
Standardization and Confluence in Pure λ-Calculus
Formalized for the Matita Theorem Prover

Ferruccio Guidi

Department of Computer Science and Engineering

University of Bologna

Mura Anteo Zamboni 7, 40127, Bologna, ITALY

e-mail: fguidi@cs.unibo.it

We present a formalization of pure λ-calculus for the Matita interactive theorem prover, including
the proofs of two relevant results in reduction theory: the confluence theorem and the standard-

ization theorem. The proof of the latter is based on a new approach recently introduced by Xi

and refined by Kashima that, avoiding the notion of development and having a neat inductive
structure, is particularly suited for formalization in theorem provers.

1. INTRODUCTION

Standardization and confluence are two fundamental properties of β-reduction se-
quences in pure λ-calculus [Bar85]. In order to state these properties, we will denote
λ-terms with the capital letters A, B, C, D, M , N , and will agree that by a com-
putation we mean a reduction sequence. In particular, a sequential computation is
such that a single redex is contracted in every step.

The standardization theorem asserts that if M computes to N , then there is
computation from M to N which is standard in that redexes contracted in each
step are not “left” residuals of redexes contracted in the previous steps.

The confluence theorem, also known as the Church-Rosser property, asserts that
if M computes to N1 and to N2, then there is an N which both N1 and N2 compute
to. This is to say that N1 and N2 have a common reduct.

We remark that by “λ-calculus” we presently mean the λKβ-calculus.
Here we discuss how we formalized the proofs of these propositions for the Matita

interactive theorem prover [ARST11], with the final aim of providing a set of rele-
vant results on pure λ-calculus to the HELM digital library [APS+03].

Matita uses the Calculus of Inductive Constructions [CP90] as metalanguage, in
a variant similar to the one underlying the Coq proof management system [Coq12].
We tried to present things in a such a way that a limited knowledge of Matita’s
specification language, both in its syntactical and semantical aspects, is required.

As to confluence, we follow the proof of Tait and Matin-Löf based on parallel
reduction [Tak95], which has already been formalized in several logical frameworks
(see for instance [Pfe92]). This proof was chosen because it does not require to
extend the pure λ-calculus with marks for tracing redexes.

As to standardization, we follow essentially the proof of Xi [Xi99] in the partic-
ularly clear presentation made by Kashima [Kas00]. This novel approach entirely
avoids delicate notions such as residual or development and is entirely based on
structural induction on λ-terms and derivations, resulting particularly appealing

Journal of Formalized Reasoning Vol. 5, No. 1, 2012, Pages 1–25.

2 · Ferruccio Guidi

for formalization in interactive provers. Previous formal proofs of standardization,
like [MP99], are sensibly more entangled than the one we shall describe here.

In order to define the notion of standard derivation, Kashima associates to each
redex a natural number, termed its degree in [RP04], corresponding to its position
in a “left-to-right” visit of the term. This system of reference is a bit inconvenient
in the perspective of a formalization: firstly it requires an ancillary function to
compute the number of redexes occurring in a term, secondly it forces to add at
least two clauses to the definition of the relation “M reduces to N contracting one
redex that is referred as n” with respect to the case in which n is not specified.

To solve these inconveniences, we adopt a system of reference by pointers that
are paths in the tree representation of terms, for the specification of which, strings
of boolean values suffice. Following the ideas of Kashima, pointers can be given an
order reflecting the standard reduction order as defined by means of residuals, and
that is equivalent to the “left-to-right” order induced by degrees.

Our exposition is organized as follows. Section 2 contains the part of our for-
malization that is not directly related to λ-calculus. As a formal system, pure
λ-calculus has two components, which we discuss in Section 3 and Section 4. The
structural component comprises the description of terms, with α-conversion, and
with substitution. The behavioral component includes reduction and computation.
Conversion is not considered in this work. Our conclusions are in Section 5.

The formalization we are presenting in this article takes advantage of our long-
time experience in the machine-checked specification of λ-calculus [Gui06] acquired
by developing the formal system λδ [Gui09] since 2004.

2. BACKGROUND AND PRINCIPLES OF THE FORMALIZATION

Our formalization is for Matita 0.99.1 and depends on some notions and facts
contained in the library provided with the prover. In particular we use logical
connectives, existential quantifiers (the universal quantifier is in the metalanguage),
Leibniz equality, general properties of relations especially concerning reflexive and
transitive closures, arithmetics of natural numbers, and monomorphic lists.

In this section we discuss the additions we felt necessary in order to facilitate the
formalization process. Some of them are now included in the library.

Of the many tactics provided by Matita’s proof engine, we use the following for
our proofs: intro, lapply, apply, elim, rewrite, cases, destruct, normalize, auto.

In particular, we manage to avoid generalize, and inversion. Our aversion for the
latter tactic, comes from Coq 7, which generates oversize proof terms by inlining
an inversion lemma in the proof at each invocation of the tactic. For instance,
Lemma pr0 confluence1 of [Gui06] contains 49 invocations of inversion producing
a proof that, as a tree, has 46103 nodes and takes more than six minutes to validate
on an AMD Athlon MP 1800+ at 1.5 GHz.

A newer and still unpublished version of the proof, produced without invoking
inversion, is 29% smaller than the former and consists of just 32593 nodes.

Moreover the inversion of Coq does not invert some recursive relations properly
since all inductive premises generated by the inversion procedure are removed from

1<http://lambdadelta.info/static/matita/basic 1/pr0/pr0/pr0 confluence.con.body.html>.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Standardization and Confluence · 3

the proof context. Nevertheless, this is not the expected behavior if one inverts the
type judgment of a λ-calculus that includes the type conversion rule.

Matita’s inversion does not inline an inversion lemma and keeps the inductive
premises in place, yet we prefer to encapsulate the inversion proof steps in inversion
lemmas that follow the style of the well-known “inversion lemma” for Pure Type
Systems [Bar93] and that we prove by a combination of cases and destruct.

Furthermore, we hide types as much as possible following [Gui10]. For this reason
we avoid the tactics that they take types as parameters.

We make a substantial use of auto to automate backward reasoning. Matita
automation tactics takes a few optional parameters to prune the search space. The
most relevant ones are depth and width: the first one is the maximum number of
applicative nodes in a branch of the proof, while the second one is the maximum
number of mutually dependent open goals along each branch.

Having experienced dramatic delays in the execution of auto due to the large span
of the proofs search space even at low depths, some precautions must be adopted.

On one hand, most propositions that look problematic in view of a backward
automatic synthesis of the proof should not be indexed for automation. These
include some transitive-like properties of relations and the propositions that are
designed to be applied in a forward reasoning manner as the inversion lemmas.

On the other hand we limit the search space depth by preferring flat n-ary logical
constructions over nested ones of fixed arity. This is to say that the proposition:

∃x1, . . . , xn.P1(x1, . . . , xn) ∧ . . . ∧ Pm(x1, . . . , xn)

is formalized with a single multiple existential quantifier rather than with:

∃x1.(. . . (∃xn.(. . . (P1(x1, . . . , xn) ∧ . . .) . . .) ∧ Pm(x1, . . . , xn)) . . .)

that is, by means of the standard existential quantifier and binary conjunction.
In the first form, the proposition is atomized at depth 1, i.e. by the backward

application of one constructor, whereas in the second form, the proposition is at-
omized at depth m+ n− 1, i.e. by applying m+ n− 1 constructors.

To this aim, we implemented an application that generates Matita’s scripts with
the definitions of multiple existential quantifies for a given set of pairs (m,n).

We stress that the case (6, 6) is realistic in the formalization of λ-calculus (see
Lemma pr0 gen appl2 and Lemma pr2 gen appl3 of [Gui06]).

The existential quantifier (2, 1) is in Matita’s library. In this formalization we
also use the instances: (2, 2), (2, 3), (3, 2), (3, 3), (4, 3), and a ternary disjunction.

2.1 Logic and Arithmetics

We use the following property of the existential quantifier (2, 1) in the proof of the
confluence theorem. Our multiple existential quantifiers are denoted by ∃∃.� �
lemma ex2 commute: ∀A0. ∀P0,P1:A0→Prop.

(∃∃x0. P0 x0 & P1 x0) → ∃∃x0. P1 x0 & P0 x0.� �
2<http://lambdadelta.info/static/matita/basic 1/pr0/fwd/pr0 gen appl.con.html>.
3<http://lambdadelta.info/static/matita/basic 1/pr2/fwd/pr2 gen appl.con.html>.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

4 · Ferruccio Guidi

We decided to avoid the logical negation (¬) and thus we activated the notation
for the logical contradiction (⊥) that is not active in Matita’s library.

The following propositions use this notation and our machine-generated ternary
disjunction connective (∨∨) in the context of natural arithmetics:� �
lemma lt refl false : ∀n. n < n → ⊥.

lemma lt zero false: ∀n. n < 0 → ⊥.

lemma plus lt false: ∀m,n. m + n < m →⊥.

lemma lt or eq or gt: ∀m,n. ∨∨m < n | n = m | n < m.� �
We also use the trichotomy operator tri returning a1, a2, or a3 depending on n1

being less, equal, or greater than n2. This function could be defined on top of the
library, but we believe that a direct definition is easier to deal with:� �
let rec tri (A:Type[0]) n1 n2 a1 a2 a3 on n1 : A

def
=

match n1 with
[O ⇒ match n2 with [O ⇒a2 | S n2 ⇒ a1]
| S n1 ⇒ match n2 with [O ⇒a3 | S n2 ⇒ tri A n1 n2 a1 a2 a3]
].

lemma tri lt: ∀A,a1,a2,a3,n2,n1. n1 < n2 → tri A n1 n2 a1 a2 a3 = a1.

lemma tri eq: ∀A,a1,a2,a3,n. tri A n n a1 a2 a3 = a2.

lemma tri gt: ∀A,a1,a2,a3,n1,n2. n2 < n1 → tri A n1 n2 a1 a2 a3 = a3.� �
Finally we need a general induction principle on a type A based on weight f :� �

lemma f ind aux: ∀A. ∀f:A→nat. ∀P:predicate A.
(∀n. (∀a. f a < n → P a) → ∀a. f a = n → P a) →
∀n,a. f a = n → P a.

lemma f ind: ∀A. ∀f:A→nat. ∀P:predicate A.
(∀n. (∀a. f a < n → P a) → ∀a. f a = n → P a) → ∀a. P a.� �

2.2 Relations and Lists

The reflexive and transitive closure of a relation is in the library:� �
inductive star (A:Type[0]) (R:relation A) (a:A): A → Prop

def
=

| sstep : ∀b,c. star A R a b → R b c → star A R a c
| srefl : star A R a a.� �

and comes with some standard properties about it.
We added the eliminator star ind l, that is not provided by Matita:� �

lemma star ind l: ∀A,R,a2. ∀P:predicate A.
P a2 →
(∀a1,a. R a1 a → star . . . R a a2 → P a → P a1) →
∀a1. star . . . R a1 a2 → P a1.� �

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Standardization and Confluence · 5

We also added a general notion of a confluent relation (see Subsection 4.4).
We show, through the well-known “strip” lemma, that the reflexive and transitive

closure of a confluent relation is confluent. This result will be used in Subsection 4.5.� �
definition singlevalued: ∀A,B. predicate (relation2 A B)

def
= λA,B,R.

∀a,b1. R a b1 → ∀b2. R a b2 → b1 = b2.

definition confluent1: ∀A. relation A → predicate A
def
= λA,R,a0.

∀a1. R a0 a1 → ∀a2. R a0 a2 →
∃∃a. R a1 a & R a2 a.

definition confluent: ∀A. predicate (relation A)
def
= λA,R.

∀a0. confluent1 . . . R a0.

lemma star strip: ∀A,R. confluent A R →
∀a0,a1. star . . . R a0 a1 → ∀a2. R a0 a2 →
∃∃a. R a1 a & star . . . R a2 a.

lemma star confluent: ∀A,R. confluent A R →confluent A (star . . . R).� �
A labeled sequential reduction (see Subsection 4.3) is a binary relation on terms

taking an extra argument and needing a dedicated reflexive and transitive closure:� �
inductive lstar (A:Type[0]) (B:Type[0]) (R: A→ relation B): list A → relation B

def
=

| lstar nil : ∀b. lstar A B R ([]) b b
| lstar cons : ∀a,b1,b. R a b1 b →

∀l ,b2. lstar A B R l b b2 → lstar A B R (a::l) b1 b2
.

definition ltransitive : ∀A,B:Type[0]. predicate (list A → relation B)
def
= λA,B,R.

∀l1,b1,b. R l1 b1 b → ∀l2,b2. R l2 b b2 → R (l1@l2) b1 b2.� �
The notion lstar comes with the standard properties derived from those of star.

In addition, we proved the following:� �
lemma lstar inv nil: ∀A,B,R,l,b1,b2. lstar A B R l b1 b2 → [] = l → b1 = b2.

lemma lstar inv cons: ∀A,B,R,l,b1,b2. lstar A B R l b1 b2 →
∀a0,l0 . a0 :: l0 = l →
∃∃b. R a0 b1 b & lstar A B R l0 b b2.

lemma lstar inv step: ∀A,B,R,a,b1,b2. lstar A B R ([a]) b1 b2 → R a b1 b2.

lemma lstar inv pos: ∀A,B,R,l,b1,b2. lstar A B R l b1 b2 → 0 < |l | →
∃∃a, ll ,b. a :: ll = l & R a b1 b & lstar A B R ll b b2.� �

Lemma lstar inv pos seems to be one of the deep grounds of the standardization
theorem as we understand from Lemma st lsred swap of Subsection 4.7.

We activated an alternative notation for the empty list (♦), because the notation
provided by the library ([]) clashes with our notation for substitution.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

6 · Ferruccio Guidi

Finally, we added a variant of All acting on a binary predicate (see Subsec-
tion 3.6) and a function map cons whose application is denoted by a ::: l:� �
let rec Allr (A:Type[0]) (R:relation A) (l : list A) on l : Prop

def
=

match l with
[nil ⇒ True
| cons a1 l ⇒ match l with [nil ⇒ True | cons a2 ⇒ R a1 a2 ∧ Allr A R l]
].

definition map cons: ∀A. A → list (list A) → list (list A)
def
= λA,a.

map . . . (cons . . . a).� �
3. THE STRUCTURAL COMPONENT OF PURE λ-CALCULUS

In this section we describe the structure of pure λ-terms and two related topics:
the support for α-conversion and for substitution. The last subsection is devoted
to the location of subterms through paths on the tree representation of λ-terms.

All the material in this section is relatively standard, and we only include it to
introduce the notation and for the sake of completeness.

3.1 Pure λ-Terms

Pure λ-terms are inductively generated from variable references (VRef), function
formations (Abst), and function applications (Appl):� �
inductive term: Type[0]

def
=

| VRef: nat → term
| Abst: term → term
| Appl: term → term → term
.� �

Variable references occur by depth [dB94] for a convenient management of α-
conversion and reduction. In particular, with this encoding two α-convertible terms
are syntactically equal. Our depths, also known as “de Bruijn indexes”, are natural
numbers starting at 0 rather than at 1. So all depths are legal and they will be
typically ranged over by the metavariables i and j.

The formation of the function with body M is denoted by λ.M , in which the
character λ is typeset in upright face (contrast with the character λ).

The application of the function M to the argument N is denoted here by @N.M
according to the “reversed” notation suggested in [KN96], that, among other ben-
efits, avoids precedence problems and keeps the matching abstraction-application
pairs close together improving the visual understanding of redexes.

Then we define some notions of compatibility with term constructors and we
prove that these notions are preserved by reflexive and transitive closures.� �
definition compatible abst: predicate (relation term)

def
= λR.

∀A1,A2. R A1 A2 →R (λ.A1) (λ.A2).

definition compatible sn: predicate (relation term)
def
= λR.

∀A,B1,B2. R B1 B2 →R (@B1.A) (@B2.A).� �
Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Standardization and Confluence · 7

� �
definition compatible dx: predicate (relation term)

def
= λR.

∀B,A1,A2. R A1 A2 →R (@B.A1) (@B.A2).

definition compatible appl: predicate (relation term)
def
= λR.

∀B1,B2. R B1 B2 →∀A1,A2. R A1 A2 →
R (@B1.A1) (@B2.A2).

lemma star compatible abst: ∀R. compatible abst R →compatible abst (star . . . R).

lemma star compatible sn: ∀R. compatible sn R →compatible sn (star . . . R).

lemma star compatible dx: ∀R. compatible dx R →compatible dx (star . . .R).

lemma star compatible appl: ∀R. reflexive ? R →
compatible appl R → compatible appl (star . . . R).� �

3.2 Relocation

The management of de Bruijn indexes requires the well-known function lift, here
denoted by ↑[d, h], that is related to the function τh of [dB94]. Here and in the
following d and e denote a level whereas h and k denote a relocation offset. The
function lift extends to terms the function d↑h : nat→ nat acting on indexes:

d↑h i
def
=

{
i if i < d
i+ h if i ≥ d

By applying this function some indexes are increased by the offset h (lifting). The
inverse operation, which decreases some indexes, is named delifting. Our theory of
lift is taken from [Gui06] and can be traced back to [Hue94].� �
let rec lift h d M on M

def
=match M with

[VRef i ⇒ #(tri . . . i d i (i + h) (i + h))
| Abst A ⇒ λ. (lift h (d+1) A)
| Appl B A ⇒ @(lift h d B). (lift h d A)
].

lemma lift vref lt : ∀d,h, i . i < d → ↑[d, h] #i = #i.

lemma lift vref ge: ∀d,h, i . d ≤ i → ↑[d, h] #i = #(i+h).

lemma lift id: ∀M,d. ↑[d, 0] M = M.� �
We provide the following inversion lemmas for lift:� �

lemma lift inv vref lt : ∀j ,d. j < d → ∀h,M. ↑[d, h] M = #j →M = #j.

lemma lift inv vref ge: ∀j ,d. d ≤ j → ∀h,M. ↑[d, h] M = #j →
d + h ≤ j ∧ M = #(j−h).

lemma lift inv vref be: ∀j ,d,h. d ≤ j → j < d + h → ∀M. ↑[d, h] M = #j →⊥.� �
Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

8 · Ferruccio Guidi

� �
lemma lift inv vref ge plus : ∀j ,d,h. d + h ≤ j →

∀M. ↑[d, h] M = #j →M = #(j−h).

lemma lift inv abst: ∀C,d,h,M. ↑[d, h] M = λ.C →
∃∃A. ↑[d+1, h] A = C & M = λ.A.

lemma lift inv appl: ∀D,C,d,h,M. ↑[d, h] M = @D.C →
∃∃B,A. ↑[d, h] B = D & ↑[d, h] A = C & M = @B.A.� �

Then we compute the compound relocation d2
↑h2

d1
↑h1 in the three cases: d2 ≤ d1

(“less or equal”), d1 ≤ d2 ≤ d1 +h1 (“between”), d1 +h1 ≤ d2 (“greater or equal”).
The proofs are by induction on the structure of M.� �

theorem lift lift le : ∀h1,h2,M,d1,d2. d2 ≤ d1 →
↑[d2, h2] ↑[d1, h1] M = ↑[d1 + h2, h1] ↑[d2, h2] M.

theorem lift lift be : ∀h1,h2,M,d1,d2. d1 ≤ d2 → d2 ≤ d1 + h1 →
↑[d2, h2] ↑[d1, h1] M = ↑[d1, h1 + h2] M.

theorem lift lift ge : ∀h1,h2,M,d1,d2. d1 + h1 ≤ d2 →
↑[d2, h2] ↑[d1, h1] M = ↑[d1, h1] ↑[d2 − h1, h2] M.� �

The inverse propositions of the above are also provided.
The proofs are by induction on the structure of M1.� �

theorem lift inj: ∀h,M1,M2,d. ↑[d, h] M2 = ↑[d, h] M1 →M2 = M1.
#h #M1 elim M1 −M1

theorem lift inv lift le : ∀h1,h2,M1,M2,d1,d2. d2 ≤ d1 →
↑[d2, h2] M2 = ↑[d1 + h2, h1] M1 →
∃∃M. ↑[d1, h1] M = M2 & ↑[d2, h2] M = M1.

theorem lift inv lift be : ∀h1,h2,M1,M2,d1,d2. d1 ≤ d2 → d2 ≤ d1 + h1 →
↑[d2, h2] M2 = ↑[d1, h1 + h2] M1 →↑[d1, h1] M1 = M2.

theorem lift inv lift ge : ∀h1,h2,M1,M2,d1,d2. d1 + h1 ≤d2 →
↑[d2, h2] M2 = ↑[d1, h1] M1 →
∃∃M. ↑[d1, h1] M = M2 & ↑[d2 − h1, h2] M = M1.� �

In the end we define the notion of stability under the application of lift and we
prove that stability is preserved by reflexive and transitive closures.� �
definition liftable : predicate (relation term)

def
= λR.

∀h,M1,M2. R M1 M2 →∀d. R (↑[d, h] M1) (↑[d, h] M2).

definition deliftable sn : predicate (relation term)
def
= λR.

∀h,N1,N2. R N1 N2 →∀d,M1. ↑[d, h] M1 = N1 →
∃∃M2. R M1 M2 & ↑[d, h] M2 = N2.

lemma star liftable: ∀R. liftable R → liftable (star . . . R).� �
Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Standardization and Confluence · 9

� �
lemma star deliftable sn: ∀R. deliftable sn R → deliftable sn (star . . . R).

lemma lstar liftable: ∀T,R. (∀t. liftable (R t)) →
∀l . liftable (lstar T . . . R l).

lemma lstar deliftable sn: ∀T,R. (∀t. deliftable sn (R t)) →
∀l . deliftable sn (lstar T . . . R l).� �

3.3 Delifting Substitution

When we operate with de Bruijn indexes, substituting N in M means replacing the
occurrences of the first free variable in M with N . The commonly accepted version
of substitution we are presenting here, also delifts the occurrences of the other free
variables in M . This practice makes the theory of substitution not so elegant, but
removes the delifting operation from the definition of reduction.

We remark that both [dB94] and [Gui09] do not follow this practice.
The substitution of N for the occurrences of the first free variable at level d

in M (dsubst) is denoted here by [d↙N]M , where the slanted arrow reminds
that some delifting is performed. Other widespread notations include M [N/d] and
M [d← N]. If the parameter d is missing, the value 0 is implied for it.

As for lift, we take our theory of dsubst from [Gui06] and [Hue94]. Given that
dsubst is not injective, its theory is much shorter than the one of lift.� �
let rec dsubst D d M on M

def
=match M with

[VRef i ⇒ tri . . . i d (#i) (↑[i] D) (#(i−1))
| Abst A ⇒ λ. (dsubst D (d+1) A)
| Appl B A ⇒ @ (dsubst D d B). (dsubst D d A)
].

lemma dsubst vref lt: ∀i,d,D. i < d → [d ↙D] #i = #i.

lemma dsubst vref eq: ∀i,D. [i ↙D] #i = ↑[i]D.

lemma dsubst vref gt: ∀i,d,D. d < i → [d ↙D] #i = #(i−1).� �
The theory includes the composition of dsubst at level d2 after lift at level d1

in the three cases considered in Subsection 3.2.
The proofs are by induction on the structure of the first premise.� �

theorem dsubst lift le: ∀h,D,M,d1,d2. d2 ≤ d1 →
[d2 ↙↑[d1 − d2, h] D] ↑[d1 + 1, h] M = ↑[d1, h] [d2 ↙D] M.

theorem dsubst lift be: ∀h,D,M,d1,d2. d1 ≤ d2 → d2 ≤ d1 + h →
[d2 ↙D] ↑[d1, h + 1] M = ↑[d1, h] M.

theorem dsubst lift ge: ∀h,D,M,d1,d2. d1 + h ≤ d2 →
[d2 ↙D] ↑[d1, h] M = ↑[d1, h] [d2 − h ↙D] M.� �

The theory also includes the composition of dsubst at level d2 after dsubst

at level d1 in the cases d2 < d1 (“less than”) and d1 ≤ d2 (“greater or equal”).

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

10 · Ferruccio Guidi

Lemma dsubst dsubst ge is the well-known “substitution lemma”, which is proved
here by induction on the structure of its first premise.� �
theorem dsubst dsubst ge: ∀D1,D2,M,d1,d2. d1 ≤d2 →

[d2 ↙D2] [d1 ↙D1] M =
[d1 ↙[d2 − d1 ↙D2] D1] [d2 + 1 ↙D2] M.

theorem dsubst dsubst lt: ∀D1,D2,M,d1,d2. d2 < d1 →
[d2 ↙[d1 − d2 −1 ↙D1] D2] [d1 ↙D1] M =
[d1 − 1 ↙D1] [d2 ↙D2] M.� �

The theory ends with some preservation results about the notion of stability
under substitution in the spirit of Subsection 3.2.� �
definition dsubstable dx: predicate (relation term)

def
= λR.

∀D,M1,M2. R M1 M2 →∀d. R ([d ↙D] M1) ([d ↙D] M2).

definition dsubstable: predicate (relation term)
def
= λR.

∀D1,D2. R D1 D2 →∀M1,M2. R M1 M2 →
∀d. R ([d ↙D1] M1) ([d ↙D2] M2).

lemma star dsubstable dx: ∀R. dsubstable dx R →dsubstable dx (star . . . R).

lemma lstar dsubstable dx: ∀T,R. (∀t. dsubstable dx (R t)) →
∀l . dsubstable dx (lstar T . . . R l).

lemma star dsubstable: ∀R. reflexive ? R →
dsubstable R → dsubstable (star . . . R).� �

3.4 Size

In this formalization, the size of a term M , denoted by |M |, is the number of inner
nodes in the tree representation of M . In the literature (see for instance [Xi99])
the “size” of M may refer to the total numbers of nodes in M as well.

We need this notion in the present work to set up a well-founded induction in
the proof of the so-called “diamond property” (see Subsection 4.4).

The proof of the lemma is by induction on the structure of M.� �
let rec size M on M

def
=match M with

[VRef i ⇒ 0
| Abst A ⇒ size A + 1
| Appl B A ⇒ (size B) + (size A) + 1
].

lemma size lift: ∀h,M,d. |↑[d, h] M| = |M|.� �
3.5 Pointers to Subterms

In this formalization we wish to qualify a subterm N of a term M with the path
that connects the root of M to the root of N in the tree representation of M . We

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Standardization and Confluence · 11

will refer to such a path as to the pointer to N . Clearly, the case of N being a
redex is of particular importance in the following sections.

A pointer, ranged over by the metavariables p and q, is a list of steps and c will be
a metavariable ranging over steps. We recognize three steps named rc (“rectum”
or “straight”), sn (“sinister” or “left”) and dx (“dexter” or “right”). We note that
rc and sn can be identified as long as head reductions [Bar85] are not considered.

The subterm of M pointed by a step and by a list of steps is defined as follows:

(1) rc points to A in λ.A;

(2) sn points to B and dx points to A in @B.A;

(3) ♦ points to M in M itself;

(4) if c points to N1 in M and p points to N2 in N1, then c :: p points to N2 in M .

A term M with a pointer in in bijection with an approximation [RP04] of M
with a single instance of the term Ω.

Steps (ptr step) and pointers (ptr) are formally defined in the following lines
with the notions of “compatibility with λ-constructions” concerning relations.� �
inductive ptr step: Type[0]

def
=

| rc : ptr step
| sn: ptr step
| dx: ptr step
.

definition ptr: Type[0]
def
= list ptr step .

definition compatible rc: predicate (ptr→ relation term)
def
= λR.

∀p,A1,A2. R p A1 A2 →R (rc::p) (λ.A1) (λ.A2).

definition compatible sn: predicate (ptr→ relation term)
def
= λR.

∀p,B1,B2,A. R p B1 B2 →R (sn::p) (@B1.A) (@B2.A).

definition compatible dx: predicate (ptr→ relation term)
def
= λR.

∀p,B,A1,A2. R p A1 A2 →R (dx::p) (@B.A1) (@B.A2).� �
The theory ends with the definition of the predicate in whd selecting the pointers

made just of dx steps, which locate the “weak head redex” of a term. An elimination
principle for reasoning about these pointers is provided.

Its proof is by induction on the structure of p.� �
definition is dx: predicate ptr step

def
= λc. dx = c.

definition in whd: predicate ptr
def
= All . . . is dx .

lemma in whd ind: ∀R:predicate ptr. R (♦) →
(∀p. in whd p → R p → R (dx::p)) →
∀p. in whd p → R p.� �

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

12 · Ferruccio Guidi

3.6 Lists of Pointers to Subterms

In this formalization we use lists of pointers to trace the redexes contracted in finite
sequential computations. Thus a computation is as long as its list of pointers.

Lists of pointers, ranged over by the metavariables r and s, are defined in the
following lines and come with compatibility notions and results (see Subsection 3.5).� �
definition ptrl : Type[0]

def
= list ptr.

definition ho compatible rc: predicate (ptrl→ relation term)
def
= λR.

∀s,A1,A2. R s A1 A2 →R (rc ::: s) (λ.A1) (λ.A2).

definition ho compatible sn: predicate (ptrl→ relation term)
def
= λR.

∀s,B1,B2,A. R s B1 B2 →R (sn ::: s) (@B1.A) (@B2.A).

definition ho compatible dx: predicate (ptrl→ relation term)
def
= λR.

∀s,B,A1,A2. R s A1 A2 →R (dx::: s) (@B.A1) (@B.A2).

lemma lstar compatible rc: ∀R. compatible rc R →ho compatible rc (lstar . . . R).

lemma lstar compatible sn: ∀R. compatible sn R →ho compatible sn (lstar . . . R).

lemma lstar compatible dx: ∀R. compatible dx R →ho compatible dx (lstar . . . R).� �
The predicate is whd selects the lists of in whd pointers, which we name whd

lists. These lists are meant to trace weak head reduction sequences [Pey87].
The two proofs are by induction on the structure of s and r respectively.� �

definition is whd: predicate ptrl
def
= All . . . in whd.

lemma is whd dx: ∀s. is whd s → is whd (dx ::: s).

lemma is whd append: ∀r. is whd r →∀s. is whd s → is whd (r@s).� �
4. THE BEHAVIORAL COMPONENT OF PURE λ-CALCULUS

In this section we formalize β-reduction and the related notion of β-reduction se-
quence (or β-computation) both in the “labeled sequential” and “parallel” forms.

The section starts by introducing an order on pointers modeling the “leftmost
outermost” (or “left-to-right”) reduction strategy for the pointed redexes.

4.1 Standard Order on Pointers to Subterms

The order on pointers we will define in this section is meant to model the order in
which the pointed redexes are contracted in the “leftmost outermost” (or “left-to-
right”) reduction strategy underlying the standardization theorem.

This order, which is our alternative to the order of [Kas00], is based on a prece-
dence relation ≺ (pprec) defined in the following lines.

The meaning of p ≺ q is: first contract the redex pointed by p in a given term
M and then the redex pointed by q in the contractum of M .

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Standardization and Confluence · 13

� �
inductive pprec: relation ptr

def
=

| pprec nil : ∀c,q. pprec (♦) (c :: q)
| pprec rc : ∀p,q. pprec (dx::p) (rc :: q)
| pprec sn : ∀p,q. pprec (rc :: p) (sn :: q)
| pprec comp: ∀c,p,q. pprec p q → pprec (c :: p) (c :: q)
| pprec skip: pprec (dx::♦) ♦
.

lemma pprec inv sn: ∀p,q. p ≺ q → ∀p0. sn :: p0 = p →
∃∃q0. p0 ≺ q0 & sn::q0 = q.� �

We justify our definition as follows. With pprec nil we state that if M is itself
a redex, it must be contracted before other redexes. With pprec rc we state that
redexes in functions must be contracted before redexes in function bodies. With
pprec sn we state that redexes in function bodies must be contracted before redexes
in function arguments. With pprec comp we state that the order must be preserved
when contracting inner redexes. With pprec skip we state that contracting a redex
in a function may produce a redex to be contracted afterwards.

The standard order ≤ (ple) is defined as the reflexive and transitive closure of
the precedence relation, and comes with standard properties.� �
definition ple: relation ptr

def
= star . . . pprec.

lemma ple step rc: ∀p,q. p ≺ q → p ≤ q.

lemma ple step sn: ∀p1,p,p2. p1 ≺ p → p ≤ p2 → p1 ≤ p2.

lemma ple rc: ∀p,q. dx::p ≤ rc :: q.

lemma ple sn: ∀p,q. rc::p ≤ sn :: q.

lemma ple skip: dx::♦ ≤ ♦.

lemma ple nil: ∀p. ♦ ≤ p.

lemma ple comp: ∀p1,p2. p1 ≤p2 → ∀c. (c :: p1) ≤ (c :: p2).

lemma ple skip ple: ∀p. p ≤ ♦ → dx::p ≤ ♦.

theorem ple trans: transitive . . . ple .

lemma ple cons: ∀p,q. dx::p ≤ sn :: q.

lemma ple dichotomy: ∀p1,p2:ptr. p1 ≤ p2 ∨ p2 ≤ p1.

lemma ple inv sn: ∀p,q. p ≤ q → ∀p0. sn :: p0 = p →
∃∃q0. p0 ≤ q0 & sn::q0 = q.� �

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

14 · Ferruccio Guidi

This statement characterizes the in whd pointers in terms of the order:

The following are equivalent for p: in whd p; p ≤ ♦; ∀q. p ≤ q.

The proofs are by induction on the structure of the first premise.� �
lemma pprec fwd in whd: ∀p,q. p ≺q → in whd q → in whd p.

lemma in whd ple nil: ∀p. in whd p → p ≤ ♦.

theorem in whd ple: ∀p. in whd p →∀q. p ≤ q.

lemma ple nil inv in whd: ∀p. p ≤ ♦ → in whd p.

lemma ple inv in whd: ∀p. (∀q. p ≤ q) → in whd p.� �
The fact that the standard order is cyclic, in that ♦ ≺ dx :: ♦ ≺ ♦, is not

surprising and is due to the existence of cyclic computations in λ-calculus.
One can derive from this chain of inequalities that the transitive closure of the

precedence relation is reflexive (just remember Clause pprec comp).

4.2 Standard Lists of Pointers to Subterms

The predicate is standard selects the lists of pointers occurring in non-decreasing
standard order, which we name standard lists. According to the justification of the
standard precedence relation we gave in Subsection 4.1, it is plausible that these lists
trace standard reduction sequences. As one expects, Lemma is whd is standard

asserts that a whd list is standard as is a weak head reduction sequence.
The proofs are by induction on the structure of r or s.� �

definition is standard: predicate ptrl
def
= Allr . . . ple .

lemma is standard compatible: ∀c,s. is standard s → is standard (c ::: s).

lemma is standard cons: ∀p,s. is standard s → is standard ((dx::p):: sn ::: s).

lemma is standard append: ∀r. is standard r → ∀s. is standard s →
is standard ((dx ::: r)@sn:::s).

theorem is whd is standard: ∀s. is whd s → is standard s .

lemma is standard in whd: ∀p. in whd p →∀s. is standard s → is standard (p :: s).

theorem is whd is standard trans: ∀r. is whd r → ∀s. is standard s →
is standard (r@s).� �

We justify informally our notion of standard list in terms of residuals as follows.
Take a term C with a two redexes M and N pointed by p and q respectively. If M
is is a residual at the “left” of N , then reducing M after N is not standard and we
argue that q ≤ p is forbidden by the order in the most relevant cases.

If C ≡ M ≡ @B.λ.A, then N is a subterm of B or of A, which is to say that q
has the form sn :: q0 or dx :: rc :: q0. Now q ≤ p and p ≡ ♦ imply in whd q.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Standardization and Confluence · 15

Now take M and N in the arguments of C ≡ @D.@B.A, so M is a subterm of
B and N is a subterm of D (remember that C is (A B D) in standard notation).
So q has the form sn :: q0 and p has the form dx :: sn :: p0 in contrast with
Lemma ple inv sn by which q ≤ p yields that p must have the form sn :: p1.

4.3 Labeled Sequential Reduction

The advantage of our path-based redex pointers over the degree-based ones used
in [Kas00], clearly appears when (finally!) we come to define a step of sequential
reduction labeled with the pointer to the redex we are contracting.

This relation (lsred), which we denote with M 7→[p] N , comes with standard
properties such as stability under relocation and substitution. In addition, some
inversion lemmas prove that the relation is single-valued for given p and M .� �
inductive lsred: ptr → relation term

def
=

| lsred beta : ∀B,A. lsred (♦) (@B.λ.A) ([↙B]A)
| lsred abst : ∀p,A1,A2. lsred p A1 A2 → lsred (rc :: p) (λ.A1) (λ.A2)
| lsred appl sn : ∀p,B1,B2,A. lsred p B1 B2 → lsred (sn :: p) (@B1.A) (@B2.A)
| lsred appl dx : ∀p,B,A1,A2. lsred p A1 A2 → lsred (dx::p) (@B.A1) (@B.A2)
.

lemma lsred inv vref: ∀p,M,N. M 7→[p] N →∀i. #i = M →⊥.

lemma lsred inv nil: ∀p,M,N. M 7→[p] N →♦= p →
∃∃B,A. @B. λ.A = M & [↙B] A = N.

lemma lsred inv rc: ∀p,M,N. M 7→[p] N →∀q. rc::q = p →
∃∃A1,A2. A1 7→[q] A2 & λ.A1 = M & λ.A2 = N.

lemma lsred inv sn: ∀p,M,N. M 7→[p] N →∀q. sn::q = p →
∃∃B1,B2,A. B1 7→[q] B2 & @B1.A = M & @B2.A = N.

lemma lsred inv dx: ∀p,M,N. M 7→[p] N →∀q. dx::q = p →
∃∃B,A1,A2. A1 7→[q] A2 & @B.A1 = M & @B.A2 = N.

lemma lsred lift: ∀p. liftable (lsred p).

lemma lsred inv lift: ∀p. deliftable sn (lsred p).

lemma lsred dsubst: ∀p. dsubstable dx (lsred p).

theorem lsred mono: ∀p. singlevalued . . .(lsred p).� �
4.4 Parallel Reduction

The purpose of parallel reduction in this formalization is to support the confluence
of sequential computation by providing its well-known “diamond” property.

One step of parallel reduction (pred), which we denote with M Z⇒ N , contracts
an arbitrary set of redexes that do not need to be traced for our present aims.

This relation comes with standard properties such as reflexivity and stability
under relocation and substitution. Some inversion lemmas are provided as well.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

16 · Ferruccio Guidi

� �
inductive pred: relation term

def
=

| pred vref : ∀i . pred (#i) (#i)
| pred abst: ∀A1,A2. pred A1 A2 →pred (λ.A1) (λ.A2)
| pred appl: ∀B1,B2,A1,A2. pred B1 B2 →pred A1 A2 →pred (@B1.A1) (@B2.A2)
| pred beta: ∀B1,B2,A1,A2. pred B1 B2 →pred A1 A2 →pred (@B1.λ.A1) ([↙B2]A2)
.

lemma pred refl: reflexive . . . pred.

lemma pred inv vref: ∀M,N. M Z⇒N →∀i . #i = M →#i = N.

lemma pred inv abst: ∀M,N. M Z⇒N →∀A. λ.A = M →
∃∃C. A Z⇒ C & λ.C = N.

lemma pred inv appl: ∀M,N. M Z⇒N →∀B,A. @B.A = M →
(∃∃D,C. B Z⇒ D & A Z⇒C & @D.C = N) ∨
∃∃A0,D,C0. B Z⇒D & A0 Z⇒C0 & λ.A0 = A & [↙D]C0 = N.

lemma pred lift: liftable pred.

lemma pred inv lift: deliftable sn pred.

lemma pred dsubst: dsubstable pred.

lemma lsred pred: ∀p,M,N. M 7→[p] N →M Z⇒N.� �
The confluence of parallel reduction (also known as its “diamond” property),

stating that M0 Z⇒M1 and M0 Z⇒M2 imply M1 Z⇒M and M2 Z⇒M for some M ,
is proved by induction on the size of M0. The induction generates six cases, three
of which are proved as separate lemmas because one of them is invoked twice.

In this way we take advantage of the symmetry existing between M1 and M2.� �
lemma pred conf1 vref: ∀i. confluent1 . . . pred (#i).
#i #M1 #H1 #M2 #H2
<(pred inv vref . . . H1) −H1 [3: // |2: skip]
<(pred inv vref . . . H2) −H2 [3: // |2: skip]
/2 width=3/
qed−.

lemma pred conf1 abst: ∀A. confluent1 . . .pred A → confluent1 . . . pred (λ.A).
#A #IH #M1 #H1 #M2 #H2
elim (pred inv abst . . . H1 ??) −H1 [3: // |2: skip] #A1 #HA1 #H destruct
elim (pred inv abst . . . H2 ??) −H2 [3: // |2: skip] #A2 #HA2 #H destruct
elim (IH . . . HA1 . . .HA2) −A /3 width=3/
qed−.� �

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Standardization and Confluence · 17

� �
lemma pred conf1 appl beta: ∀B,B1,B2,C,C2,M1.

(∀M0. |M0| < |B|+|λ.C|+1 →confluent1 ? pred M0) →
B Z⇒ B1 → B Z⇒ B2 → λ.C Z⇒ M1 → C Z⇒ C2 →
∃∃M. @B1.M1 Z⇒M & [↙B2]C2 Z⇒M.

#B #B1 #B2 #C #C2 #M1 #IH #HB1 #HB2 #H1 #HC2
elim (pred inv abst . . . H1 ??) −H1 [3: // |2: skip] #C1 #HC1 #H destruct
elim (IH B . . . HB1 . . .HB2) −HB1 −HB2 //
elim (IH C . . . HC1 . . .HC2) normalize // −B −C /3 width=5/
qed−.

theorem pred conf: confluent . . .pred.
#M @(f ind . . .length . . . M) −M #n #IH ∗ normalize
[/2 width=3 by pred conf1 vref/
| /3 width=4 by pred conf1 abst/
| #B #A #H #M1 #H1 #M2 #H2 destruct

elim (pred inv appl . . . H1 ???) −H1 [5: // |2,3: skip] ∗
elim (pred inv appl . . . H2 ???) −H2 [5,10: // |2,3,7,8: skip] ∗
[#B2 #A2 #HB2 #HA2 #H2 #B1 #A1 #HB1 #HA1 #H1 destruct

elim (IH A . . .HA1 . . .HA2) −HA1 −HA2 //
elim (IH B . . . HB1 . . .HB2) // −A −B /3 width=5/
| #C #B2 #C2 #HB2 #HC2 #H2 #HM2 #B1 #N #HB1 #H #HM1 destruct

@(pred conf1 appl beta . . . IH) //
| #B2 #N #B2 #H #HM2 #C #B1 #C1 #HB1 #HC1 #H1 #HM1 destruct

@ex2 commute @(pred conf1 appl beta . . .IH) //
| #C #B2 #C2 #HB2 #HC2 #H2 #HM2 #C0 #B1 #C1 #HB1 #HC1 #H1

#HM1 destruct
elim (IH B . . . HB1 . . .HB2) −HB1 −HB2 //
elim (IH C . . . HC1 . . .HC2) normalize // −B −C /3 width=5/

]
]
qed−.� �
4.5 Parallel Computation

Parallel computation (preds) from M to N is denoted by M Z⇒∗ N and is defined
as the reflexive and transitive closure of parallel reduction. This notion comes with
standard properties including confluence and the well-known “strip” lemma.

All proofs are immediate corollaries of general results on relations.� �
definition preds: relation term

def
= star . . . pred.

lemma preds refl: reflexive . . . preds.

lemma preds step sn: ∀M1,M. M1 Z⇒M →∀M2. M Z⇒∗ M2 →M1 Z⇒∗ M2.

lemma preds step dx: ∀M1,M. M1 Z⇒∗ M →∀M2. M Z⇒M2 →M1 Z⇒∗ M2.

lemma preds step rc: ∀M1,M2. M1 Z⇒M2 →M1 Z⇒∗ M2.� �
Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

18 · Ferruccio Guidi

� �
lemma preds compatible abst: compatible abst preds.

lemma preds compatible sn: compatible sn preds.

lemma preds compatible dx: compatible dx preds.

lemma preds compatible appl: compatible appl preds.

lemma preds lift: liftable preds.

lemma preds inv lift: deliftable sn preds.

lemma preds dsubst dx: dsubstable dx preds.

lemma preds dsubst: dsubstable preds.

theorem preds trans: transitive . . . preds.

lemma preds strip: ∀M0,M1. M0 Z⇒∗ M1 →∀M2. M0 Z⇒M2 →
∃∃M. M1 Z⇒M & M2 Z⇒∗ M.

theorem preds conf: confluent . . . preds.� �
4.6 Labeled Sequential Computation

Labeled sequential computation (lsreds) from M to N along the redexes pointed
by the elements of s, is denoted here by M 7→∗[s] N . This notion is defined as
the reflexive and transitive closure of labeled sequential reduction and comes with
standard properties including stability under relocation and substitution.

Most proofs are immediate corollaries of general results on relations.� �
definition lsreds : ptrl → relation term

def
= lstar . . . lsred .

lemma lsreds refl: reflexive . . . (lsreds (♦)).

lemma lsreds step sn: ∀p,M1,M. M1 7→[p] M →∀s,M2. M 7→∗[s] M2 →M1 7→∗[p::s] M2.

lemma lsreds step dx: ∀s,M1,M. M1 7→∗[s] M →
∀p,M2. M 7→[p] M2 →M1 7→∗[s@p::♦] M2.

lemma lsreds step rc: ∀p,M1,M2. M1 7→[p] M2 →M1 7→∗[p::♦] M2.

lemma lsreds inv nil: ∀s,M1,M2. M1 7→∗[s] M2 →♦= s →M1 = M2.

lemma lsreds inv cons: ∀s,M1,M2. M1 7→∗[s] M2 →∀q,r. q::r = s →
∃∃M. M1 7→[q] M & M 7→∗[r] M2.

lemma lsreds inv step rc: ∀p,M1,M2. M1 7→∗[p::♦] M2 →M1 7→[p] M2.� �
Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Standardization and Confluence · 19

� �
lemma lsreds inv pos: ∀s,M1,M2. M1 7→∗[s] M2 →0 < |s| →

∃∃p,r,M. p::r = s & M1 7→[p] M & M 7→∗[r] M2.

lemma lsred compatible rc: ho compatible rc lsreds.

lemma lsreds compatible sn: ho compatible sn lsreds.

lemma lsreds compatible dx: ho compatible dx lsreds.

lemma lsreds lift: ∀s. liftable (lsreds s).

lemma lsreds inv lift : ∀s. deliftable sn (lsreds s).

lemma lsreds dsubst: ∀s. dsubstable dx (lsreds s).

theorem lsreds mono: ∀s. singlevalued . . . (lsreds s).

theorem lsreds trans: ltransitive . . . lsreds .

lemma lsreds compatible appl: ∀r,B1,B2. B1 7→∗[r] B2 →∀s,A1,A2. A1 7→∗[s] A2 →
@B1.A1 7→∗[(sn:::r)@dx:::s] @B2.A2.

lemma lsreds compatible beta: ∀r,B1,B2. B1 7→∗[r] B2 →∀s,A1,A2. A1 7→∗[s] A2 →
@B1.λ.A1 7→∗[(sn:::r)@(dx:::src::s)@♦::♦] [↙B2] A2.� �

The equivalence between labeled sequential reduction and parallel reduction, in
that M Z⇒∗ N iff ∃s. M 7→∗[s] N , takes to the Confluence Theorem lsreds conf.

The first three proofs are by induction on the structure of the first premise.� �
theorem lsreds preds: ∀s,M1,M2. M1 7→∗[s] M2 →M1 Z⇒∗ M2.

lemma pred lsreds: ∀M1,M2. M1 Z⇒M2 →∃r. M1 7→∗[r] M2.

theorem preds lsreds: ∀M1,M2. M1 Z⇒∗ M2 →∃r. M1 7→∗[r] M2.

theorem lsreds conf: ∀s1,M0,M1. M0 7→∗[s1] M1 →∀s2,M2. M0 7→∗[s2] M2 →
∃∃r1,r2,M. M1 7→∗[r1] M & M2 7→∗[r2] M.� �

Weak head computations play a fundamental role in the proof of the standardiza-
tion theorem (Subsection 4.7), but cannot be characterized in terms of degree-based
pointers. Therefore Kashima must define a dedicated relation for them, that he
names “hap” in [Kas00], and that comes with its own theory. On the contrary, our
path-based pointers allow to avoid this device since we easily characterize a weak
head computation form M to N as M 7→∗[s] N under the assumption is whd s.

We want to stress that our Lemma in whd ind (Subsection 3.5) allows us to
reason about weak head computations without generating more proof cases than
Kashima does reasoning about his “hap” computation.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

20 · Ferruccio Guidi

4.7 Decomposed Standard Computation

This section is devoted to the proof of the standardization theorem using an in-
ductively defined decomposition of a standard computation from M to N as weak
head computation followed by an inner computation. To this aim, Kashima defines
a computation, denoted here by M s© 7→∗ N , that he names “st” in [Kas00].

Our version of st comes with standard properties that include three inversion
lemmas. Transitivity is proved after standardization rather than directly.� �
inductive st: relation term

def
=

| st vref : ∀s,M,i. is whd s → M 7→∗[s] #i → st M (#i)
| st abst : ∀s,M,A1,A2. is whd s → M 7→∗[s] λ.A1 → st A1 A2 → st M (λ.A2)
| st appl : ∀s,M,B1,B2,A1,A2. is whd s →M 7→∗[s] @B1.A1 →

st B1 B2 → st A1 A2 → st M (@B2.A2)
.

lemma st inv lref: ∀M,N. M s©7→∗ N →∀j. #j = N →
∃∃s. is whd s & M 7→∗[s] #j.

lemma st inv abst: ∀M,N. M s©7→∗ N →∀C2. λ.C2 = N →
∃∃s,C1. is whd s & M 7→∗[s] λ.C1 & C1 s©7→∗ C2.

lemma st inv appl: ∀M,N. M s©7→∗ N →∀D2,C2. @D2.C2 = N →
∃∃s,D1,C1. is whd s & M 7→∗[s] @D1.C1 &

D1 s©7→∗ D2 & C1 s©7→∗ C2.
lemma st refl: reflexive . . . st .

lemma st step sn: ∀N1,N2. N1 s©7→∗ N2 →
∀s,M. is whd s → M 7→∗[s] N1 →M s©7→∗ N2.

lemma st step rc: ∀s,M1,M2. is whd s →M1 7→∗[s] M2 →M1 s©7→∗ M2.

lemma st lift: liftable st .

lemma st inv lift: deliftable sn st .

lemma st dsubst: dsubstable st.� �
The Standardization Theorem lsreds standard is proved in two steps. Firstly

we prove that M 7→∗[s] N implies M s© 7→∗ N (Lemma st lsreds) by induction
on s. Lemma st step sx (Lemma 3.6 of [Kas00]) is the inductive case of the proof.
Secondly we prove that M s© 7→∗ N implies M 7→∗[r] N such that is standard r
(Lemma st inv lsreds is standard) by induction on the structure of the premise.

We show the main proofs in full. The reader may note that the first proof case
of Lemma st step sx is Lemma 3.5 of [Kas00].

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Standardization and Confluence · 21

� �
lemma st step dx: ∀p,M,M2. M 7→[p] M2 →∀M1. M1 s©7→∗ M →M1 s©7→∗ M2.
#p #M #M2 #H elim H −p −M −M2
[#B #A #M1 #H

elim (st inv appl . . . H ???) −H [4: // |2,3: skip]
#s #B1 #M #Hs #HM1 #HB1 #H
elim (st inv abst . . . H ??) −H [3: // |2: skip] #r #A1 #Hr #HM #HA1
lapply (lsreds trans . . . HM1 . . .(dx ::: r) (@B1.λ.A1) ?) /2 width=1/ −M #HM1
lapply (lsreds step dx . . . HM1 (♦) ([↙B1]A1) ?) −HM1 // #HM1
@(st step sn . . . HM1) /2 width=1/ /4 width=1/
| #p #A #A2 # #IHA2 #M1 #H

elim (st inv abst . . . H ??) −H [3: // |2: skip] /3 width=5/
| #p #B #B2 #A # #IHB2 #M1 #H

elim (st inv appl . . . H ???) −H [4: // |2,3: skip] /3 width=7/
| #p #B #A #A2 # #IHA2 #M1 #H

elim (st inv appl . . . H ???) −H [4: // |2,3: skip] /3 width=7/
]
qed−.

lemma st lsreds: ∀s,M1,M2. M1 7→∗[s] M2 →M1 s©7→∗ M2.

lemma st inv lsreds is standard: ∀M,N. M s©7→∗ N →
∃∃r. M 7→∗[r] N & is standard r.

#M #N #H elim H −M −N
[#s #M #i #Hs #HM

lapply (is whd is standard . . . Hs) −Hs /2 width=3/
| #s #M #A1 #A2 #Hs #HM # ∗ #r #HA12 #Hr

lapply (lsreds trans . . . HM (rc:::r) (λ.A2) ?) /2 width=1/ −A1 #HM
@(ex2 intro . . . HM) −M −A2 /3 width=1/
| #s #M #B1 #B2 #A1 #A2 #Hs #HM # #
∗ #rb #HB12 #Hrb ∗ #ra #HA12 #Hra
lapply (lsreds trans . . . HM (dx:::ra) (@B1.A2) ?) /2 width=1/ −A1 #HM
lapply (lsreds trans . . . HM (sn:::rb) (@B2.A2) ?) /2 width=1/ −B1 #HM
@(ex2 intro . . . HM) −M −B2 −A2 >associative append /3 width=1/

]
qed−.

theorem st trans: transitive . . . st .

theorem lsreds standard: ∀s,M,N. M 7→∗[s] N →∃∃r. M 7→∗[r] N & is standard r.� �
Finally, we add Theorem lsreds lsred swap, which states that weak head reduc-

tion steps can be taken in front of a computation. The inductive case of the proof,
that we show in full, is very similar to Lemma 4.1 of [Kas00] stating that head re-
duction steps can be taken in front of a computation. Theorem lsreds lsred swap

is the starting point for proving that a term has a weak head normal form iff every
computation starting from it contains finitely many weak head reduction steps.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

22 · Ferruccio Guidi

� �
lemma st lsred swap: ∀p. in whd p →∀N1,N2. N1 7→[p] N2 →∀M1. M1 s©7→∗ N1 →

∃∃q,M2. in whd q & M1 7→[q] M2 & M2 s©7→∗ N2.
#p #H @(in whd ind . . .H) −p
[#N1 #N2 #H1 #M1 #H2

elim (lsred inv nil . . . H1 ?) −H1 // #D #C #HN1 #HN2
elim (st inv appl . . . H2 . . . HN1) −N1 #s1 #D1 #N #Hs1 #HM1 #HD1 #H
elim (st inv abst . . . H ??) −H [3: // |2: skip] #s2 #C1 #Hs2 #HN #HC1
lapply (lsreds trans . . . HM1 . . .(dx ::: s2) (@D1.λ.C1) ?) /2 width=1/ −N #HM1
lapply (lsreds step dx . . . HM1 (♦) ([↙D1]C1) ?) −HM1 // #HM1
elim (lsreds inv pos . . . HM1 ?) −HM1
[2: >length append normalize in `(??(??%)); //]
#q #r #M #Hq #HM1 #HM
lapply (rewrite r ?? is whd . . . Hq) −Hq /4 width=1/ −s1 −s2 ∗ #Hq #Hr
@(ex3 2 intro . . . HM1) −M1 // −q
@(st step sn . . . HM) /2 width=1/
| #p # #IHp #N1 #N2 #H1 #M1 #H2

elim (lsred inv dx . . . H1 ??) −H1 [3: // |2: skip]
#D #C1 #C2 #HC12 #HN1 #HN2
elim (st inv appl . . . H2 . . . HN1) −N1 #s #B #A1 #Hs #HM1 #HBD #HAC1
elim (IHp . . . HC12 . . .HAC1) −p −C1 #p #C1 #Hp #HAC1 #HC12
lapply (lsreds step dx . . . HM1 (dx::p) (@B.C1) ?) −HM1 /2 width=1/ −A1 #HM1
elim (lsreds inv pos . . . HM1 ?) −HM1
[2: >length append normalize in `(??(??%)); //]
#q #r #M #Hq #HM1 #HM
lapply (rewrite r ?? is whd . . . Hq) −Hq /4 width=1/ −p −s ∗ #Hq #Hr
@(ex3 2 intro . . . HM1) −M1 // −q /2 width=7/

]
qed−.

theorem lsreds lsred swap: ∀s,M1,N1. M1 7→∗[s] N1 →
∀p,N2. in whd p → N1 7→[p] N2 →
∃∃q,r,M2. in whd q & M1 7→[q] M2 &

M2 7→∗[r] N2 & is standard (q::r).� �
In the proof of Lemma st lsred swap the reader should note two invocations of

the tactic “lapply (rewrite r ?? is whd . . . Hq)”, which is the procedural counter-
part of the declarative construction “cut (is whd (q::r)) [>Hq]”.

5. CONCLUSIONS AND FUTURE WORK

In this article we reported on a formalization of pure λ-calculus for the Matita
interactive theorem prover [ARST11], which contains the proofs of two relevant
results in reduction theory: the Confluence Theorem lsreds conf of Subsection 4.6
and the Standardization Theorem lsreds standard of Subsection 4.7.

Our aim was to provide what appears to be the first formalization of Kashima’s
standardization proof [Kas00] for a Logical Framework. On the other hand, conflu-
ence is a due result we provide for completeness following Tait’s and Matin-Löf’s
proof based on the so-called “diamond” property of parallel reduction steps (Sub-
section 4.4) leading to confluence of parallel computations (Subsection 4.5), that
has been formalized many times already (see for instance [Pfe92]).

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Standardization and Confluence · 23

Our main contribution was to adopt path-based pointers (Subsection 3.5) to
locate the redexes of λ-terms. In our view this tool has two major benefits over
Kashima’s degree-based pointers. Firstly, we note that one step of arbitrary sequen-
tial reduction is defined by four clauses [Bar85], and we can modify this definition
including a pointer to the contracted redex without increasing the number of clauses
(Subsection 4.3). Secondly, we can characterize the weak head computations with
our predicate is whd of Subsection 3.6. So Kashima’s “hap” relation is avoided.
Such a characterization is impossible with Kashima’s pointers.

On the other hand, our pointers can be ordered (see Subsection 4.1) as well as
Kashima’s ones in such a way that ordered sequences of pointers to redexes should
correspond to standard computations. We plan to solve this conjecture by testing
our definition of a standard computation against the definition based on residuals.

We also plan to prove the results on leftmost computations mentioned in [Kas00],
such as the leftmost reduction theorem and the quasi-leftmost reduction theorem.

In this respect we note that Kashima’s pointers allow a clean characterization of
a leftmost reduction step as one for which the pointer to the contracted redex is 1.

We expect to obtain a characterization as well by saying that p is leftmost in M
when is minimal in M , in that M 7→[q] N implies p ≤ q for every q and N .

Finally we plan to consider η-reduction following Kashima in [Kas01].
The source files of our formalization are on Matita’s Web site4, while the corre-

sponding proof objects are in the HELM directory5 <cic:/matita/lambda/>.

References

[APS+03] A. Asperti, L. Padovani, C. Sacerdoti Coen, F. Guidi, and I. Schena.
Mathematical Knowledge Management in HELM. Annals of Mathemat-
ics and Artificial Intelligence, 38(1):27–46, May 2003.

[ARST11] A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. The Matita
Interactive Theorem Prover. In N. Bjørner and V. Sofronie-Stokkermans,
editors, Proceedings of the 23rd International Conference on Automated
Deduction (CADE-2011), volume 6803 of Lecture Notes in Computer
Science, pages 64–69, Berlin, Germany, 2011. Springer.

[Bar85] H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, vol-
ume 103 of Studies in Logic and the Foundations of Mathematics. Else-
vier, Amsterdam, The Netherlands, November 1985.

[Bar93] H.P. Barendregt. Lambda Calculi with Types. Osborne Handbooks of
Logic in Computer Science, 2:117–309, 1993.

[Coq12] Coq development team. The Coq Proof Assistant Reference Manual:
release 8.4. INRIA, Orsay, France, August 2012.

[CP90] Th. Coquand and C. Paulin-Mohring. Inductively defined types. In
P. Martin-Löf and G. Mints, editors, Proceedings of the International
Conference on Computer Logic (Colog ’88), volume 417 of Lecture Notes
in Computer Science, pages 50–66, Berlin, Germany, 1990. Springer.

4<http://matita.cs.unibo.it/library.shtml>.
5<http://helm.cs.unibo.it/library.html>.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

24 · Ferruccio Guidi

[dB94] N.G. de Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-
Rosser theorem. In Selected Papers on Automath, pages 375–388. North-
Holland Pub. Co., Amsterdam, The Netherlands, 1994.

[Gui06] F. Guidi. lambdadelta 1. Formal specification with the proof as-
sistant Coq 7.3.1, November 2006. Available at the λδ Web site:
<http://lambdadelta.info/>.

[Gui09] F. Guidi. The Formal System λδ. Transactions on Computational Logic,
11(1):5:1–5:37, November 2009.

[Gui10] F. Guidi. Procedural Representation of CIC Proof Terms. Journal of
Automated Reasoning, 44(1-2):53–78, February 2010. Special Issue on
Programming Languages and Mechanized Mathematics Systems.

[Hue94] G. Huet. Residual Theory in λ-calculus: A Formal Development. Journal
of Functional Programming, 4(3):371–394, 1994.

[Kas00] R. Kashima. A Proof of the Standardization Theorem in λ-Calculus.
Technical Report RRMCS C-145, Tokyo Institute of Technology, Tokyo,
Japan, August 2000.

[Kas01] R. Kashima. On the Standardization Theorem for λβη-Calculus. Inter-
national Workshop on Rewriting in Proof and Computation (RPC’01),
October 2001.

[KN96] F. Kamareddine and R.P. Nederpelt. A useful λ-notation. Theoretical
Computer Science, 155(1):85–109, 1996.

[MP99] J. McKinna and R. Pollack. Some Lambda Calculus and Type Theory
Formalized. Journal of Automated Reasoning, 23(3):373–409, November
1999.

[Pey87] S. Peyton Jones. The Implementation of Functional Programming lan-
guages. Series in Computer Science. Prentice-Hall International, Hemel
Hempstead, UK, May 1987.

[Pfe92] F. Pfenning. A Proof of the Church-Rosser Theorem and its Repre-
sentation in a Logical Framework. Technical Report CMU-CS-92-186,
Carneige-Mellon University, Pittsburgh, PA, USA, September 1992.

[RP04] S. Ronchi Della Rocca and L. Paolini. The Parametric Lambda Calcu-
lus. Texts in Theoretical Computer Science. Springer, Berlin, Germany,
November 2004.

[Tak95] M. Takahashi. Parallel Reductions in λ-Calculus. Information and Com-
putation, 118(1):120–127, April 1995.

[Xi99] H. Xi. Upper Bounds for Standardizations and An Application. Journal
of Symbolic Logic, 64(1):291–303, 1999.

ACKNOWLEDGMENTS

My sincere thanks go to professor A. Asperti for his valuable comments and sug-
gestions, which greatly improved this text.

I dedicate this work on the beautiful subject of λ-calculus to (in alphabetical
order without repetitions): Ada, Angela, Annalisa, Camilla, Chiara, Elena, Élodie,

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Standardization and Confluence · 25

Fiorella, Francesca, Gloria, Ida, Isabel, Laura, Loredana, Lucia, Luki, Mariella,
Marta, Patrizia, Rosanna, Silvia, and to the other friends of SPaCe, Bologna.

“[Beautiful] is what you love.”
Sappho, Book I.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

