final_ses:

Definition Final_ses SI CI ses id ∶= ∃ i, ∃ k, ∃ chosen_cipher ,
let j ∶= 2 * k in
!!( chosen_cipher = zext 16 (SI ‘_ (compmeth + sess_len SI + j))

‘|| (SI ‘_ (compmeth + sess_len SI + j + 1))) ⋆
!!( chosen_cipher = CI ‘32_ i) ⋆
(ses ↦ l mk_ssl_session

chosen_cipher ‘( Z◃N (sess_len SI))_32 (ptr◂phy id)).
...

5S74 is a Coq module named after the Section 7.4 of the RFC of TLS. We use this nomenclature
to keep track of the magic numbers from the RFC.
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let final_ses ∶= Final_ses SI CI ses id in
...

The first assertion gives the name chosen_cipher to two consecutive bytes sent by
the client in the socket input SI and this value can also be found at index i in the
CI array that contains the ciphers known by the server (‘_ and ‘32_ are notations
for indexing arrays of resp. 8-bit characters and 32-bit integers). compmeth is the
starting index of the compression method field and sess_len is the length of the
session id. They are defined according to the RFC for TLS by using the formal
definitions introduced in Section 6 (i.e., not as magic numbers).

About the Assumptions made by the Programmer. The last part of the specifi-
cation is the assumptions (line 1) made by the programmer of PolarSSL. First,
it turns out that PolarSSL ignores the minor version fields and treats them as
S621.TLSv11_min (i.e., “2” for “TLS version 1.1”) (actually, we already anticipated
on this discussion when providing Figure 8). The original source code does not
perform any check at all, so that we think it is deliberate and indicates an as-
sumption rather than an error. Second, the original source code considers that the
only compression method is the “null” compression method [DR08, §6.1]. This is a
customary assumption because this is indeed the only compression method defined
in the RFC, but this must be clearly stated to complete formal verification:

Definition PolarSSLAssumptions l ∶=
l ‘_ min_ver = S621.TLSv11_min ∧
l ‘_ min_req = S621.TLSv11_min ∧
l |{ compmeth +1 + sess_len l + ciph_len l, comp_len l) =

nseq (comp_len l) ‘( 0 )_8.

(Like compmeth and sess_len seen above, min_ver, min_req, ciph_len, and comp_len

are indices and lengths of payloads defined using the formalization of the RFC;
nseq n a is for the list of length n that contains only a’s.)

The formal specification we just explained is the soundness of parsing. One may
also think about checking its completeness but it would not be possible to guaran-
tee that parsing succeeds for any correct packet because of PolarSSL’s restrictions.
For example, PolarSSL assumes that Record packets are larger that the Handshake
packets they embed. This is nevertheless a reasonable restriction because “theoret-
ically, a single handshake message might span multiple records, but in practice this
does not occur” [Res00, p.70]. See Section 7.5 for more such restrictions.

7.4 Technical Overview of the Formal Verification

We have completed the formal verification of the lemma presented in the previous
section (POLAR_parse_client_hello_triple). This shows that the C function that
parses ClientHello packets in PolarSSL, once properly patched (see Section 7.5),
is sound, i.e., that it only succeeds for packets correct w.r.t. the RFC for TLS.
This claim has to be moderated by the trusted computing base of our experiment.
Besides the soundness of Coq, we assume here that we have faithfully formalized
the operational semantics of C, the RFC for TLS, and the target C function. Our
formalization of the operational semantics of C makes assumptions about the size
of integral types and of pointers; we do not think that our case study depends on
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file contents spec proof

rc5246.v Sect. 6 924 334

POLAR_ssl_ctxt.v Sect. 7.1 287 163

POLAR_library_functions.v Sect. 7.2 31 0
POLAR_library_functions_pp.v Pretty-printing 32 0

POLAR_library_functions_triple.v Sect. 7.2 100 24

POLAR_parse_client_hello.v Sect. 7.2 203 0
POLAR_parse_client_hello_pp.v Pretty-printing 29 65

POLAR_parse_client_hello_header.v Sect. 7.3 (definitions) 117 275

POLAR_parse_client_hello_triple1.v Sect. 7.3 (spec.+proof) 95 731

POLAR_parse_client_hello_triple2.v Proof 90 706
POLAR_parse_client_hello_triple3.v Proof 118 1213

POLAR_parse_client_hello_triple4.v Proof 134 642

Total 2160 4153

Table II. Overview of the verification of ClientHello parsing (in terms of l.o.c.)

these assumptions but, generally speaking, C programs verified in this framework
may not be portable. One may also fear errors when manually modeling the target
C function; automation would mitigate this issue but also become a non-trivial part
of the trusted computing base. Our opinion is that the verified function should be
pretty-printed (like in Section 4.4) to be used instead of the original one, in which
case the pretty-printer would fall into the trusted computing base. Observe that
the Hoare logic is not part of the trusted computing base since it is proved sound
w.r.t. the operational semantics.

Table II provides a line count for the various files involved in this experiment.
This completes the quantitative overview of our formalization (see also Section 5.4).
Regarding our case study, it turns out at the end that we needed to write about 24
lines of Coq proof script per line of C code. As we already pointed at in Section 5.4,
we developed several tactics to reduce the size of proof scripts. Yet, this effort was
limited by the performance of Coq’s type-checking: as it often happens, automation
using tactics leads to bigger proof terms, which slows down type-checking, and in
our case this became a real hindrance. The type-checking performance bottleneck
seems to be the formal verification of the (large) loop invariant of the nested loop
in which the TLS server looks for a cipher matching the client’s request. The size of
proof scripts also owes much to technical subgoals dealing with integer overflow and
pointer overrun checking for which we have not developed any specific automation
yet.

7.5 Errors Found in the Source Code and Clarifications of the Specification

We found several bugs in the course of verification that led us to patch the original C
source code. In particular, checks performed by the ssl_parse_client_hello function
are not sufficient to ensure the packets are well-formed. For a concrete example, at
the beginning of the execution, ssl_parse_client_hello retrieves the length of the
Handshake packet and checks its value:

n = ( buf[3] << 8 ) | buf [4];
if( n < 45 || n > 512 )
{ return(POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ); }
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It later retrieves the length of the session id and also checks its value:

sess_len = buf [38];
if( sess_len < 0 || sess_len > 32 )
{ return(POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ); }

But it does not check that the session id is actually contained in the Handshake
message (in other words, that sess_len is not too large w.r.t. n). Formal verification
stumbles here because we later try to memcpy the contents of the session id to a n bytes
buffer that may not be large enough to welcome sess_len more bytes. The solution
is to augment the check of sess_len’s value as follows:

n_old = n;
...
sess_len = buf [38];
if( (sess_len < 0 || sess_len > 32) || 45 + sess_len >= 5 + n_old)
{ return(POLARSSL_ERR_SSL_BAD_HS_CLIENT_HELLO ); }

We have to record the value of n in n_old because n is modified before the test we
want to perform. 5 is the size of the header of the ClientHello packet. 45 + sess_len

is the length of the packet up to the session id. This magic number can actually
be obtained in a systematic way by summing up all the fixed parts (i.e., removing
the payloads of sub-packets) of the different packet sections up to session id (see
Figure 8):

Definition csuites ∶=
N◃Z (S621.TLSPlainText_hd + S74.Handshake_hd +
fixed_sz S621.ProtocolVersion + fixed_sz S7412.Random +
fixed_sz S7412.SessionID ).

(csuites+1 is actually 45).
There are similar implementation errors for the checks for ciph_len and comp_len.

Besides the obvious problem of potentially addressing unintented memory, there is
another reason why the check regarding comp_len is important. Its value is used
to check whether the incoming packet has a TLS extension (boolean predicate
client_extensions_present in Section 6.2), and PolarSSL is supposed not to treat
TLS extensions.

It should be noted that above implementation errors and their fixes are similar
to the Heartbleed bug found in OpenSSL (CVE-2014-0160) or the GnuTLS buggy
parsing of session IDs (CVE-2014-3466). The programmers simply forgot to ex-
haustively check the size of payloads because their specifications in the RFC is not
explicit enough.

In addition to fix implementation errors, the formal verification of the parsing
function ssl_parse_client_hello also helped clarify some of the restrictions imposed
by PolarSSL. We already mentioned, for example, the fact that minor version num-
bers are treated as 2 (see Section 7.3). Also, PolarSSL requires the payload of the
Handshake to be such that 45 ≤ n ≤ 512 whereas the upper-bound indicated in the
RFC is actually 214 (see Section 6.2.1). We have informally indicated these restric-
tions in Figure 8 and they are captured in the formal verification by an intermediate
step (see [AMS14]).
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8. RELATED WORK

Formalization of the Semantics of C. Since we are aiming at concrete experiments
of verification of C programs, we need not only an encoding of C but also to equip it
with reasoning facilities, in particular Separation logic rules. We restricted ourselves
to the core subset of C partly to keep our work manageable. There are several pieces
of work that focus in greater depth on the sole formalization of C.

CompCert is a comprehensive formalization of C that supports most of ANSI C.
In CompCert, recursive structures must be encoded “structurally”: inner fields can
only refer to enclosing fields [BL09, § 2.1]. This obviates the need to carry a typ-
ing environment. We did not choose this direction because it requires to rework
the types from the original program. We do carry around a typing environment:
this makes the writing of the sizeof function more subtle (Section 2.2) but it be-
comes more natural to write mutually recursive structures (Section 2.4). Also, we
use dependent types so that the Coq type-checker guarantees that programs are
well-typed, thus obviating the need for explicit type-checking functions in the for-
malization (Section 4). There are side-effects in CompCert expressions but when
it comes to formal reasoning this is something that is difficult to handle (this is a
simplification that we made and that is also made in related work on mechanization
of Separation logic, e.g., [WKS+09]).

Work on the formalization of C now focuses on the more recent C11 stan-
dard [Kre13].

Ellison et al. [ER12] proposed a formalization of C that consists of an executable
semantics built on top of the Maude rewriting system. It allows for the derivation
of an interpreter and a debugger, thus paving the road for a formal runtime analysis
system. However, it has not been designed for formal verification so that it remains
elusive if, and how, one might build a reasoning system on top of it.

Nita et al. formally explore the platform dependency of the C semantics [NGC08].
By collecting the platform-dependent parts of a program, they build a logical for-
mula encoding memory layout conditions under which the program is memory-safe.
The theory is wrapped up into a static safety analysis tool. In comparison, our
work is oriented towards verification of functional properties, which are more gen-
eral than safety. Our model of C instantiates some platform-dependent values (such
as pointer size) to ease the type-checking of dependently-typed syntax. While this
is a must-have for verification of embedded software, one may also want to ver-
ify portable source code. We believe that this can be achieved with a reasonable
amount of work by making the size of pointers a parameter of our library.

Mechanization of Hoare Logics. Tuch proposed a formalization in the Isabelle
proof-assistant of Hoare logic for C and applied it to a memory allocator [Tuc09].
A trusted C-to-HOL translation is responsible for encoding C types as Isabelle/HOL
records accompanied with lemmas [Tuc09, §5.3]; padding is encoded in the form
of extra fields [Tuc09, p.140]. Proofs do not fail when types are correct but “this
is fragile and does not scale well” [Tuc09, p.146]. In contrast, we formalize the
alignment/sizeof functions completely in Coq and therefore avoid external trusted
machinery. Tuch favors a variant of Burstall-Bornat memory model for heap access,
but this causes problems with C structures: What is the type of the start address?
The type of the whole structure or of the first field? In comparison, we favor direct,
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byte-level heap access annotated with types. It is in our Separation logic that we
accommodate a logical view of datatypes to hide low-level details such as padding
(Section 5.3). Like us, Tuch disallows access to the address of local variables, but
this is a common restriction in Hoare logics for C (e.g., [AB07]).

There are several other mechanizations of Separation logic in proof-assistants but
they address archetypal languages, so that encoding of types and typed expressions
is not as important as in our case. Ynot [NMS+08] is a Coq axiomatization of Hoare
Type Theory allowing for Separation logic-like reasoning for an imperative language
with advanced features such as strong updates. Bedrock [Chl11] is a framework
that emphasizes “mostly automated verification”. It uses an “idealized machine
language” with arbitrary-precision words and infinite memory, without notion of
alignment or padding. In contrast, our formalization of C takes into account realistic
hardware constraints. In order to perform verification (Section 7.3), we use semi-
automation with tactics similar to the one developed by Appel [App06].

Winwood et al. propose a different approach to interactive verification of C pro-
grams [WKS+09]. There is no Separation logic per se, but Hoare logic is used to
establish simulations [WKS+09, § 5.2]. Application of this approach to PolarSSL
verification would require the construction of a reference implementation, what
would be a different way to formalize the RFC for TLS.

In CompCert, Separation logic was originally a side-project for the intermediate
language Cminor only [AB07]. A Separation logic for the C encoding of CompCert
has recently been formalized in Coq [DA13]. The absence of an intrinsic encoding
like ours translates into additional type-checking side-conditions in reasoning rules
that can nevertheless by discharged by programming a type-checker.

Specification of Network Packets. The formal verification of a parsing function
naturally calls for a formalization of network packet formats. This is an issue that
we have already tackled with parsing combinators based on invertible syntax de-
scriptions to simplify the programming of reference implementations [ANO12]. The
formalization introduced in Section 6 can be seen as a stripped-down version with
more emphasis on producing a formalization that can be convincingly compared
with the RFC. This turned out to be important to handle the magic numbers
that pop up here and there in implementations. Producing formal specifications of
packet formats has been a long-standing issue for which types has long been seen
as a promising solution [MC00].

Automated Source Code Verification. The software stack Frama-C/Jessie/Why3
proposes a pragmatic approach for verification by relaxing the minimal trusted
base constraint. Frama-C is a plugin-based framework for analysis of C source
code. Hoare-style annotations can be processed by the Jessie plugin to generate
verification conditions. These goals are generated for Why3 (a framework for ex-
pressing multi-sorted first-order theories) that can discharge them by using a wide
set of automated theorem provers, or by generating Coq goals as a last resort. The
whole stack has been used for example to verify C functions for numerical analy-
sis [BCF+13]. No experiment about communication protocols seems to have been
carried out yet. Regarding automated verification of TLS implementations, Bhar-
gavan et al. successfully verified a small reference implementation but written with
a functional language [BFCZ12].
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9. CONCLUSION

TLS is a pervasive security protocol whose implementation errors can be disastrous,
as exemplified by the recent Heartbleed bug (CVE-2014-0160). This indicates a real
need for the formal verification of an implementation of TLS and our purpose here
was to perform a concrete experiment with the Coq proof-assistant in that direc-
tion. For this purpose, we first introduced a new encoding of the core subset of
the C language that only allows for correctly-typed programs to be modeled. The
dependent types of Coq’s language were instrumental in providing this intrinsic
encoding. Though addressing only a subset of C, we took great care in providing a
byte-level encoding that conforms to the C standard. We then went on providing
a Separation logic to reason about C programs. In order to apply the above frame-
work to a concrete implementation, we also formalized the packet formats from the
standard RFC for TLS. Here again, dependent types came in handy to capture
succinctly the length of payloads embedded in packet headers. In the process, we
found some ambiguities in the original RFC document. Finally, we applied the
above formalizations to the formal verification of a parsing function taken from an
existing implementation of TLS, namely PolarSSL. We were able to discover and
fix implementation errors and to provide a formal specification that exactly sorts
out what this function is really doing.

Future Work. We would like to extend our subset of C with functions and local
variables to avoid the axiomatic encoding of calls to external functions. We devel-
oped many tactics to shorten proof scripts but automation appears to slow down
proof-checking. It seems important to us to optimize the formal verification task for
larger experiments to be possible in practice. Once scalability issues are addressed,
we plan to verify more parsing functions, hopefully leading to the construction of
a formally-verified API for TLS implementations in C.
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