
Formalization in PVS of Balancing Properties

Necessary for Proving Security of the Dolev-Yao

Cascade Protocol Model

YURI SANTOS RÊGO2 and MAURICIO AYALA-RINCÓN1,2

Departamentos de 1Ciência da Computação e 2Matemática, Universidade de Braśılia

In this work, we present an algebraic approach for modeling the two-party cascade protocol of

Dolev-Yao and for fully formalizing its security in the specification language of the Prototype Ver-

ification System PVS. Although cascade protocols could be argued to be a very limited model, it

should be stressed here that they are the basis of more sophisticated protocols of great applicabil-

ity, such as those which allow treatment of multiparty, tuples, nonces, name-stamps, signatures,

etc. In the current algebraic approach, steps of the protocol are modeled in a monoid freely

generated by the cryptographic operators. Words in this monoid are specified as finite sequences

and the whole protocol as a finite sequence of protocol steps, that are functions from pairs of

users to sequences of cryptographic operators. In a previous work, assuming that for balanced

protocols admissible words produced by a potential intruder should be balanced, a formalization

of the characterization of security of this kind of protocols was given in PVS. In this work, the

previously assumed property is also formalized, obtaining in this way a complete formalization

which mathematically guarantees the security of these protocols. Despite such property being

relatively easy to specify, obtaining a complete formalization requires a great amount of effort, be-

cause several algebraic properties, that are related to the preservation of the balancing property of

the admissible language of the intruder, should be formalized in the granularity of the underlying

data structure (of finite sequences used in the specification). Among these properties, the most

complex are related to the notion of linkage property, which allows for a systematic analysis of

words of the admissible language of a potential saboteur, showing how he/she is unable to isolate

private keys of other users under the assumption of balanced protocols. The difficulties that arose

in conducting this formalization are also presented in this work.

1. INTRODUCTION

1.1 Motivation and proposal

The seminal Dolev-Yao (DY) cryptographic protocol model is 30 years old [DY83]

and frequently cited because it provides a symbolic model of interest in the analysis

Both authors were supported by the Brazilian Research Council CNPq. This research was funded

by the research funding agency of the Brasilia Federal District FAPDF under a PRONEX grant.

Journal of Formalized Reasoning Vol. 6, No. 1, 2013, Pages 31–61.

32 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

of decidability of secrecy under attacks of an active/passive intruder. Although

decidability results have become known for more practical and relevant protocols

(cf. [TEB05]), a variety of systems used in security verification of cryptographic

protocols are known to adopt the Dolev-Yao rules [Cer01, Mao05]. Also, cascade

encrypting or multiple encryption is still applied - in more sophisticated ways - in a

range of computational systems (e.g. TrueCrypt). Therefore, being one of the most

basic formal models of multiple encryption and packing a broad definition of an

intruder capabilities, the DY two-party cascade protocol model plays a substantial

role in analysis and formalization of security of some classes of protocols, as a first

step towards a full verification of security.

Rules established by these protocols are usually guided by a given algorithm

implemented in software or hardware and applied in order to preserve information

security in several manners. Although the programming techniques used in this

kind of development are of high quality in general, formal mathematical and logical

analysis is necessary in several steps of this algorithmic development in order to

guarantee that the implemented protocol is in fact secure and efficient. In a broader

context, security analysis of cryptographic protocols is a tricky issue: proofs of

security are rather difficult to check and there are many cases reported in the

literature of protocols and security proofs which were later proved to be wrong

[Mea03]. Automated reasoning and formal methods came up to the scene as a

possible way to turn the security analysis of protocols more reliable and less error

prone. Perhaps the most popular example of this success is the discovery of a

possible attack upon the Needham-Schroeder protocol [NS78]. With the help of

formal methods, Gavin Lowe discovered a gap in the Needham-Schroeder protocol

after seventeen years of its introduction, a period during which the protocol was

assumed correct [Low95]. The protocol was then modified and mechanically proved

correct [Low96].

In this work, a formal approach to certify security of cryptographic systems is

applied in order to prove that the DY two-party cascade protocol model [DY83]

is in fact secure, whenever the conditions of security are fulfilled. The technique

here adopted was rather straightforward: to specify the model in the language of

PVS, and then to formalize the characterization of security. As the Model, as

presented in the original paper, carries a canonical relation with algebra, we opted

to specify it in an algebraic fashion through the use of the free monoid, that is

an algebraic structure with a single associative binary operation and an identity

element [Coh89], generated by the (abstract) cryptographic operators. In abstract

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 33

algebra, elements in free monoids are commonly viewed as finite sequences over

some basic alphabet ([Coh89, Lot02]). By following this approach we were able to

use a formalization that is close to the definitions and statements in [DY83]. Despite

this being possibly the most straightforward way to fully formalize the theoretical

model as originally introduced, several challenges arise. In particular, several low-

level auxiliary formalizations related to data structures, such as sequences and sets,

were necessary to obtain a complete formalization of security, and although these

results are reported as part of this formalization, they can be moved to standard

PVS prelude libraries.

The current presentation focuses on the difficulties inherent to the proof of al-

gebraic properties reflected in these data structures, representing conditions under

which protocols preserve the necessary properties that guarantee security. Such

properties should imply that a potential saboteur is unable to extract private keys

of other users using the admissible language, which is built as concatenations of

balanced words. The complexity of the formalization of all the basic properties

necessary to obtain a complete formalization of security, at the level of granularity

of the selected data structures, is much higher than the complexity of proofs of the

protocols’ security properties, from the logical point of view. The choice of PVS

was motivated by the fact that this is a theorem prover for higher-order logic, which

among other advantages, makes straightforward the specification of properties over

protocols, that are sequences of functions, and also the possibility of exploring the

power of dependent types for discriminating the intruder from other users, as well as

parametrizing words that are constructible in the admissible language of a potential

intruder.

In previous work [NdMNAR10], the general lines for the formalization of the

characterization of security of the DY model were presented. The necessity part

was fully formalized, but several facts regarding the sufficiency part of this charac-

terization were assumed without proof. These facts are related to crucial aspects

of invariant properties of balanced words, that are represented as finite sequences

of cryptographic operators. In that presentation, the characterization of security of

the protocol was formalized; that is, security is guaranteed whenever two conditions

hold:

—firstly, an initial condition that forces the existence of encryption operators in

the first step of the protocol and,

—secondly, a balancing property that holds for each step of the protocol.

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

34 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

The latter property essentially forces occurrences of encryption operators for each

user, for which at least one decryption operator occurs in any step of the protocol.

Security is then a consequence of the fact that, following this balancing discipline

in the construction of protocols, the admissible language used by any potential

intruder will also be balanced, making impossible the isolation of decryption oper-

ators from the whole language allowed to the intruder. Axiomatizing or assuming

without proof this fact makes possible the formalization of the sufficiency part of

the theorem of security of cascade protocols in the deductive language of the proof

assistant PVS ([OS97]), as presented in [NdMNAR10]. However, in order to ob-

tain a complete formalization, no unproved assumptions are admissible. In this

paper it is shown how a complete formalization was obtained through the proof

of an exhaustive series of basic but non trivial lemmas related to the preservation

of the balancing property of the admissible language. These lemmas refer to key

properties expressed through the notions of user-balanced and linkage properties.

The former expresses balancing relative to a specific user and the latter expresses

balancing in fragments of words that a potential saboteur can use. In [DY83] the

main theorem of security was proved assuming (Lemma 1) that normal balanced

words of the admissible language preserve the balancing property. This property

was proved through a sequence of lemmas in the appendix of [DY83] (Lemmas 9, 10

and 11), which are related to the most complex part of the DY model, that is the

one that expresses the deductive power of a potential saboteur under hypothesis of

a balanced protocol. More precisely, such lemmas state that

—concatenation of words satisfying the linkage property preserves this property,

and then the admissible language of a potential saboteur preserves this property

as well, and,

—normalization preserves the linkage property.

In this way, words built in the admissible language of a potential saboteur ac-

cording to a balanced protocol will preserve the balancing property, implying that

the saboteur will be unable to extract private keys of other users. Formalizing

these lemmas is the part of the theory treated in this paper and that completes the

formalization started in [NdMNAR10].

1.2 Related work

In addition to [NdMNAR10], other works have applied PVS to check properties of

cryptographic protocols. In [DS97, ES00] PVS was used to analyze the security of

authentication protocols. In [MR00], it is presented a dedicated strategy in order

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 35

to perform proofs of security protocols, which is based on the representation of

protocol theories on a state-transition model. The representation used in the last

work contrasts with the simple representation of protocols as sequences of functions

used in the current algebraic approach that can be considered more adequate for the

treatment of the original DY model. In [CMR01] the inductive engine of PVS has

been used in order to develop a methodology of proof of inductiveness of secrecy

and authenticity properties. That methodology is sound but incomplete failing

to prove secrecy of secure protocols; in fact, secrecy is known to be in general a

undecidable property (cf. [RT03, AC06]).

The paper [LHT07] provided a specification and verification in PVS of the

intrusion-tolerant protocol enclaves [DCS02]. That work deals with a distributed

protocol where the protocol goal has to be fulfilled even when a subset of the players

are corrupted by a malicious party and can arbitrarily deviate from the protocol

specification (the so-called Byzantine faults). Moreover, [LHT07] is not fully ana-

lyzed by using PVS. Its authenticity was treated using the model checker Murphi.

Also, [BJ03] reports the use of PVS for formally verifying a system for ordered

secure message transmission, but since the PVS specification code was not made

available we were unable to reproduce the reported experiments.

Much work on formalization of security of protocols has been done in other proof

assistants [ABCL09, BCM11, EKL+11]. This includes, among others, the remark-

able inductive approach by L. Paulson in Isabelle [Pau99] and more recently the

Coq development CertiCrypt which includes probability, complexity and game the-

oretical techniques in order to verify security [BGZB09]. More recently, Benäıssa

presented a verification of security of the DY model in event B [Ben08]. Also, sev-

eral automatic protocol verifiers can generate proofs of security of complex protocols

that can be checked by the Isabelle/HOL theorem prover [BM09, MCB10]. Out-

standing tools that should be mentioned include, among others: Avispa [ABB+05],

whose objective is the analysis of security of industrial network protocols; ProVerif

[Bla01], which verifies secrecy and authentication of cryptographic protocols in the

DY model being able to handle primitives such as shared-key cryptography, hash

functions, Diffie-Hellman key agreements, but in contrast to our algebraic approach

it is based on a representation of protocols by Horn clauses; Scyther and Scyther-

tool [Cre08], whose objective is automated analysis and proofs via Isabelle/HOL

regarding various adversary models; Tamarin [SMCB12], which is a successor of

the previous tools developed in Haskell, whose specification approach is based on

equational and multi-set rewriting systems allowing specification of temporal prop-

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

36 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

erties, for which complex cryptographic properties are checked by rewriting modulo

the equational theory; Maude-NPA [EKL+11], that is based on rewriting logic and

narrowing in equational theories modulo (C, AC, ACI) and whose analysis relies on

performing a so-called variant-based unification technique that through backwards

search determines whether or not a final state can be reached; and, EasyCrypt

[BGHZB11] which follows a game-based approach for reasoning about computa-

tions and properties with adversarial code and is related among others, with tools

as CertiCrypt, previously mentioned.

Despite the existence of these works, we believe the current PVS development

could be of great interest for the PVS community because it improves the scenario

of available public libraries for the analysis of security in this proof assistant and

because it chooses an algebraic straightforward specification of the DY framework,

that takes advantage of the higher-order capabilities as well as of the flexibility al-

lowed by dependent types of this proof assistant, allowing in this way a formalization

approach very close to that of the analytical proofs. As previously mentioned, such

framework is still used to model the basis of a class of cryptographic protocols and

is known, in some cases, to provide security against all possible adversaries even

when we do not consider perfect cryptography.

1.3 Organization

Section 2 presents the algebraic approach used to model the DY model and an-

alytic sketches of the proofs. Section 3 presents details of the formalization

of some of the key lemmas involved in the PVS development. Section 4 con-

cludes and presents future work. The whole PVS development is available at

http://www.mat.unb.br/∼ayala/publications.html and works in versions of

PVS 5.n and 6.0.

2. THE DOLEV-YAO MODEL AND ITS SECURITY CHARACTERIZATION

The model is based on a system of public key cryptography in which each user

u ∈ U , where U is a finite set of users, has an encryption operator Eu and a

decryption operator Du. A public secure directory includes all pairs (u,Eu), but

for all u ∈ U , only u has knowledge about Du. Suppose that the malicious users

belong also to the set of users U of the system, and that they can obtain information

through passive observation or active interaction in the communication network.

Encryption and decryption operators are algebraically inverse elements for each

user: for all u ∈ U, EuDu = DuEu = λ, where λ denotes the empty word. Users

interchange arbitrary information that is codified and decoded through encryp-

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 37

tion and decryption operators. Transmitted messages are arbitrary bit-strings, not

drawn from the language of operators, and without any verifiable structure. The

purpose of a two-party cascade protocol is transmitting secret messages between

two users, which is done by exchanging encrypted messages that are represented as

terms in a monoid. Thus, cryptographic operators can be modeled as the monoid

freely generated by the encryption and decryption operators modulo the congru-

ence given by EuDu = DuEu = λ for all users u ∈ U ([Coh89, Lot02]). In this

structure only strings built with the generators should be considered.

Given a set of symbols A, we denote by A∗ the set of all finite strings over the

alphabet of symbols in A. Let Σ = E ∪ D = {Eu | u ∈ U} ∪ {Du | u ∈ U},
and let Σ∗ be the set of all finite strings over the alphabet of symbols in Σ. For all

γ ∈ Σ∗, |γ| denotes the length of the string γ, and for each i such that 0 ≤ i < |γ|, γi
denotes the (i + 1)th symbol (operator) of the string γ. Also, for every i, j such

that 0 ≤ i ≤ j < |γ|, γi,j denotes the substring of γ from the (i + 1)th until the

(j + 1)th symbol.

An arbitrary cryptographic operator will be denoted as O, and when necessary

as Ou, in order to refer to its user u ∈ U . The opposite cryptographic operator of

Ou is denoted as Oc
u. Thus, Ec

u = Du and Dc
u = Eu.

As usual when dealing with algebraic structures modulo a congruence, one in-

troduces the concept of normal (or canonical) forms ([Coh89, Lot02]). Whenever

σ ∈ Σ∗ has some substring of the form OuO
c
u, that is, σ = σ′OuO

c
uσ
′′ for some

u ∈ U, σ′, σ′′ ∈ Σ∗, we say that σ can be reduced into σ′σ′′ with respect to u. We

can proceed with such reductions, applying the same process now over the word

σ′σ′′. Reducing σ with respect to a user u until no more reductions are possible

provides the normal form of σ with respect to u. Denoting by σu the normalization

of σ with respect to u and by σ the normalization of σ with respect to all users, we

have that σu = σ′OuOc
uσ
′′u = σ′σ′′

u
, and analogously σ = σ′OuOc

uσ
′′ = σ′σ′′.

Thus, normalizing a word means recursive elimination of all pairs of contiguous

cancelable operators, that show up in each step of the process. As an example, let

σ = EaDcEbDbEcEa. Then σ = EaDcEbDbEcEa = EaDcEcEa = EaEa = EaEa.

Observe that normalization goes accordingly to the congruence of the monoid:

for all u ∈ U, EuDu = DuEu = λ. From the algebraic point of view, in this

quotient monoid it is only necessary to work with normal or canonical forms. But

in the context of the specification, that is the same of cryptography, discrimination

between different representations of words or sequences of operators in the same

equivalence class is essential.

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

38 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

In [DY83] two-party cascade protocols were defined as sequences of sequences

of operators expressing the discipline that any pair of different users should follow

to communicate. Each sequence of operators in a protocol is called a step. The

user starting the communication sends messages according to the even steps and

the other user, the receiver, according to the odd steps. Thus, in even steps only

decrypt operators of the user starting the communication are possible and vice

versa. Additionally, in [DY83], it is informally assumed that any protocol behaves

exactly equal for any pair of users. To formalize the uniform behavior that any pair

of users should follow, our choice was to specify protocols as sequences of functions,

instead of sequences of sequences. Thus, in our formalization, each step is a function

from pairs of users to sequences of operators. This way, restrictions on the use of

decrypt operators in each step as well as the uniformity of protocol steps are easily

given as functional restrictions.

Definition 1 (Two-party Cascade Protocol). A two-party cascade protocol α de-

termines how pairs of users in a communication network should communicate and

consists of a finite and non empty sequence of steps. Each step is a function αi

from pairs of users to a sequence of operators. Thus,

α = αn−1αn−2 · · ·α2α1α0, where n ≥ 1, and

αi : U × U → Σ∗, for all 0 ≤ i < n.

Even steps α0, α2, . . . and odd steps α1, α3, . . . respectively refer to steps of the

protocol in which the first user communicates with the second user of the pair and

vice versa. Additionally, ∀i, 0 ≤ i < n, ∀x, y, u, v ∈ U , the following constraints

hold:

i) αi(x, y) 6= λ and is normalized;

ii) αi(x, y) ∈ {Ex, Dx, Ey}∗ if i is even, i.e. when x communicates with y;

iii) αi(x, y) ∈ {Ey, Dy, Ex}∗ if i is odd, i.e. when y communicates with x;

iv) |αi(x, y)| = |αi(u, v)|;

v) ∀ 0 ≤ j < |αi(x, y)| :
v.1) (αi(x, y))j = Ex if, and only if (αi(u, v))j = Eu;

v.2) (αi(x, y))j = Ey if, and only if (αi(u, v))j = Ev;

v.3) (αi(x, y))j = Dx if, and only if (αi(u, v))j = Du;

v.4) (αi(x, y))j = Dy if, and only if (αi(u, v))j = Dv.

Given a pair of users x, y ∈ U and a message M , the communication according

to a given protocol α is done in the following manner:

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 39

x sends a message to y following the first step of the protocol, α0(x, y)M ;

y answers to x with α1(x, y)α0(x, y)M ;

x answers to y with α2(x, y)α1(x, y)α0(x, y)M ,

and so on.

Observe that since normalization is composable, that is for all α, β, γ ∈ Σ∗,

αβγ = αβγ, repeated normalization in the previous step is not necessary. Com-

posability of normalization holds also for normalization with respect to a user and

both properties were formalized in PVS and applied at crucial points of our formal-

ization of security of two-party cascade protocols, as will be seen in the Subsection

3.3 (cf. Lemma 2 and Lemma 3 on normalization with separation).

Following the rules of a given protocol α, for any two users x, y ∈ U in com-

munication, the constraints ii) and iii) basically restrict the use of the decryption

operator Dx and Dy, respectively, to the user sending the message in each step of

the protocol (even steps for x and odd for y). Constraints iv) and v) guarantee that,

following the protocol, all pairs of users have to follow exactly the same behavior.

Despite unusual, the even-odd fashion of protocol steps point out the (abstract)

actions of a possible saboteur, which is our interest in the next section.

2.1 Security Characterization of Cascade Protocols

The following items characterize the admissible language of a possible saboteur in

a communication network in which the users follow a well-defined cascade protocol

α, that is, a protocol holding properties of Definition 1.

Let x, y and z ∈ U , where z is a possible saboteur. z can force applications of

any step αi of the protocol α, for i > 0, twofold: either supplanting x in order to

obtain answers from y (odd steps of the protocol) or intercepting an eventual com-

munication started between x and y and supplanting y in order to obtain answers

from x (even steps of the protocol). This is described in detail in the two items

presented below.

(1) z can obtain αi(x, y), for all 1 ≤ i < |α| odd, starting a communication with

y supplanting x. In the (i− 1)th step of the communication, z sends to y any

message M , obtaining as answer αi(x, y)M (since y has to follow the protocol).

This allows z to apply αi(x, y) to any selected message M , for i odd;

(2) z can obtain αi(x, y), for all 2 ≤ i < |α| even, observing passively the network

and waiting until x establishes communication with y. Then, in the (i − 1)th

step of the communication, z intercepts the answer from y to x and replaces it

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

40 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

by sending to x any selected message M . Thus, x answers to z αi(x, y)M . In

this way z is able to apply αi(x, y) to any selected M , for |α| > i ≥ 2 even.

In addition to the two previous tricks, a potential saboteur z can use the language

of words of the monoid generated by all the encryption operators and its own

decryption operator.

(3) Since z is a user of the communication network, he can use the language gen-

erated by the admissible alphabet Σ0(z) := E ∪Dz.

It can be argued that the item two above is not realistic because the saboteur

would need to wait for a communication that may never take place. The original

Dolev-Yao paper [DY83] discusses an interesting relaxation of the adversary model

called the impatient saboteur, where a saboteur never waits for a conversation to be

initiated. If a cascade protocol is secure, in the sense of the most general adversary

considered here, then it is secure against the impatient saboteur.

Definition 2 (Admissible Language). Given a well-defined cascade protocol α and

denoting the set of words, related to the first and second items above, as Σ1 :=

{αi(x, y) | x, y ∈ U, x 6= y, 0 < i < |α|}, one defines the admissible language of

a possible saboteur z as

AL(z) := (Σ0(z) ∪ Σ1)∗

Since a potential saboteur can observe the encoded messages between the other

users during all steps of the communication, a protocol will be insecure whenever a

saboteur is capable to extract the secret message at some step of the communica-

tion. Thus, if a saboteur can build a word using his/her admissible language, that

according to the properties of the monoid cancels out the encoding at some step

of the communication, he/she will be able to obtain the secret message. This is

expressed in the following definition.

Definition 3 (Insecure/Secure Protocol). Consider a well-defined two-party cas-

cade protocol given as α = αn−1 · · ·α1α0, n ≥ 1, and let x, y, z ∈ U be different

users. The protocol is said to be insecure if there exists γ ∈ AL(z) such that, for

some 0 < j < n

γ(αj−1(x, y) · · ·α0(x, y)) = λ

Otherwise the protocol is said to be secure.

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 41

2.2 Characterization of the Security of Cascade Protocols

As previously mentioned and as presented in the original [DY83], two properties

characterize security of two-party cascade protocols: one being a condition which

ensures the presence of encryption in the first step of the protocol, and the other be-

ing a balancing property, which in some sense ensures that no decryption operators

are “left loose” in any step of the protocol.

Definition 4 (Security Initial Condition - IC). A cascade protocol α satisfies the

initial condition (IC) if for all x, y ∈ U , there exists i, 0 ≤ i < |α0(x, y)|, such that

(α0(x, y))i = Eu, where u ∈ {x, y}; i.e., if the initial step of the protocol includes

at least an encryption operator.

Observe that if a protocol does not satisfy the initial condition of security the

initial step of a communication is of the form α0(x, y)M = Dk
xM , for some positive

integer k. The intruder can then use the word Ek
x in the admissible language to

extract the secret message M .

Definition 5 (Balanced Word - BP). A word σ ∈ Σ∗ has the balancing property

(BP) with respect to a user u ∈ U if, whenever there is some i, 0 ≤ i < |σ|, such

that σi = Du, there is j, 0 ≤ j < |σ|, such that σj = Eu.

Definition 6 (Balanced Protocol). A cascade protocol α is said to be balanced if,

for all x, y ∈ U and for all |α| > i > 0, the step αi(x, y) satisfies BP with respect

to x, if i is even, and with respect to y, if i is odd. In other words, for any step

of the protocol, if it has a decryption operator, then it has an encryption operator,

both for the same user.

Observe that if the protocol is not balanced an attack can be built as follows. If

the ith step of the protocol is not balanced we have two cases to consider.

—Case i is odd. The saboteur z starts a communication with the user x sending any

message M∗ in the (i− 1)th step, for which he will receive as answer αi(z, x)M∗.

Since, αi(z, x) is not balanced, then it includes Dx and αi(z, x) ∈ {Dx, Ez}∗.
Thus, αi(z, x) = β1Dxβ2 and βc

1, β
c
2 ∈ {Ex, Dz}∗. Thus the saboteur is able to

extract the private key of x from βc
1αi(z, x)βc

2.

—Case i > 0 is even. Since the notion of security is conservative, potentially any

user x would start a communication with a saboteur z. As in the previous case,

z will send to x any message M∗ in the (i−1)th step, and then receive as answer

αi(z, x)M∗.

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

42 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

The initial condition of security and the condition of balanced protocol will suffice

for elaborating the theorem that characterizes security. Before doing that, we refer

to a key lemma in this theory.

The following lemma, which is perhaps the most difficult or at least the most

elaborated part of the analytic theory of the DY model, deals with the balancing

property related to words in the admissible language of an intruder z, i.e. AL(z).

This lemma simplifies the proof of the Theorem 1 of characterization of security,

presented at the end of this section, because it encapsulates the subjacent techni-

calities involved in its formalization.

Lemma 1 (BP for Normalized Words of the Admissible Language of Balanced Pro-

tocols). Given a balanced cascade protocol α and z ∈ U then, for all η ∈ AL(z), η

satisfies BP with respect to all users a ∈ U, a 6= z.

Lemma 1, was only axiomatized (i.e., assumed without proof) in [NdMNAR10]

in order to present a formal proof of the Theorem 1 of characterization of security,

and its current formalization depends on Lemmas 9, 10 and 11 (according to the

original numeration in [DY83]), that will be presented below. Lemma 9 is necessary

in order to prove Lemma 10 and both the latter and Lemma 11 are necessary in

order to conclude the proof of Lemma 1. In the formalization of these lemmas, two

additional definitions related to the balancing property relative to a specific user

are necessary.

Definition 7 (User-Balanced Word). Let a ∈ U and π ∈ Σ∗. One says that π is

a-balanced if the following implication is true: (π = DxδDy, for some x, y ∈ U, x 6=
a 6= y and δ

a ∩D ⊆ {Da}) implies that δ
a

is balanced with respect to a.

Definition 8 (Linkage Property - LP). Let z ∈ U and η ∈ Σ∗. One says that

η satisfies the linkage property with respect to z if, for any π subword of the word

DzηDz, π is a-balanced, for all a ∈ U, a 6= z.

The analysis of whether a word is balanced then reduces to the verification of the

balancing property for all its subwords for which only decryption operators (for a

unique user) occur. This is done by checking whether the linkage property holds.

Lemma 9 (Linkage Property Composition). Let η, µ ∈ Σ∗ be words that satisfy

LP w.r.t. z. Then ηµ satisfies LP w.r.t. z.

Lemma 10 (Linkage Property for the Admissible Language). Consider a balanced

cascade protocol α, z ∈ U and let η ∈ AL(z). Then η satisfies LP w.r.t. z.

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 43

Lemma 11 (Normal Forms Preserve Linkage Property). Let η ∈ Σ∗ such that η

satisfies LP. Then η satisfies LP too.

Sketches of analytical proofs of the previous three lemmas are available in [DY83],

but their complete formalizations require a large series of proofs of mundane prop-

erties of the data structures being used in order to represent protocols. Although

these proofs are reported as part of this full formalization, it should be stressed

here that several of them could be moved directly to other PVS libraries about

properties of the involved data structures.

The proof of Lemma 10 is by induction on the inductive construction of the

admissible language ((Σ0(z)∪Σ1)∗) and depends on proving that words in Σ0(z)∪Σ1

satisfy LP (basis of the induction) and application of Lemma 9 in the inductive step.

The proof of Lemma 11 is also done by induction. In this case, on the number of

recursive steps applied in the normalization of the word η. In the induction basis,

it is proved that after eliminating from η the first, from left to right, occurrence of

contiguous opposite operators, either DuEu or EuDu, for some u ∈ U , the resulting

word satisfies LP. In the inductive step this argument is applied once again.

In PVS, the formalization of Lemma 11 depends on the specification of the notion

of normalization that is given basically through two specified functions presented

below. The function first cancelable takes as argument a reducible sequence

and detects the first contiguous occurrence of opposite operators. The second func-

tion, normalizeseq, uses the first function in order to detect recursively the first

occurrence of contiguous opposite operators and eliminates them from the sequence.

first_cancelable(seq : reducibleseq) : RECURSIVE nat =

IF areopcomplements?(seq(0),seq(1)) THEN 0

ELSE 1 + first_cancelable(^(seq,(1,seq‘length-1)))

ENDIF

MEASURE seq‘length-1

normalizeseq(seq : seqOps) : RECURSIVE seqOps =

IF normalseq?(seq) THEN seq

ELSE LET (firstCancPos : nat) = first_cancelable(seq) IN

IF firstCancPos=0 THEN normalizeseq(seq^(2,seq‘length-1))

ELSE normalizeseq(seq^(0,firstCancPos-1) o

seq^(firstCancPos+2,seq‘length-1))

ENDIF

ENDIF

MEASURE seq‘length

Several decisions taken during the specification are relevant in order to obtain a

full formalization of the main lemmas. Observing the function first cancelable,

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

44 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

one notices that the input sequence seq is indexed from 0 to its length minus

one (seq`length - 1). The function areopcomplements? checks whether two

operators either are opposite or not. The type of the parameter of the function

first cancelable is the type of reducible sequences that is a subtype of the

type of sequences of operators (SeqOps), as used as the parameter of the func-

tion normalizeseq. The operators “ˆ ” and “o” denote, respectively, subsequences

and concatenation (or append) of sequences. Thus, (seq^ (0,firstCancPos-1)

o seq^ (firstCancPos+2,seq`length-1) denotes the sequence obtained by elim-

inating the operators at positions firstCancPos and firstCancPos + 1 of the

sequence seq, that, in other words, is the sequence obtained by eliminating the

first contiguous occurrence of opposite operators in seq, since firstCancPos was

set as the position of the first cancelable contiguous occurrence.

The next theorem, whose proof depends on Lemma 1, characterizes security of

two-party cascade protocols.

Theorem 1 (Characterization of Security of Cascade Protocols ([DY83])). A two-

party cascade protocol is secure if and only if

—it satisfies the initial condition and

—is balanced.

The proof of Theorem 1 is divided in the proof of necessity and the proof of

sufficiency:

—The former, that is to prove that a secure protocol satisfies the initial condition

and should be balanced, is obtained by contrapositive argumentation: if a pro-

tocol does not satisfy the initial condition or is not balanced it is proved to be

insecure.

—The latter is proved by contradiction. Let x, y ∈ U , and suppose that x starts

communication with y. Suppose, by reduction to the absurd, that the protocol

satisfies IC and is balanced, but is insecure; thus, there exists γ ∈ AL(z), such

that γα0(x, y) = λ. A separation in two cases is then possible: in the first case,

Ey appears in α0(x, y), and then it is possible to show that γ is not balanced,

because it should contain an operator Dy (since Dy does not occur in α0(x, y)),

which contradicts Lemma 1; in the second case, Ey does not occur in α0(x, y),

which implies that Dx also does not occur in the first step of the protocol and

consequently Lemma 1 is contradicted again.

Here, it is relevant to stress that the formalization of this theorem was firstly

given in [NdMNAR10] and was exactly based on the previous logical reasoning for

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 45

analyzing necessity and sufficiency. But only in the current work it is presented a

full formalization in which it is included the complete treatment of Lemma 1, which

implied an effort much greater than the necessary for this logical analysis.

3. FORMALIZATION IN PVS

In this section, several deductive techniques applied in the formalization of the

balancing properties of the DY model are presented. The formalization is available

in the PVS files. Here only a brief description is possible focusing on the most

relevant aspects.

The Prototype Verification System PVS is a theorem prover for higher order logic

with an elaborated type system in which subtyping and dependent types are al-

lowed. In a higher order logic language, as the one of the specification language

of PVS, one can quantify over relational and functional variables. This makes

straightforward the specification of properties of two-party cascade protocols that

are sequences of relational (functional) objects according to Definition 1. For in-

stance, sufficiency lemma related to the proof of Theorem 1 is specified as the

lemma below, in which a well-defined protocol prot is universally quantified. Also,

dependent types are used in order to quantify over triplets of users x, y and z such

that are mutually different.

alpha0_and_bal_secure : LEMMA

FORALL (prot : welldefined_protocol,

x : U, y : U | x /= y,

z : U | z /= x AND z /= y) :

alpha0ContainsE?(prot, x, y) AND

balanced_cascade_protocol?(prot) =>

secure_protocol?(prot, x, y, z)

The basic data structures used in the formalization are finite sequences and

sets that are available in the prelude theory of PVS[OS97]. The whole hi-

erarchy of the formalization is presented in Fig. 1. The main theory, named

CascadeProtocolsSecurity, contains the specification of Theorem 1 and im-

ports theories for the formalization of sufficiency and necessity, respectively,

SecurityNecessity and SecuritySufficiency. The theory Examples contains

simple examples of application of the theory to prove security of specific proto-

cols. The focus in this paper is on the formalization of lemmas related to bal-

ancing properties (Lemmas 9, 10 and 11), which are formalized inside the theories

UserBalancingProperty and UserMonoidCryptOps.

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

46 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

Examples

��
CascadeProtocolsSecurity

ww

++
SecuritySufficiency

��
SecurityNecessity

''

UserBalancingProperty

��
UserMonoidCryptOps

ss
SecurityDefinitions

��
CascadeProtocols

��
MonoidCryptOps

��
Finite Sequences Extras

Fig. 1. Hierarchy of theories and subtheories — formalization of security of cascade

protocols

The theory finite sequences extras imports the prelude theory for finite se-

quences and includes additional necessary lemmas and properties about this data

structure, as well as about finite sets, that are not available in the PVS prelude

library.

The theory MonoidCryptOps includes general specifications about the crypto-

graphic operators and the theory of monoids freely generated by the language of

cryptographic operators modulo the congruence given by elimination of contiguous

opposite operators. In this theory, the notion of normal form is given.

The theory CascadeProtocols formalizes the basic notions about two-party cas-

cade protocols. The theory SecurityDefinitions formalizes the notions of secu-

rity of cascade protocols.

The theory UserMonoidCryptOps includes specifications and formalizations

about properties of sequences of cryptographic operators relative to specific users.

In this theory, notions similar to the ones given in MonoidCryptOps are specified;

for instance, the notion of normal form relative to a specific user is given. These

relativizations are necessary in order to deal with notions such as user balanced and

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 47

linkage property (eg, Defs. 7 and 8), among others, that are essential to formalize

the central balancing property (Lemma 1) necessary in the proof of sufficiency of

the main security characterization theorem.

The theory UserBalancingProperty includes the formalizations of the crucial

Lemmas (1, 9, 10 and 11) as well as specifications of the notion of user-balanced

and the linkage property.

As previously mentioned, the crucial part of the Theory is included in the theo-

ries SecurityNecessity and SecuritySufficiency formalizing necessity and suf-

ficiency of Theorem 1. Here, the focus is on the balancing properties necessary

for sufficiency that are formalized in the theories UserBalancingProperty and

UserMonoidCryptOps.

3.1 Verification of Balancing Lemma 1

Using Lemmas 9, 10 and 11, Lemma 1 was formalized following essentially the ana-

lytic proof in [DY83]. However, it was detected the need of an additional technical

property in order to obtain a full formalization: for any word of the form DzηDz,

where η ∈ Σ∗, if for some a ∈ U the operator Da occurs in η, then there exists

a subsequence of DzηDz of the form DxδDy containing the occurrence of Da and

such that x 6= a 6= y. Analytically, this property is very simple, but technically its

formalization is non trivial. This kind of mundane properties are recurrent in the

formalization and represent a great deal of the whole formalization effort.

Lemma 1 was formalized inside the theory UserBalancingProperty, and its

specification is given as below.

userBalancing : LEMMA

FORALL (prot : welldefined_protocol,

z : U,

gamma : gammaT | gamma_welldef?(prot,gamma, z),

w : U | w /= z) :

balanced_cascade_protocol?(prot) =>

balancedseq_wrt?(normalizeseq(extract_gamma(gamma)), w)

This PVS lemma specifies the following: let prot be a well-defined protocol,

z, w ∈ U be different users and γ ∈ AL(z) a word in the admissible language of

the protocol prot for the intruder z. Thus, if prot is a balanced protocol, then

the normalization of γ, that is γ, is balanced with respect to the user w. In other

words, for all users different from a possible saboteur z, the normalization of any

admissible word is balanced with respect to the other users.

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

48 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

In the specification above, gammaT represents the type of finite sequences of al-

lowed strings (finite sequences of operators) for the model of protocols under con-

sideration; gama welldef? is a tertiary relation that expresses the fact that the

finite sequence of words gamma is a sequence of words either in Σ0(z) or Σ1 (ac-

cording to the protocol prot), that is, the concatenation of words in gamma be-

longs to the admissible language of the intruder z. balanced cascade protocol?

and balancedseq wrt? are boolean unary and binary relations, respectively, for

balanced protocols and words balanced with respect to a user. The function

extract gamma builds the word of concatenation of words in the finite sequence

gamma, that is a word in AL(z). normalizeseq, as previously mentioned, recur-

sively builds the normalization of the input word according to the congruence of

the monoid, eliminating all contiguous opposite operators.

The proof of Lemma 1 is done applying Lemmas 10 and 11 as follows:

Let η ∈ AL(z) be a word in the admissible language. Suppose, by contradiction,

that for some a ∈ U , η does not satisfy the balancing property with respect to

a. Thus, Da occurs in η, but Ea does not, which implies that η does not satisfy

the linkage property. This contradicts Lemmas 10 and 11, since in first place,

η satisfies the linkage property because it is an admissible word built from a

balanced protocol and, in second place, normalizations of words that satisfy the

linkage property preserve this property.

The language of proof of PVS follows the Gentzen sequent style. PVS uses

an interactive proof language in which inference rules of the sequent calculus are

applied by means of proof commands. The proof is started by a sequent containing

as antecedent the premises of the conjecture or objective to be proved and as

succedent its conclusion. Both the succedent and antecedent of a sequent are a

sequence of formulas. The former is interpreted as the conjunction and the latter

as the disjunction of the corresponding sequence of formulas. Proof commands

should be applied until the proof is concluded or until one detects errors in the

conjecture. Proofs are stored in a file of proof commands.

The command prove starts the proof of some selected objective. This is il-

lustrated below for the Lemma 1. Items above the symbol |------- represent the

antecedent or premises of the sequent, and items below this symbol, the succedent

or conclusions.

|-------

[1] FORALL (prot : welldefined_protocol, z : U,

gamma : gammaT | gamma_welldef?(prot,gamma, z),

w : U | w /= z) :

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 49

balanced_cascade_protocol?(prot) =>

balancedseq_wrt?(normalizeseq(extract_gamma(gamma)), w)

The consequent starts exactly as Lemma 1. By an application of the proof com-

mand of Skolemization and propositional simplification one obtains the following

sequent.

{-1} balanced_cascade_protocol?(prot)

|-------

{1}balancedseq_wrt?(normalizeseq(extract_gamma(gamma)),w)

Observe that formulas in the antecedent and in the succedent are indexed re-

spectively with negative and positive integers. Active formulas, which are those

involved in the last proof command, are indexed inside curly brackets, and the

other ones in square brackets.

As antecedent or unique premise of the last sequent one has that prot is a

(well-defined) balanced protocol and one should prove that the normalization of

extract gamma(gamma), that is normalizeseq(extract gamma(gamma)), named

reducedGamma below, is balanced with respect to w. Lemmas 10 and 11 can be

invoked applying the PVS proof command lemma. The application of this command

includes as new premises in the antecedent of the sequent the selected lemmas that

are adequately instantiated according to the objective being proved, obtaining in

this way the sequent below.

{-1} linkage_property?(extract_gamma(gamma), z) =>

linkage_property?(reducedGamma, z)

[-2] balanced_cascade_protocol?(prot) =>

linkage_property?(extract_gamma(gamma), z)

[-3] balanced_cascade_protocol?(prot)

|-------

{1} balancedseq_wrt?(reducedGamma, w)

At this point, according to the analytic proof previously explained, concluding

the formula in the succedent seems trivial, but it involves technicalities as those

previously mentioned. In fact, the development of the proof is not short, and several

properties related to finite sequences and the theory of monoids are necessary. More

than ten additional technical lemmas were necessary in order to conclude the proof

of this lemma, which uses more than 160 proof commands.

3.2 Verification of the Linkage Property for the Admissible Language (Lemma 10)

While illustrating the use of PVS in the formalization, we present the outlines of

the proof of Lemma 10.

Lemma 10 about linkage property for the admissible language is specified as

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

50 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

balanced_prot_imp_linkage_in_sigmas : LEMMA

FORALL(prot: welldefined_protocol, z : U,

eta : gammaT | gamma_welldef?(prot,eta, z)) :

balanced_cascade_protocol?(prot) =>

linkage_property?(extract_gamma(eta), z)

This states that, given a balanced cascade protocol prot and a user z ∈
U , all words of the admissible language AL(z), built in the specification as

extract gamma(eta), satisfy the linkage property.

The proof is started by applying the command prove obtaining the initial sequent

below.

|-------

{1} FORALL (prot: welldefined_protocol, z: U,

eta: gammaT | gamma_welldef?(prot, eta, z)):

balanced_cascade_protocol?(prot) =>

linkage_property?(extract_gamma(eta), z)

The proof is by induction in the length of the sequence eta. This method

is selected by applying the proof command (measure-induct+ "eta`length"

("eta")) to which PVS returns the following sequent having as first premise the

inductive hypothesis, that is for any sequence with length less than the length of

the initial sequence, called now x!1, it satisfies the linkage property.

{-1} FORALL (y: {eta: gammaT | gamma_welldef?(prot, eta, z)}):

y‘length < x!1‘length =>

balanced_cascade_protocol?(prot) =>

linkage_property?(extract_gamma(y), z)

{-2} balanced_cascade_protocol?(prot)

|-------

{1} linkage_property?(extract_gamma(x!1), z)

Analytically, it is enough to apply induction and Lemma 9, but some specificities

of the data structure should be considered. The case in which the length of x!1

is zero, is proved easily. Now, if x!1 has length equal to one, some considerations

are necessary. Supposing that x!1`length = 1, one applies an auxiliary lemma

called admissible language sat link property, that states that all words of the

language Σ0(z) or Σ1 satisfy the linkage property. Invoking this auxiliary lemma

gives the sequent below, where the formula [1] x!1`length = 0 in the succedent

excludes the case in which the length of x!1 is zero.

{-1} FORALL (prot: welldefined_protocol, z: U, delta: seqOps):

(balanced_cascade_protocol?(prot) AND

(member(delta, sigma2_3(prot)) OR

wellDefInSigma1?(delta, z)))

=> linkage_property?(delta, z)

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 51

[-2] x!1‘length = 1

[-3] FORALL (y: {eta: gammaT | gamma_welldef?(prot, eta, z)}):

y‘length < x!1‘length =>

balanced_cascade_protocol?(prot) =>

linkage_property?(extract_gamma(y), z)

[-4] balanced_cascade_protocol?(prot)

|-------

[1] x!1‘length = 0

[2] linkage_property?(extract_gamma(x!1), z)

Lemma admissible language sat link property appearing as premise {-1}
guarantees in this case that if x!1 is a unique word, that is a sequence of operators,

it satisfies the linkage property.

Supposing now that the length of x!1 is greater than one, one has the sequent

below. The formulas [1] x!1`length = 0 and [2] x!1`length = 1 in the succe-

dent exclude the cases in which the length of x!1 is either one or zero and are

excluded in the sequel.

[-1] FORALL (y: {eta: gammaT | gamma_welldef?(prot, eta, z)}):

y‘length < x!1‘length =>

balanced_cascade_protocol?(prot) =>

linkage_property?(extract_gamma(y), z)

[-2] balanced_cascade_protocol?(prot)

|-------

[3] linkage_property?(extract_gamma(x!1), z)

In order to apply the induction hypothesis, one instantiates it, that is the

antecedent [-1], with the finite sequence x!1 without its first word, that is

the sequence x!1^(1, x!1`length - 1), by applying the command (inst -1

‘‘x!1^(1, x!1`length - 1)’’). Since the sequence x!1^(1, x!1`length - 1)

has length less than the length of x!1, this sequence can be used in the induction

hypothesis. This together with the fact that prot is a balanced protocol gives

rise to the simplification of the induction hypothesis (after this instantiation) as

the premise {-1} in the sequent below, that states that extract gamma(x!1^(1,

x!1`length - 1)) satisfies the linkage property.

{-1} linkage_property?(extract_gamma(x!1^(1, x!1‘length - 1)), z)

[-2] balanced_cascade_protocol?(prot)

|-------

[3] linkage_property?(extract_gamma(x!1), z)

Selecting the previous sequence for the instantiation of the induction hypothesis

is adequate for the application of Lemma 9, because this lemma guarantees that the

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

52 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

concatenation of words that satisfy the linkage property also satisfy this property.

Lemma 9 is specified in PVS with the name linkage property composition, and

its invocation at this point of the proof gives the sequent below, in which the first

premise corresponds to this lemma.

{-1} FORALL (mu, eta: seqOps, z: U):

linkage_property?(mu, z) AND linkage_property?(eta, z) =>

linkage_property?(mu o eta, z)

[-2] linkage_property?(extract_gamma(x!1^(1, x!1‘length - 1)), z)

[-3] balanced_cascade_protocol?(prot)

|-------

[3] linkage_property?(extract_gamma(x!1), z)

The first word of the finite sequence x!1, that is x!1`seq(0), belongs ei-

ther to Σ0(z) or Σ1 and consequently, it satisfies the linkage property, as pre-

viously mentioned. By induction hypothesis, the rest of the sequence, that is

x!1^(1, x!1`length - 1), satisfies this property as well. Lemma 9 is instan-

tiated with mu as x!1`seq(0), the first element of x!1, and eta as the rest of the

sequence. Since x!1`seq(0) o extract gamma(x!1 ^ (1, x!1`length - 1)) =

extract gamma(x!1), one concludes that the linkage property also holds for x!1.

Proving this equality also requires several additional technicalities (almost ninety

PVS proof commands are applied) not presented here, but available in the PVS

formalization. One obtains as last sequent the one presented below.

{-1} linkage_property?(x!1‘seq(0), z) =>

linkage_property?(extract_gamma(x!1), z)

[-2] linkage_property?(extract_gamma(x!1^(1, x!1‘length - 1)), z)

[-3] balanced_cascade_protocol?(prot)

|-------

[3] linkage_property?(extract_gamma(x!1), z)

At this point, it is enough to guarantee that x!1`seq(0) satisfies the linkage

property. This is done in the same way as in the case where x!1`length = 1 by

application of the auxiliary lemma admissible language sat link property.

3.3 Formalization of technical properties

A great amount of the effort done in this formalization is related to the construc-

tion of proofs of specific properties of sequences representing the quotient monoid

generated by the cryptographic operators. To illustrate this, we present the formal-

ization of a specific lemma which guarantees that the word user-balancing property

of Definition 7 holds for subsequences of the concatenation of sequences satisfying

the linkage property of Definition 8, and which is applied in the proof of Lemma

9. To do so, it is necessary to characterize normalization relative to a user z of

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 53

the concatenation of sequences δ and σ, that is δσ
z
. Two main cases are to be

considered: either the last operator of δ and the first of σ are operators for the

user z, or not. In the first case, let δ = δ′Ok
z and σ = (Oc

z)jσ′ be normal words

with respect to z, where k, j ≥ 0 represent the number of adjacent complementary

operators Oz and Oc
z occurring in a row in the suffix of δ and in the prefix of σ,

respectively. In the second case, δ = δ′Ou or σ = Ouσ
′ for u 6= z. Two specific

auxiliary lemmas arise:

Lemma 2 (Relative normalization with separation). Let δ ∈ Σ∗, z, a ∈ U , such

that z 6= a. Then δ = δ′Oaδ
′′, for some δ′, δ′′ ∈ Σ∗, implies

δ
z

= δ′
z
Oaδ′′

z

Lemma 3 (Relative normalization without separation). Let δ, σ ∈ Σ∗ be normal

sequences with respect to z ∈ U , that is σz = σ and δ
z

= δ, and let j, k ≥ 0 be such

that j and k are maximal with δ = δ′Oj
z and σ = (Oc

z)kσ′. Then, j ≥ k implies

δσ
z

= δ′Oj−k
z σ′

Otherwise,

δσ
z

= δ′(Oc
z)k−jσ′

Here, we explain the formalization of the former lemma, that has been specified

in PVS as the lemma user normalize break in the theory UserMonoidCryptOps

included below.

user_normalize_break : LEMMA FORALL (seq : seqOps, z, a : U, i : nat) :

(a /= z & i < seq‘length - 1 & user(seq(i)) = a) =>

normalizeseqZ(seq, z) =

IF i = 0 THEN

seq^(0,0) o normalizeseqZ(seq^(1, seq‘length - 1), z)

ELSE

normalizeseqZ(seq^(0,i-1), z) o seq^(i,i) o

normalizeseqZ(seq^(i+1,seq‘length - 1), z)

ENDIF

The formalization of this lemma is based on the application of a number of

auxiliary lemmas proved by induction, from which two key lemmas discriminate

the case in which the first part of the sequence is normal with respect to z and the

opposite case. The latter case, is specified as the lemma below.

user_normalize_separation2 : LEMMA FORALL (seq : seqOps,

a: U, z:U | a /= z, i : below[seq‘length]) :

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

54 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

(reducibleseqZ?(seq,z) AND user(seq(i)) = a) =>

LET k = first_cancelableZ(seq,z) IN

k < i =>

normalizeseqZ(seq,z) =

normalizeseqZ(seq^(0, i-1),z) o seq^(i,i) o

normalizeseqZ(seq^(i + 1 , length(seq) - 1), z)

The proof of this lemma consists of more than two hundred proof steps and is done

basically by application of two additional auxiliary technical lemmas: the first one

states that when δ is normal with respect to z, δOaσ
z

= δOaσ
z, and the second one

that, in general αzβ
z

= αβ
z
. From these lemmas, one obtains δOaσ

z
= δ

z
Oaσ

z

=

δ
z
Oaσ

z. The former lemma is specified as user normalize separation1, pre-

sented below.

user_normalize_separation1 : LEMMA FORALL (seq : seqOps,

a: U, z:U | a /= z, i : nat | i < seq‘length) :

(reducibleseqZ?(seq,z) AND user(seq(i)) = a) =>

LET k = first_cancelableZ(seq,z) IN

k > i =>

normalizeseqZ(seq,z) =

seq^(0, i) o normalizeseqZ(seq^(i + 1 , seq‘length - 1), z)

The formalization of this lemma is by induction on the length of the sequence

seq and consists of more than five hundred lines of proof commands in which thirty

one invocations to other auxiliary technical lemmas are necessary.

This explanation can continue in this way, enumerating a long series of necessary

auxiliary lemmas, which are related to the algebraic properties of the monoid freely

generated by the cryptographic operators, the quotient monoid and the quotient

monoid relative to a specific user, as well as to its representation as the data struc-

ture of sequences of operators. Analogously, the formalization of Lemma 3, specified

in the theory UserMonoidCryptOps as Lemma user normalize composition, con-

sists of more than 750 proof commands in which more than ninety invocations to

other auxiliary lemmas are done. Summarizing, what is relevant to clarify at this

point is that most of the necessary formalization work is related to the mechan-

ical proofs of these auxiliary technical lemmas. All these proofs can be executed

through the specification code that is available.

3.4 Verification of security of specific protocols

To illustrate how security of specific protocols can be checked a subtheory Examples

(see Fig. 1) was added. Basically, a protocol step should be defined as a function

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 55

from pairs of users into sequences of cryptographic operators. For instance, α0 :

U × U → Σ∗ such that (u, v) 7→ EuEvDu is specified as

alpha_0 : alphabeta = LAMBDA(x,y:U) : E_x o E_y o D_x

A protocol prot0 is specified as sequences of functions of this form. For instance,

prot0 = alpha 0 o alpha 1 o alpha 2 o alpha 3, where

alpha_0 : alphabeta = LAMBDA(x,y:U) : E_x o E_y o D_x

alpha_1 : alphabeta = LAMBDA(x,y:U) : E_y o E_x o D_y

alpha_2 : alphabeta = LAMBDA(x,y:U) : D_x o E_y o E_x o E_y o D_x

alpha_3 : alphabeta = LAMBDA(x,y:U) : E_y o E_x o E_x o D_y

Then, security of prot0 is proved as a corollary of the main theorem (theorem1

in the theory CascadeProtocolsSecurity) after proving that prot0 is balanced

and satisfies the initial condition.

Observe that whenever it is not possible to prove the initial condition (Def. 4),

or if the balancing property (Def. 6) fails for a step of a protocol, counterexamples

can be built according to the observations after the corresponding definitions.

It is important to stress here that the original Dolev-Yao result is all about

proving that security of cascade protocols is decidable, yet the formalization does

not provide a decision procedure for each protocol. To prove the security of a

protocol, one has to actually construct a proof in PVS that it is balanced and

satisfies the initial condition.

Quantitative Data.

The whole PVS development, consists of the ten theories depicted in Fig. 1

in which the specification part consists of approximately 1.600 lines of code (or

almost 80 KB), and the proof part consists of approximately 54.000 lines of proof

commands (or 3.7 MB), all that including comments.

Auxiliary lemmas related to the data structure of sequences, the monoid and the

quotient monoid relative to a specific user, were specified respectively in the PVS

theories finite sequences extras, MonoidCryptOps and UserMonoidCryptOps

(see Fig. 1). These three theories alone consist of approximately 890 lines of

specification code (or 43 KB) and almost 28.000 lines of proof commands (or 1.7

MB). The whole development consists of 384 proofs, from which 209 are TCCs

(type correctness conditions generated, but not necessarily automatically proved,

by the prover) and the other 175 are lemmas fully formalized.

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

56 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

Regarding the formalization of necessity and partially formalization of suffi-

ciency in [NdMNAR10], although several proofs in other theories were adjusted

to obtain the current development, what is essentially new is inside the theories

UserMonoidCryptOps and UserBalancingProperty. These two theories consist of

717 lines of specification (almost 37 KB) and almost 39.000 lines of proof commands

(2.84 MB). Both these theories include 209 theorems from which 123 are TCCs.

4. CONCLUSION AND FUTURE WORK

The formalization of the theorem of characterization of security of the DY model

of two-party cascade protocols was concluded, based on a full formalization about

the preservation of balancing properties of normalization of words of the admissible

language of potential malicious users. A great variety of properties about the

monoid freely generated by the language of encryption and decryption operators

was necessary, as well as properties about the data structure of finite sequences.

The latter was used twofold: firstly, to represent words of the monoid, that are

finite sequences of cryptographic operators and secondly, to represent protocols,

that are finite sequences of protocol steps, that are basically functions of pairs of

users into sequences of operators in this monoid.

Several algebraic properties related to normalization of words in the quotient

monoid according to the congruence given by the elimination of opposite cryp-

tographic operators were necessary. And particularly, these properties and other

additional specific ones were adapted for the case of the quotient monoid relative

to the congruence restricted to a specific user. The latter was necessary in order to

establish some crucial properties, such as the linkage property and the property of

being user-balanced, that are essential in order to prove preservation of this balance

in the whole admissible language of any potential saboteur.

Part of the effort invested in the formalization of the characterization of security

of the DY model was concentrated on the proof of basic technical properties over

the structure of monoids and its representation as sequences. The formalization of

these auxiliary lemmas is worth because it was fundamental in order to conclude

the full formalization of security of the DY model, but also because these properties

could be incorporated to basic PVS libraries about monoids and sequences. This

formalization represents an important kernel that can be applied in order to obtain

further formalizations of logical properties of other variants of the DY model such

as protocols for impatient saboteurs. For impatient saboteurs, the definition of

admissible language uses only the language of words of the monoid generated by all

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 57

the encryption operators and its own decryption operator, and also words obtained

starting communication with other users, perhaps supplanting some other user; but

words obtained by intercepting messages between other users are avoided (cf. items

(1), (2) and (3) before Definition 2). The characterization of security of cascade

protocols for the impatient saboteur (Theorem 6 in [DY83]) relaxes the imposi-

tion of the balancing property only for odd steps of the protocol, while the initial

condition extends to normalization of all messages sent during the communication

between users (α0(x, y), α1(x, y)α0(x, y), . . .). To formalize this new characteriza-

tion of security following the analytical proof in [DY83], several results from the

current PVS theory could be reused: monoid and relative-to-a-user monoid prop-

erties, normalization, etc, but specific properties for new definitions are necessary

(e.g. user substrings, strongly user-balanced, etc.). More elaborated variants of

the DY model such as name-stamp protocols (as presented in [DY83]) will require

too much additional effort since the language of cryptographic operators and their

basic laws changes, which will imply a different specification of the basic concepts

and, therefore, a completely new formalization. The same applies for other models

such as multiparty models, models with authentication mechanisms, models with

blind signatures, etc.

Another important point to stress here, is that the choice of a specific data

structure to represent protocols (in our case sequences of functions) determines all

proofs in the theory. But it is not necessary to change all proofs when other data

structures are chosen. This is illustrated in this paper, when the logical sketch of

the proofs of the Theorem 1 of characterization of security and of the Lemma 1

of balancing property of normalizations of words of the admissible language were

explained. The current formalization works for the specific data structure of fi-

nite sequences that was selected to represent the quotient monoids, but other data

structures such as lists and strings could be selected reusing proofs through formal-

izations of isomorphical properties between finite sequences and the other chosen

data structure.

References

[ABB+05] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna,

J. Cuellar, P. Hankes Drielsma, P. C. Heám, O. Kouchnarenko,

J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch,

J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA

tool for the automated validation of internet security protocols and

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

58 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

applications. In Proceedings of the 17th international conference on

Computer Aided Verification, volume 3576 of Lecture Notes in Com-

puter Science, pages 281–285. Springer Verlag, 2005. 1.2

[ABCL09] M. Abadi, B. Blanchet, and H. Comon-Lundh. Models and proofs

of protocol security: A progress report. In 21st International Con-

ference on Computer Aided Verification (CAV’09), volume 5643 of

Lecture Notes in Computer Science, pages 35–49. Springer Verlag,

2009. 1.2

[AC06] M. Abadi and V. Cortier. Deciding knowledge in security protocols

under equational theories. Theor. Comput. Sci., 367(1-2):2–32, 2006.

1.2

[BCM11] D. Basin, C. Cremers, and C. Meadows. Model Checking Security

Protocols, chapter 24. Springer Verlag, 2011. To appear. 1.2

[Ben08] N. Benäıssa. Modelling Attacker’s Knowledge for Cascade Cryp-

tographic Protocols. In ABZ ’08: Proc. of the 1st Int. Conf. on

Abstract State Machines, B and Z, volume 5238 of Lecture Notes in

Computer Science, pages 251–264. Springer Verlag, 2008. 1.2

[BGHZB11] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella-Béguelin.

Computer-Aided Security Proofs for the Working Cryptographer.

In Advances in Cryptology – CRYPTO 2011, volume 6841 of Lec-

ture Notes in Computer Science, pages 71–90. Springer Verlag, 2011.

1.2

[BGZB09] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certifica-

tion of code-based cryptographic proofs. In 36th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages

POPL, pages 90–101, 2009. 1.2

[BJ03] M. Backes and C. Jacobi. Cryptographically Sound and Machine-

Assisted Verification of Security Protocols. In 20th Annual Sympo-

sium on Theoretical Aspects of Computer Science (STACS), volume

2607 of Lecture Notes in Computer Science, pages 675–686. Springer

Verlag, 2003. 1.2

[Bla01] B. Blanchet. An efficient cryptographic protocol verifier based on

prolog rules. In 14th IEEE Computer Security Foundations Work-

shop (CSFW), pages 82–96. IEEE Computer Society, 2001. 1.2

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 59

[BM09] A. D. Brucker and S. Mödersheim. Integrating Automated and In-

teractive Protocol Verification. In Formal Aspects in Security and

Trust, 6th International Workshop, FAST 2009, volume 5983 of Lec-

ture Notes in Computer Science, pages 248–262. Springer Verlag,

2009. 1.2

[Cer01] I. Cervesato. The Dolev-Yao Intruder is the Most Powerful At-

tacker. In Proceedings of the Sixteenth Annual Symposium on Logic

in Computer Science - LICS’01, pages 16–19. IEEE Computer So-

ciety Press, 2001. 1.1

[CMR01] V. Cortier, J. Millen, and Harald Ruess. Proving secrecy is easy

enough. In 14th IEEE Computer Security Foundations Workshop

(CSFW’01), pages 97–110. IEEE Comp. Soc. Press, 2001. 1.2

[Coh89] D. E. Cohen. Combinatorial Group Theory: a topological approach.

Cambridge UP, 1989. 1.1, 2

[Cre08] C. J. F. Cremers. The Scyther Tool: Verification, Falsification, and

Analysis of Security Protocols. In Computer Aided Verification, 20th

International Conference, CAV, volume 5123 of Lecture Notes in

Computer Science, pages 414–418, 2008. 1.2

[DCS02] B. Dutertre, V. Crettaz, and V. Stavridou. Intrusion-tolerant en-

claves. In Proc. of the IEEE International Symposium on Security

and Privacy, pages 216–224, 2002. 1.2

[DS97] B. Dutertre and S. Schneider. Using a PVS Embedding of CSP to

Verify Authentication Protocols. In Theorem Proving in Higher Or-

der Logics, TPHOL’s 97, volume 1275 of Lecture Notes in Computer

Science, pages 121–136. Springer Verlag, 1997. 1.2

[DY83] D. Dolev and A. C. Yao. On the Security of Public Key Protocols.

IEEE. T. on Information Theory, 29(2):198–208, 1983. 1.1, 2, 2.1,

2.2, 2.2, 2.2, 1, 3.1, 4

[EKL+11] S. Escobar, D. Kapur, C. Lynch, C. Meadows, J. Meseguer,

P. Narendran, and R. Sasse. Protocol analysis in Maude-NPA using

unification modulo homomorphic encryption. In Proceedings of the

13th International ACM SIGPLAN Conference on Principles and

Practice of Declarative Programming, PPDP, pages 65–76. ACM,

2011. 1.2

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

60 · Yuri Santos Rêgo and Mauricio Ayala-Rincón

[ES00] N. Evans and S. Schneider. Analysing Time Dependent Security

Properties in CSP Using PVS. In 6th European Symposium on

Research in Computer Security ESORICS, volume 1895 of Lecture

Notes in Computer Science, pages 222–237. Springer Verlag, 2000.

1.2

[LHT07] M. Layouni, J. Hoofman, and S. Tahar. Formal Specification and

Verification of the Intrusion-Tolerant Enclaves Protocol. Interna-

tional Journal of Network Security, 5(3):288–298, 2007. 1.2

[Lot02] M. Lothaire. Algebraic Combinatorics on Words. Cambridge UP,

2002. 1.1, 2

[Low95] G. Lowe. An Attack on the Needham-Schroeder Public-Key Authen-

tication Protocol. Information Processing Letters, 56(3):131–133,

1995. 1.1

[Low96] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key

Protocol Using FDR. Software - Concepts and Tools, 17(3):93–102,

1996. 1.1

[Mao05] W. Mao. A structured operational semantic modelling of the Dolev-

Yao threat environment and its composition with cryptographic pro-

tocols. Computer Standards & Interfaces, 27(5):479–488, 2005. 1.1

[MCB10] S. Meier, C. J. F. Cremers, and D. A. Basin. Strong Invariants

for the Efficient Construction of Machine-Checked Protocol Secu-

rity Proofs. In Proceedings of the 23rd IEEE Computer Security

Foundations Symposium, CSF 2010, pages 231–245. IEEE Computer

Society, 2010. 1.2

[Mea03] C. Meadows. Methods for Cryptographic Protocol Analysis: Emerg-

ing Issues and Trends. IEEE J. on Selected Areas in Communica-

tions, 21(1):44–54, 2003. 1.1

[MR00] J. K. Millen and H. Rueß. Protocol-independent secrecy. In IEEE

Symposium on Security and Privacy, pages 110–209, 2000. 1.2

[NdMNAR10] R.B. Nogueira, F.L.C. de Moura, A. Nascimento, and M. Ayala-

Rincón. Formalization Of Security Proofs Using PVS in the Dolev-

Yao Model. In Computability in Europe CiE 2010 (Booklet), 2010.

1.1, 1.2, 2.2, 2.2, 3.4

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

Formalization of Balancing Properties for proving security of the DY Model · 61

[NS78] R. Needham and M. Schroeder. Using encryption for authentication

in large networks of computers. Comm. of the ACM, 21:993–999,

1978. 1.1

[OS97] Sam Owre and Natarajan Shankar. The formal semantics of

PVS. Technical report, SRI-CSL-97-2, Computer Science Labora-

tory, SRI International, Menlo Park, CA, August 1997. Available at

http://pvs.csl.sri.com/. 1.1, 3

[Pau99] L. C. Paulson. Proving Security Protocols Correct. In 14th Annual

IEEE Symposium on Logic in Computer Science LICS, pages 370–

383, 1999. 1.2

[RT03] M. Rusinowitch and M. Turuani. Protocol insecurity with a finite

number of sessions, composed keys is np-complete. Theor. Comput.

Sci., 299(1-3):451–475, 2003. 1.2

[SMCB12] B. Schmidt, S. Meier, C. J. F. Cremers, and D. A. Basin. Automated

Analysis of Diffie-Hellman Protocols and Advanced Security Prop-

erties. In 25th IEEE Computer Security Foundations Symposium,

CSF, pages 78–94. IEEE, 2012. 1.2

[TEB05] F.L. Tiplea, C. Enea, and C. V. Birjoveanu. Decidability and com-

plexity results for security protocols. In Edmund M. Clarke, Marius

Minea, and Ferucio Laurentiu Tiplea, editors, VISSAS, volume 1 of

NATO Security through Science Series D: Information and Commu-

nication Security, pages 185–211. IOS Press, 2005. 1.1

Journal of Formalized Reasoning Vol. 6, No. 1, 2013.

	1 Introduction
	1.1 Motivation and proposal
	1.2 Related work
	1.3 Organization

	2 The Dolev-Yao Model and its Security Characterization
	2.1 Security Characterization of Cascade Protocols
	2.2 Characterization of the Security of Cascade Protocols

	3 Formalization in PVS
	3.1 Verification of Balancing Lemma 1
	3.2 Verification of the Linkage Property for the Admissible Language (Lemma 10)
	3.3 Formalization of technical properties
	3.4 Verification of security of specific protocols

	4 Conclusion and Future Work

