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We discuss the formalization, in the Matita Interactive Theorem Prover, of some results by Cheby-

shev concerning the distribution of prime numbers, subsuming, as a corollary, Bertrand’s postulate.
Even if Chebyshev’s result has been later superseded by the stronger prime number theorem, his

machinery, and in particular the two functions ψ and θ still play a central role in the modern
development of number theory. The proof makes use of most part of the machinery of elementary

arithmetics, and in particular of properties of prime numbers, gcd, products and summations, pro-

viding a natural benchmark for assessing the actual development of the arithmetical knowledge
base.

1. INTRODUCTION

Bertrand’s postulate states that for every natural number n larger than 1 there is
always at least one prime p such that n < p ≤ 2n.

The statement was first conjectured by Joseph Bertrand 1945, who also verified
his correctness for all numbers up to 3 · 106. A first complete proof was given
by Chebyshev in 1850; alternative proofs have been given by Ramanujan in 1919
[17], using properties of the Gamma function, and by Erdös in 1932 [10], exploiting
Chebyshev’s function θ. So, even if Bertrand’s postulate is subsumed by the prime
number theorem of Hadamard and la Vallé Poussin (1896), it has an interest in its
own, and in particular it makes very precise claims about the distribution of primes
for small values of n.

The prime number theorem (PNT) affirms that the number of primes π(n) not
exceeding n is asymptotically equal to n/ log(n) (see e.g. [16, 20] for a modern
introduction to the subject). As a consequence, the number of primes between n
and 2n grows as n/log(n) when n is large, and hence there are many more primes
in this interval than asserted by Bertrand’s Postulate.

Chebyshev original proof follows a similar approach, but relying on a weaker prop-
erty than PNT, namely that the order of magnitude of π(n) is n/ log n (Chebyshev’s
theorem), meaning that we can find two positive constants c1 and c2 such that, for
any n

c1
n

log(n)
≤ π(n) ≤ c2

n

log n

Then, if a > c2/c1.

π(an)− π(n) ≥ c1
an

log(2n)
− c2

n

log n
≥ (ac1 − c2)n

log(2n)
> 0

so we are sure to have at least a prime between n and an. If (for sufficiently large
n) we are able to prove that c2 < 2c1, then Bertrand’s conjecture follows.
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Even if Chebyshev’s theorem is sensibly simpler than the prime number theorem,
already formalized by Avigad et al. in Isabelle [8] and by Harrison in HOL Light
[15], it is far from trivial (in Hardy and Wright’s famous textbook [13], it takes
pages 340-344 of chapter 22). The proof makes use a lot of machinery of elementary
arithmetics, and in particular of properties of prime numbers, gcd, products and
summations, providing a natural benchmark for assessing the actual development
of the arithmetical knowledge base in proof assistants, and for comparing them.

We were also interested in providing a fully arithmetical (and constructive) proof
of this theorem. Even if Selberg’s proof of the prime number theorem is “elemen-
tary”, meaning that it requires no sophisticated tools of analysis except for the
properties of logarithms, a fully arithmetical proof of this results looks problem-
atics, considering that the statement involves in an essential way the Naperian
logarithm. On the other side, the logarithm in Chebyshev’s theorem can be in any
base, and can be also essentially avoided (at least from the statement), asserting
the existence of two constants c1 and c2 such that, for any n

2c1n ≤ nπ(n) ≤ 2c2n

that is what we actually proved.
For the proof of Bertrand’s postulate we followed instead Erdös argument, that is

particularly elegant and allows us to take advantage of the computational facilities
of the proof assistant Matita.

This paper is an extended and largely revised version of our previous work [3].
In particular, the proof assistant Matita [5], that we used for the formalization,
has meanwhile undergone a substantial evolution, giving us the opportunity to
make a detailed comparison between the two versions, and to discuss the many
improvements introduced in the new system.

The structure of the paper is the following. In Section 2 we discuss some impor-
tant preliminaries behind the formal proof, and in particular the new library of big
operators of Matita. Section 3 is devoted to some considerations about the factor-
ization of n!; in particular, we exploit the decomposition of (2n)! as n!2 · B(2n),
where B(2n) is the binomial coefficient

(
2n
n

)
, and study upper and lower bounds

for B(2n). Section 4 contains the definition of Chebyshev’s Ψ function and the
proof of the asymptotic distribution of the prime numbers. Finally, Section 5 is de-
voted to the proof of Bertrand’s postulate, comprising a discussion of Chebyshev’s
θ function.

2. PRELIMINARIES

In the rest of the paper, all functions are defined on natural numbers. In particular,
n/m denotes the integer part of the division between n and m, and loga n denotes
the maximum i such ai ≤ n. We shall use the notation n! for the factorial of n,
that is the product of all positive numbers below or equal to n.

n! =
∏
i≤n

i (1)

Chebyshev’s approach to the study of the distribution of prime numbers consists
in exploiting the decomposition of n! as a product of prime numbers. The idea is
that the numbers 1, 2, . . . , n include just n

p multiples of p, n
p2 multiples of p2, an so
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on. Hence

n! =
∏
p≤n

∏
i<logp n

pn/p
i+1

(2)

A formal proof of the previous sentence consists in a symbolic manipulation of
expressions on “big products”, allowing us to pass from equation 1 to equation 2.
This kind of manipulations are an easy task for a mathematician, but are relatively
complex operations to be performed inside a proof assistant, requiring a large library
of lemmas covering not trivial operations such as reindexing and commutation.

It is only in relatively recent times that the importance of a good library of
canonical big operators has been duly emphasized as one of the key ingredients
behind a really usable library of formal mathematics [9]. In this section, we shall
briefly describe the new “bigops” library of Matita, comprising both notations
covering in a uniform way different form of indexing, and lemmas encapsulating
the most frequent logical steps on these constructs.

The library relies on Matita’s mechanism of unification hints [4, 19] for expressing
structural and algebraic properties of indices and operators. This allows rewriting
and resolution to infer such properties automatically, which is essential for the
practical usability of the library.

In particular, unifications hints are used, similarly to canonical structures in
[9], to enrich concrete operations to meet the algebraic requirements (associativity,
commutativity, etc. ) of generic operators in parametric lemmas.

For instance, consider decomposition laws like the following, where a ≤ b ≤ c∑
i∈[a,c]

fi =
∑
i∈[a,b]

fi+
∑
i∈[b,c]

fi
∏
i∈[a,c]

fi =
∏
i∈[a,b]

fi ·
∏
i∈[b,c]

fi

One would like to express them in a generic way, for an arbitrary operator op to
be instantiated with + and ·, respectively. However, the abstract law is true only
if the operator is associative. As discussed in [9], the best approach is to define the
notion of “associative operation”, that is just a record composed by a function and
a proof that the function is associative, and to state the abstract property for a
generic “associative operation”.

Then, we use the mechanism of unification hints to suggest to Matita that, if
it meets a sum, and if required by unification, it may lift it up to an associative
operation using some laws suggested by the user.

Note that, a priori, this is a narrowing operation [11], and it would be a quite
complex operation to be performed automatically by the system without some hint
from the user).

The basic machinery of big operators was already in the old version of Matita
(see e.g. [2]); however, we were lacking the mechanism of proof hints, essentially
forcing us to replicate the statement of most lemmas for each specific operator.

2.1 Notation

The notation for a generic big operator must be parametric in the range, in the
function F applied on elements in the range, in the operator op used to combine
them, and in the value nil to be returned when the range is empty.

The notation is relatively standard ([9]), and has the following shape:



40 · A. Asperti and W. Ricciotti

� �
\big [ op / nil ] { range description } F� �

The range description is responsible for giving the name of the bound variable
and stating the set over which this variable is supposed to range. The elements
in the range are supposed to be enumerated (that is not a limitation, considering
that the range must be finite), hence the range is specified as an interval i ∈ [a, b[
where a is the lower bound (included in the range) and b is the upper bound (not
included in the range). In case the lower bound is 0, the simpler notation i < b can
also be used. The variable i whose name can obviously be chosen by the user, is
bound by the notation, and its scope ranges over F .

Following our old library of generic iterators (see [2]), we add the possibility to
filter the range with a boolean predicate, meaning that the big operator takes only
the elements of the range that satisfy the predicate. This is simply written by
adding | P at the end of the index and range description. Again, the scope of
the bound variable i ranges over the formula P. For instance, the following notation
represents the product of all primes less or equal to n (that is essentially Chebyshev
θ function).� �
\big[times/1] {p < S n | primeb p} p� �
The primitive operator is \big[op/nil]_{i < n | p i} f i, implemented by the
following code, whose reading is straightforward� �
let rec bigop (n:nat) (p:nat → bool) (B:Type[0])

( nil : B) (op: B →B →B) (f: nat →B) :=
match n with
[ O ⇒ nil
| S k ⇒match p k with

[true ⇒ op (f k) (bigop k p B nil op f)
| false ⇒ bigop k p B nil op f]

].� �
We also provide special notation in case the operator satisfies a particular structure.
In particular, in case the operator is the sum or the product on natural numbers,
the user can use the more readable and comfortable notations

∑
(\sum) and

∏
(\prod) as abbreviations for, respectively, \big[plus\0] and \big[times\1].

2.2 Main Lemmas

The library of results concerning big operators is naturally organized according to
the assumptions on the operator being iterated.

A first collection of lemmas, mostly relative to subsuming equalities on big op-
erators from equalities of its components, do not require any assumption on the
operator. The following is a typical example, expressing the fact that we can
rewrite in the predicate and the formula parts of a big operation without changing
its semantics:� �
lemma same bigop : ∀k,p1,p2,B,nil,op.∀f,g:nat→B.

sameF upto k bool p1 p2 → sameF p k p1 B f g →
\big[op,nil ] {i < k | p1 i}(f i ) = \big[op,nil ] {i < k | p2 i}(g i ).� �
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The first premise sameF_upto k bool p1 p2 expresses the fact that the two
predicates p1 and p1 must coincide (pointwise) in the interval [0, k[; the second
condition sameF_p k p1 B f g requires that the two functions f and g coincide
pointwise in the range {i < k | p1 i} (that is the same as {i < k | p2 i}).

A second collection of lemmas allow to change the length of the range. A typical
case is to restrict the bound when it is known that the filtering predicate is false
on the eliminated part.� �
theorem pad bigop1: ∀k,n,p,B,nil,op.∀f:nat→B. n ≤ k →

(∀i . n ≤ i → i < k →p i = false) →
\big[op,nil ] {i < n | p i}(f i ) = \big[op,nil ] {i < k | p i}(f i ).� �
More interesting decompositions can be obtained in case the operator is associa-

tive. For example, we can use the following lemma to decompose an interval in two
parts:� �
theorem bigop sumI: ∀a,b,c,p,B.∀nil.∀op:Aop B nil.∀f:nat→B.
a ≤b →b ≤ c →
\big[op,nil ] {i∈ [a,c[ | p i}(f i ) =

op (\big[op,nil ] {i ∈ [b,c[ | p i}(f i )) (\big[op,nil ] {i ∈ [a,b[ | p i}(f i )).� �
Aop is the type of associative operators, defined in the following way:� �

record Aop (A:Type[0]) (nil:A) : Type[0] :=
{op :2> A →A →A;

nill :∀a. op nil a = a;
nilr :∀a. op a nil = a;
assoc: ∀a,b,c.op a (op b c) = op (op a b) c
}.� �
A slightly more complex theorem, that plays a crucial role for the commutation

of bigops, is the following one, exploiting the decomposition of an integer i in the
range [0, k1×k2[ as a pair 〈i/k2, i mod k2〉 where the first component ranges in the
interval [0, k1[ and the second one in the interval [0, k2[.� �
theorem bigop prod: ∀k1,k2,p1,p2,B.∀nil.∀op:Aop B nil.∀f: nat →nat →B.
\big[op,nil ] {x<k1|p1 x}(\big[op,nil] {i<k2|p2 x i}(f x i )) =
\big[op,nil ] {i<k1∗k2|andb (p1 (i/k2)) (p2 (i/k2) (i \mod k2))}

(f ( i/k2) ( i \mod k2)).� �
Things become really interesting when the operator is also commutative, since in

this case the order in which elements in the range are processed becomes irrelevant.
For instance, a very useful lemma is the following one, allowing to single out a

specific element i from the range, processing it independently:� �
lemma bigop diff: ∀p,B.∀nil.∀op:ACop B nil.∀f:nat →B.∀i,n.

i < n →p i = true →
\big[op,nil ] {x<n|p x}(f x)=

op (f i ) (\big[op,nil ] {x<n|andb(notb(eqb i x))(p x)}(f x)).� �
Another, more general one states that the semantics of the bigops is the same,

provided the ranges are isomorphic.
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� �
theorem bigop iso: ∀n1,n2,p1,p2,B.∀nil.∀op:ACop B nil.∀f1,f2.

iso B (mk range B f1 n1 p1) (mk range B f2 n2 p2) →
\big[op,nil ] {i<n1|p1 i}(f1 i ) = \big[op,nil ] {i<n2|p2 i}(f2 i ).� �
As a corollary, we obtain the following commutation result, extremely useful for

our development.� �
theorem bigop commute: ∀n,m,p11,p12,p21,p22,B.∀nil.∀op:ACop B nil.∀f.
0 < n → 0 < m →
(∀i , j . i < n → j < m → (p11 i ∧p12 i j) = (p21 j ∧ p22 i j )) →
\big[op,nil ] {i<n|p11 i}(\big[op,nil ] {j<m|p12 i j}(f i j )) =
\big[op,nil ] {j<m|p21 j}(\big[op,nil] {i<n|p22 i j}(f i j )).� �
A final set of lemma is devoted to distributivity. In this case, we expect to have

two operators sum and prod, such that sum is associative and commutative, and
prod distributes over sum:� �
record Dop (A:Type[0]) (nil:A): Type[0] :=
{sum : ACop A nil;
prod: A →A →A;
null : \ forall a. prod a nil = nil ;
distr : ∀a,b,c:A. prod a (sum b c) = sum (prod a b) (prod a c)
}.� �
One of the main results is the following one, whose reading is immediate:� �

theorem bigop distr: ∀n,p,B,nil.∀R:Dop B nil.∀f,a.
let aop :=sum B nil R in
let mop :=prod B nil R in
mop a \big[aop,nil] {i<n|p i}(f i ) =
\big[aop,nil ] {i<n|p i}(mop a (f i )).� �

3. PRIMES AND THE FACTORIAL FUNCTION

As we already said, the starting point of Chebyshev was the following decomposition
of the factorial of n (see e.g. [13], p. 342).

n! =
∏
p≤n

∏
i<logp n

pn/p
i+1

(3)

Giving a formal proof of the previous statement requires some work, starting from
the definition of the order of a prime p in a number n, and the properties of this
function.

3.1 Order of a prime

Every integer n may be uniquely decomposed as the product of all its prime factors.
For our purposes, we also need to take into account the so called order ord p n of
each prime p in n, that is the multiplicity of p as a factor of n.

This function can be algorithmically defined by iterating the division operator
until (n mod p) 6= 0, increasing a counter at each iteration. However, since Matita
only accepts well founded recursive definitions, we also need to provide an upper
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bound k to the number of iterations (that in is this case can initialized to n itself).
It is also convenient to compute, at the same time with the order of p in n, the
remainder of n after removing all p-factors.� �
let rec p ord aux k n p :=

match n \mod p with
[ O ⇒

match k with
[ O ⇒ 〈O,n〉 (∗ dummy ∗)
| S k0 ⇒ let 〈q,r〉 :=p ord aux k0 (n / p) m in 〈S q,r〉]

| S ⇒ 〈O,n〉].

(∗ p ord n p = <q,r> if p divides n q times, with remainder r ∗)
definition p ord :=λn,p:nat.p ord aux n n p.

definition ord :nat →nat →nat :=λn,p. fst ?? (p ord n p).

definition ord rem :nat →nat →nat :=λn,p. snd ?? (p ord n p).� �
The behavior of the previous functions is essentially captured by the following

theorems, but a small library of about 30 lemmas help to work with them in a
comfortable way.� �
theorem exp ord: ∀p,n. 1 < p →O < n →

n = pˆ(ord n p) ∗ (ord rem n p).� �� �
theorem not divides ord rem: ∀m,p.O < m → 1 < p →

p 6 | (ord rem m p).� �
The following result characterizes the order of p in n as the number of times pi+1

divides n.� �
theorem eq ord sigma p: ∀n,m,p. O < n →prime p →

pˆm ≤ n → n < pˆ(S m) →
ord n p =

∑
{i < m | dividesb (pˆ(S i)) n} 1.� �

3.2 Factorization

With the help of the order function, the factorization of a natural number n can
now be expressed in the following way:� �
theorem factorization: ∀n. O < n →

n =
∏
{ p < (S n) | primeb p}(pˆ(ord n p)).� �

The idea for proving the previous result is to work by induction on the upper
bound of the product, namely n; the problem is that n appears many times in
the statement with different roles, and a brute force approach would not provide
the suitable induction hypothesis. We need first to generalize a bit the statement,
making the bound more independent from the integer being factorized. In fact, the
statement remains true provided the range of the product covers any prime that is
a divisor of n, and we can take as an upper bound their maximum:
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� �
lemma max to factorization: ∀q,m. O<m →

max (S m) (λi.primeb i ∧ dividesb i m)<q →
m =

∏
{p < q | primeb p ∧ dividesb p m} (pˆ(ord m p)).� �

This result can now be proved by induction on m: the proof is not entirely straight-
forward (it takes about 100 lines in Matita) but it does not present any major
conceptual difficulty.

3.3 Factorial

The factorial function is defined in matita in a recursive way:� �
let rec fact n :=

match n with [ O ⇒ 1 | S m ⇒ fact m ∗ S m].� �
For our purposes we need however to exploit its representation in the form of a big
product (a theorem that is easily proved by induction on n):� �
theorem eq fact pi:∀n.

fact n =
∏
{i ∈[1,S n[ } i .

qed.� �
We have now the right machinery to prove Chebyshev’s decomposition of the fac-
torial function of equation 2. Formally:� �
theorem fact pi decomp: ∀n.
fact n =

∏
{ p < S n | primeb p}(

∏
{i < log p n} (pˆ(n /(pˆ(S i))))).� �

The proof ( 130 lines) is summarized by the following chain of equations:

n! =
∏

1≤m≤n

m

=
∏

1≤m≤n

∏
p≤m

∏
i < logpm

pi+1|m

p

=
∏
p≤n

∏
p≤m≤n

∏
i < logpm

pi+1|m

p

=
∏
p≤n

∏
i<logp n

∏
m ≤ n
pi+1|m

p

=
∏
p≤n

∏
i<logp n

pn/p
i+1

In particular, for 2n we have:

(2n)! =
∏
p≤2n

∏
i<logp 2n

p2n/p
i+1

(4)
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Let us decompose 2n
pi+1 in the following way:

2n

pi+1
= 2

n

pi+1
+

(
2n

pi+1
mod 2

)
Moreover, if n ≤ p or logp n ≤ i we have

n

pi+1
= 0

Hence, if we define

B(n) =
∏
p≤n

∏
i<logp n

p(n/p
i+1 mod 2)

equation (4) becomes

(2n)! = n!2B(2n) (5)

B(2n) is thus the binomial coefficient
(
2n
n

)
.

The formal definition of B in Matita looks as follows:� �
definition B :=λn.∏

{p < S n | primeb p}(
∏
{i < log p n} (pˆ((n /(pˆ(S i))) \mod 2))).� �

It is worth to remark that the definition is computable; these are some typical
values of B, for small integers:� �
example B 3: B 3 = 6. // qed.
example B 4: B 4 = 6. // qed.
example B 5: B 5 = 30. // qed.
example B 6: B 6 = 20. // qed.
example B 7: B 7 = 140. // qed.
example B 8: B 8 = 70. // qed.� �
Equation 4 is expressed by the following theorem:� �
theorem eq fact B:∀n. 1 < n → (2∗n)! = n!ˆ2 ∗ B(2∗n).� �
3.4 Upper and lower bounds for B

The next step is to provide upper and lower bounds for B.
It is well known that, for any n, (2n)! ≤ 22n−1n!2. For technical reasons, we need

however a slightly stronger result, namely,

(2n)! ≤ 22n−2n!2

that holds for any n larger than 4.� �
theorem lt 4 to fact: ∀n.4<n → (2∗n)! ≤ 2ˆ((2∗n)−2)∗n!∗n!.� �
The proof is by induction on n.
The base case amounts to check that 10! ≤ 285!2, that can be proved by a mere
computation (after a few simplifications).
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In the inductive case

(2 · (n+ 1))! = (2n+ 2)(2n+ 1)(2n)!

≤ (2n+ 2)(2n+ 1)22n−2n!2

≤ (2n+ 2)(2n+ 2)22n−2n!2

= 22n(n+ 1)!2

So, by equation (5), we conclude that, for any n

B(2n) ≤ 22n−1 (6)

and when n is larger than 4,

B(2n) ≤ 22n−2 (7)� �
theorem lt 4 to le B exp: ∀n.4 < n →B (2∗n) ≤ 2ˆ((2∗n)−2).� �
Similarly, we establish the following lower bound for the factorial function:� �
theorem exp to fact2: ∀n.O < n → 2ˆ(2∗n)∗n!ˆ2 ≤ 2∗n∗(2∗n)!.� �
The proof is by induction on n. For n = 1 both sides reduce to 4. For n > 1,

22n+2(n+ 1)!2 = 4(n+ 1)222nn!

= 4(n+ 1)22n(2n)!

= 4(n+ 1)(n+ 1)2n(2n)!

≤ 4(n+ 1)(n+ 1)(2n+ 1)(2n)!

= 2(n+ 1)(2n+ 2)(2n+ 1)(2n)!

= 2(n+ 1)(2n+ 2)!

By equation (5), we finally obtain our lower bound for B:� �
theorem le exp B: ∀n. O < n. 2ˆ(2∗n) ≤ 2 ∗ n ∗ B (2∗n).� �
Since for any n, 2n ≤ 2n, we also have

2n ≤ B(2n) (8)

but this is less precise and less useful.

4. CHEBYSHEV’S Ψ FUNCTION

Let prim n be the function that counts the number of prime numbers below n
(included). A possible definition of prim is the following:� �
definition prim :=λn.

∑
{i < S n | primeb i} 1.� �

Let us now consider the following function

Ψ(n) =
∏
p≤n

plogp n

where the product ranges over all primes less or equal to n.
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� �
definition Psi: nat →nat :=
λn.

∏
{p < S n | primeb p} (pˆ(log p n)).� �

Actually, Chebyshev’s ψ function is the naperian logarithm of our function Ψ, but
as we mentioned in the introduction, we prefer to avoid the use of logarithms as far
as possible.
As usual, the function Ψ is computable:� �
example Psi 1: Psi 1 = 1. // qed.
example Psi 2: Psi 2 = 2. // qed.
example Psi 3: Psi 3 = 6. // qed.
example Psi 4: Psi 4 = 12. // qed.� �
The relation between Ψ and π should be clear; since

plogp n ≤ n

we immediately get� �
theorem le Psil: ∀n. Psi n ≤nˆ(prim n).� �
Moreover, since n < aloga n+1, we also have n < a2 loga n, and hence� �
theorem lePsi r2: ∀n. nˆ(prim n) ≤Psi n ∗ Psi n.� �
Let us now rewrite Psi n in the following equivalent form:� �
definition Psi ’: nat → nat :=
λn.

∏
{p < S n | primeb p} (

∏
{i < log p n} p).� �

We can easily prove� �
theorem eq Psi Psi’: ∀n.Psi n = Psi’ n.� �
and it is then clear, by the definition of B and Psi′, that� �
theorem le B Psi: ∀n. B n ≤Psi n.� �
Hence, the lower bound for B immediately gives a lower bound for Ψ, namely

2n ≤ 22n/2n ≤ Ψ(2n) (9)

For the upper bound, let us first observe that

Ψ(2n) = Ψ(n)
∏
p≤2n

∏
i<logp 2n

pj(n,p,i) (10)
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where j(n, p, i) is 1 if n < pi+1 and 0 otherwise. Indeed

Ψ(2n) =
∏
p≤2n

∏
i<logp 2n

p

=

 ∏
p≤2n

∏
i<logp 2n

pj(n,p,i)

 ∏
p≤2n

∏
i<logp 2n

p1−j(n,p,i)


= Ψ(n)

∏
p≤2n

∏
i<logp 2n

pj(n,p,i)

Formally, this is stated by the following result (the formal proof takes about 50
lines).� �
theorem eq Psi 2 n: ∀n.O < n →
Psi(2∗n) =∏

{p <S (2∗n) | primeb p}(
∏
{i <log p (2∗n)} (pˆ(leb (S n) (pˆ(S i))))) ∗ Psi n.� �

where the boolean expression (leb (S n) (p^(S i))) is automatically converted
to an integer through an implicit coercion mapping false to 0 and true to 1.
Then, observe that∏

p≤2n

∏
i<logp 2n

pj(n,p,i) ≤ B(2n) =
∏

p≤2n

∏
i<logp 2n

p(2n/p
i+1 mod 2) (11)

since if n < pi+1 then 2n/pi+1 mod 2 = 1. So we may conclude� �
theorem le Psi BPsi: ∀n. Psi(2∗n) ≤B(2∗n)∗Psi n.� �
In particular, for any n

Ψ(2n) ≤ 22n−1Ψ(n) (12)

and for 4 < n

Ψ(2n) ≤ 22n−2Ψ(n) (13)

We may now use inductively these estimates to prove� �
theorem le Psi exp: ∀n. Psi(n) ≤ 2ˆ((2 ∗ n) −3).� �
For the proof, we need the monotonicity of Ψ, that is easily proved:

Ψ(n) =
∏
p≤n

plogp n ≤
∏
p≤n

plogp(n+1) ≤
∏

p≤n+1

plogp(n+1) = Ψ(n+ 1) (14)

Then we check that the property holds for any n ≤ 8, which can be done by direct
computation. If n is larger than 8 we distinguish two cases, according to n is even
or odd. We only consider the case n = 2m + 1 that is the most interesting one.
Observe first that 8 < 2m+ 1 implies 4 < m. Then we have:

Ψ(n) = Ψ(2m+ 1)

≤ Ψ(2m+ 2)

≤ 22mΨ(m+ 1)

≤ 22m22(m+1)−3

≤ 22(2m+1)−3
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In conclusion, we have

2n/2 ≤ Ψ(n) ≤ nπ(n) ≤ Ψ(n)2 ≤ 24n−6 ≤ 24n (15)

5. BERTRAND’S POSTULATE

Our approach to Chebyshev’s theorem, as most modern presentations of the sub-
ject, essentially follows Chebyshev’s original idea, but in a rudimentary form which
provides a result that is numerically less precise, though of a similar nature. In
particular, Chebyshev was able to prove the asymptotic estimates

(c1 + o(1))
n

log n
≤ π(n) ≤ (c2 + o(1))

n

log n
(n→∞)

with

c1 = log(21/231/351/530−1/30) ≈ 0.92129

c2 = 6/5c1 ≈ 1.10555

In particular, since c2 < 2c1, this implies that

π(2n) > π(n)

for all large n. Actually, by direct computation, Chebyshev proved that the in-
equality remains true for all n, confirming for the first time Bertrand’s postulate.

With our rough estimates, we could only prove the existence of a prime number
between n and 8n, for n sufficiently large. There exists however an alternative
approach to the proof of Bertrand’s postulate due to Erdös [10] (see also [13],
p. 344) that is well suited to a formal encoding in arithmetics1.

5.1 Bertrand’s predicate

Let us define the following Bertands’ predicate:� �
definition bertrand :=λn. ∃p.n < p ∧p ≤ 2∗n ∧ prime p.� �
Bertrand’s postulate is the conjecture that the previous predicate holds for any
natural number n.

Erdös proof is essentially a proof by contradiction; supposing the predicate to be
false, he derives an absurdity. The negation of Bertrand’s predicate is� �
definition not bertrand :=λn.∀p.n < p →p ≤ 2∗n →¬ (prime p).� �
Since the quantification is bound, the predicate is decidable, that means that, even
in a system like Matita which has a constructive nature, you can prove� �
theorem not not bertrand to bertrand: ∀n. ¬ (not bertrand n) →bertrand n.� �
1Erdös argument was already exploited by Théry in his proof of Bertrand postulate [21]; however

he failed to provide a fully arithmetical proof, being forced to make use of the (classical, axiomatic)
library of Coq reals to solve the remaining inequalities.
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5.2 Chebyshev’s θ function

In order to use Erdös argument we need to introduce another important function
introduced by Chebyshev and largely used in analytic number theory [1]: the so
called theta-function.

In particular, we shall work with the following variant (as for the Ψ function,
Chebyshev’s function is the naperian logarithm of our function)� �
definition theta: nat → nat :=λn.

∏
{p < S n| primeb p} p.� �

It is clear that for any n, θ(n) ≤ Ψ(n), so our upper bound for Ψ is also an upper
bound for θ. Since however providing an upper bound for θ(n) is much simpler, we
recall this direct argument here.
Let us split θ(2n+ 1) in two parts:� �
theorem theta split: ∀m. theta (S (2∗m))
= (

∏
{p ∈[S(S m)),S (S (2∗m))[ | primeb p} p)∗theta (S m).� �

Let us now consider the following binomial coefficient M(m) = (2m+1
m ) = (2m+1)!

m!m!� �
definition M :=λm.bc (S(2∗m)) m.� �
Using the binomial law, it is not difficult to prove that� �
theorem lt M: ∀m. O < m →M m < 2ˆ(2∗m).� �
Every prime p between m+ 2 and 2m+ 1 must be a divisor of (2m+ 1)! and hence
of M(m), so� �
theorem divides pi p M: ∀m.∏

{p ∈[S(S m)),S (S (2∗m))[ | primeb p} p | (M m).
qed.� �
As a corollary,� �
theorem le pi p M: ∀m.∏

{p ∈[S(S m)),S (S (2∗m))[ | primeb p} p ≤ (M m).� �
and also� �
theorem le theta M theta: ∀m.

theta (S(2∗m)) ≤ (M m)∗theta (S m).� �
Let us also observe that, since a prime larger than 2 cannot be even,� �
theorem theta pred: ∀n. 1 < n → theta (2∗n) = theta (pred (2∗n)).� �
We are now ready to prove the following statement:� �
theorem le theta: ∀m.theta m ≤ 2ˆ(2∗m).� �
The proof is by (generalized) induction on m. Let us suppose the statement is true
for any n < m, and let us prove it for m. Either m is even or it is odd (the two
cases are similar, and we only consider the first one (the other case is similar, using
theorem theta_pred). Let us suppose m = 2a+ 1. Then

θ(2a+ 1) ≤ (Ma) ∗ theta(Sa) ≤ 22a · 22(a+1) = 22(2a+1)
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5.3 Erdös argument

Let

k(n, p) =
∑

i<logp n

(n/pi+1 mod 2)

Then, B can also be written as

B(n) =
∏
p≤n

pk(n,p)

We now split this product in two parts B1 and B2, according to k(n, p) = 1 or
k(n, p) > 1.� �
definition k :=λn,p.

∑
{i < log p n}((n/(pˆ(S i))\mod 2)).

definition Bk :=λn.
∏
{p < S n | primeb p}(pˆ(k n p)).

theorem eq B Bk: ∀n. B n = Bk n.

definition B1 :=λn.
∏
{p < S n | primeb p}(pˆ(leb (k n p) 1)∗ (k n p)).

definition B2 :=λn.
∏
{p < S n | primeb p}(pˆ(leb 2 (k n p))∗ (k n p)).

theorem eq Bk B1 B2: ∀n. Bk n = B1 n ∗ B2 n.� �
Suppose that Bertrand postulate is false, hence there is no prime between n and

2n. Moreover, if 2n
3 < p ≤ n, then 2n/p = 2 and for i > 1 and n ≥ 6 2n/pi = 0

since

2n ≤
(

2n

3

)2

≤ pi

so k(2n, p) = 0. Summing up, under the assumption that Bertrand postulate is
false,

B1(2n) =
∏

p ≤ 2n
k(2n, p) = 1

p =
∏

p≤2n/3

p ≤ θ(2n/3) ≤ 22(2n/3) (16)

� �
le B1 theta:∀n.6 ≤n →not bertrand n →B1 (2∗n) ≤ theta (2 ∗ n / 3).� �

On the other side, note that k(n, p) ≤ logp n, so if k(2n, p) ≥ 2 we also have

logp 2n ≥ 2 that implies p ≤
√

2n. So

B2(2n) =
∏

p ≤ 2n
2 ≤ k(2n, p)

pk(2n,p) ≤
∏

p≤
√
2n

2n = (2n)π(
√
2n) (17)

For n ≥ 15, π(n) ≤ n/2− 1. Hence, for any n ≥ 27 > 152, we have

B2(2n) ≤ (2n)
√
2n/2−1

Formally:
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� �
theorem le B2 exp: ∀n. 2ˆ7 ≤ n →B2 (2∗n) ≤ (2∗n)ˆ(pred(sqrt(2∗n)/2)).� �
Putting everything together, supposing Bertrand’s postulate is false, we would have,
for any n ≥ 27

22n ≤ 2nB(2n)

= 2nB1(2n)B2(2n)

≤ 22(2n/3)(2n)
√
2n/2

Observe that

22n = 22(2n/3)22n/3

so, by cancellation,

22n/3 ≤ (2n)
√
2n/2

and taking logarithms

2n

3
≤
√

2n

2
(log(2n) + 1)� �

theorem not bertrand to le2:
∀n.2ˆ7 ≤n →not bertrand n → 2∗n / 3 ≤ (sqrt(2∗n)/2)∗S(log 2 (2∗n)).� �

We want to find an integer m such that for all values larger than m the previous
equation is false; moreover, the integer m must be sufficiently small to allow to
check the remaining cases automatically in a feasible time. The trouble is that, in
our case, all operations are discrete, and it is not so easy to reason about inequalities
in arithmetics.
We must prove

√
2n

2
(log(2n) + 1) <

2n

3

The strict inequality is the first source of trouble, so we prove instead
√

2n

2
(log(2n) + 1) ≤ 2n

4

using the fact that

n

m+ 1
<

n

m

for any n ≥ m2 (in our case, n ≥ 8). By means of simple manipulations, it is easy
to transform the last equation in the following simpler form

2(log(2n) + 1) ≤
√

2n

or equivalently

2(log n+ 2)2 ≤ n

We now use the fact that for any a > 0 and any n ≥ 4a

2an2 ≤ 2n
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to get, for any n ≥ 28

2(log n+ 2)2 ≤ 4(log n)2 = 22(log n)2 ≤ 2logn ≤ n

In conlcusion, we are able to prove� �
lemma sqrt bound: ∀n. 2ˆ8 ≤n → 2∗(S(log 2 (2∗n))) ≤ sqrt (2∗n).� �
and hence, as a simple corollary� �
theorem bertrand up: ∀n. 2ˆ8 ≤n →bertrand n.� �
5.4 Automatic check

To complete the proof, we have still to check that Bertrand’s postulate remains
true for all integers less then 28. This is very simple in principle: it is sufficient to

(1) generate the list of all primes up to the first prime larger than 28 (in reverse
order)

(2) check that for any pair pi, pi+1 of consecutive primes in such list, pi < 2pi+1

Both the generation of the list and its check can be performed automatically. All
we have to do is to prove that our algorithm for generating primes is correct and
complete, and that the previous check is equivalent to Bertrand’s postulate, on the
given interval.

With respect to the version discussed in [3], this part of the proof has been
completely rewritten and substantially simplified.

5.5 The list of primes

To compute the list of prime numbers, we use the following simple algorithm. We
first define a function list_divides l n that returns true if l contains at least a
divisor of n and false otherwise.� �
let rec list divides l n :=

match l with
[ nil ⇒ false
| cons (m:nat) (tl : list nat) ⇒ orb (dividesb m n) (list divides tl n) ].� �� �

let rec lprim m i acc :=
match m with
[ O ⇒ acc
| S m1 ⇒match (list divides acc i) with

[ true ⇒ lprim m1 (S i) acc
| false ⇒ lprim m1 (S i) (acc@[i]) ]].

definition list of primes :=λn. lprim n 2 [].� �
For instance,� �

example lprim ex: lprim 8 2 [ ] = [2; 3 ; 5 ; 7 ]. // qed.� �
Let us define a predicate primes_below l n stating that the list l is the list of

all primes strictly below n.
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� �
definition all primes :=λl.∀p. mem nat p l →prime p.
definition all below :=λl,n.∀p. mem nat p l →p < n.
definition primes all :=λl,n. ∀p. prime p →p < n →mem nat p l.

definition primes below :=λl,n. all primes l ∧ all below l n ∧ primes all l n.� �
Then, by the definition of prime number, it is easy to prove that� �
lemma ld to prime: ∀i,acc. 1 < i →

primes below acc i → list divides acc i = false →prime i.� �
Using the previous property we can then prove the main invariant of the lprim

function, namely:� �
lemma lprim invariant: ∀n,i,acc. 1 < i →

primes below acc i → primes below (lprim n i acc) (n+i).� �
Since moreover� �
lemma primes below2: primes below [] 2.� �
we obtain� �
lemma primes below lop: ∀n. primes below (list of primes n) (n+2).� �
5.6 Checking

We perform the following test on the list:� �
let rec checker l :=

match l with
[ nil ⇒ true
| cons hd tl ⇒match tl with

[ nil ⇒ true
| cons hd1 tl1 ⇒ leb (S hd) hd1 ∧ leb hd1 (2∗hd) ∧ checker tl

]
].� �

Then, working by induction on the list, it is easy to prove the following property:� �
theorem checker spec: ∀tl,a,l. checker l = true → l = a:: tl →
∀p. mem ? p tl →∃pp. mem nat pp l ∧pp < p ∧ p ≤ 2∗pp.� �
The last step consists in proving that the previous condition is enough to entail

Bertrand’s property for all n below the maximum prime in the list:� �
theorem primes below to bertrand:
∀pm,l.prime pm →primes below l (S pm) →

(∀p. mem ? p l → 2 < p →∃pp. mem ? pp l ∧ pp < p ∧p ≤ 2∗pp)
→∀n.0 < n →n < pm →bertrand n.� �

Finally we have just to compute the list of primes below 28 + 1 (that is prime),
and apply the previous results to conclude

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.



6 CONCLUSIONS 55

� �
lemma bertrand down : ∀n.O < n →n ≤ 2ˆ8 →bertrand n.� �
The generation of the list of primes and its check takes less than 5 seconds.
Putting together this result with theorem bertrand_up, we finally get� �
theorem bertrand : ∀n.O < n →bertrand n.� �
6. CONCLUSIONS

In this paper we presented the formalization, in the Matita interactive theorem
prover, of some results about Chebyshev’s functions ψ and θ, comprising a proof of
Bertrand’s postulate following the approach of Erdös [10]. The subject, even from
the point of view of formalization, is not completely original (see e.g. [21, 18]). For
us, it was mostly an opportunity to present and discuss the many novelties recently
introduced in Matita, comparing the old development relative to version 0.5.2 of
the system [5] and described in [3], with the current development relative to version
0.99 of the system.

While porting it to the new version of the system, the arithmetical library has
undergone a deep revisitation, integration and restructuring, comprising e.g. the
new library of big operators discussed in section 2.

The table in Figure 2 makes a comparison between the two versions of the proof:
for each file the first dimension is the number of lines, while the second one is the
number of theorems.

file Matita 0.5.2 Matita 0.99

logarithms 413 (20) 223 (21)

square root 217 (13) 221 (19)
binomial coeff. 259 (9) 192 (12)
order of primes 656 (33) 411 (37)

big operators 978 (30) 425 (27)
sigma and pi 526 (26) 188 (9)
factorial 325 (14) 145 (12)

chebyshev’s theta 486 (13) 213 (13)
chebishev’s psi 294 (11) 143 (13)

factorization 927 (25) 629 (32)

psi bounds 1123 (37) 507 (30)
bertrand (up) 683 (18) 446 (27)

bertrand (down) 526 (22) 240 (19)

total 7413 (271) 3983 (271)

Fig. 1. Size of the developments

In passing from version 0.5.2 to version 0.99 the size of the development has been
essentially reduced to one half, passing from an average of 28 lines per theorem to
less than 15.

This is essentially due to two factors: the first one is the new compact syntax for
tactics, in the spirit of the SSReflect language [12]; the second one is the support for
small scale automation [7, 6] that relieves the user from spelling out a lot of trivial
steps. The difference can be appreciated by the following table, summarizing the
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number of invocations of the most frequent tactics in the two versions of the above
files.

Matita 0.5.2 Matita 0.99

tactic name no. name no.

application apply 2203 @ 1792

assumption 779

rewriting rewrite 1110 < / > 984
reflexivity 244

simplification simplify 255 normalize 122
whd 76

introduction intro/intros 435 # 1904

elimination cases 306 cases 190

elim 131 elim 92
* 62

cut cut 89 cut 148

automation auto 10 // 943

Fig. 2. Number of tactics invocations

The 943 invocations of the auto tactic in version 0.99 not only replace the 779
invocations of “assumption” and the 244 invocations of “reflexivity”, but are also
responsible of the sensible reduction in the number of applications and rewritings.
The increase in the number of invocations of the introduction tactic is merely due
to the fact that the old tactic performed multiple introductions, delegating to the
system the choice of names, while the new tactic is nominal, and handles a single
variable at a time.

In Hardy’s book [13], the proof of Bertrand’s postulate takes 42 lines, while
Chebyshev’s theorem takes precisely three pages (90 lines). With the new version
of the proof, this gives a de Brujin factor between 8 and 10, that is in line with
other formalization case studies in the realm of arithmetics [8, 15, 14].
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