
A formal proof of Sasaki-Murao algorithm

THIERRY COQUAND

and

ANDERS MÖRTBERG

and

VINCENT SILES

University of Gothenburg

The Sasaki-Murao algorithm computes the determinant of any square matrix over a commutative

ring in polynomial time. The algorithm itself can be written as a short and simple functional
program, but its correctness involves nontrivial mathematics. We here represent this algorithm in

Type Theory with a new correctness proof, using the Coq proof assistant and the SSReflect ex-

tension.

Introduction

The goal of this note is to give a presentation of a formal proof of the Sasaki-Murao
algorithm [SM82]. This is an elegant algorithm for computing the determinant of a
square matrix over an arbitrary commutative ring in polynomial time. Usual pre-
sentations of this algorithm are quite complex, and rely on some Sylvester identities
[AL04]. We believe that the proof we shall present, which was obtained by formal-
izing this algorithm in Type Theory (more precisely in the SSReflect [GM10]
extension to Coq [Tea10]) is simpler. It does not rely on Sylvester identities and
indeed gives a proof of some of them as corollaries. It provides also a good example
of how one can use a library of formalized mathematical results to prove formally
a computer algebra program. The whole formalization can be found at [MS12].

1. SASAKI-MURAO ALGORITHM

1.1 Matrices

For any n ∈ N, we define In = {i ∈ N | i < n} (with I0 = ∅). If R is a set, a m× n
matrix of elements of the set R is a function Im × In → R. We can also view any
such matrix as a family of elements (mij) for i ∈ Im and j ∈ In.

If M is a m × n matrix, f a function of type Ip → Im and g a function of type
Iq → In, we define the p× q sub-matrix1 M(f, g) by

M(f, g)(i, j) = M(f i, g j)

1In the usual definition of sub-matrix, only some lines and columns are removed, which would

be enough for the following proofs. But our more general definition make the Coq formalization
easier to achieve.

The research leading to these results has received funding from the European Union’s 7th Frame-
work Programme under grant agreement nr. 243847 (ForMath).

Journal of Formalized Reasoning Vol. 5, No. 1, 2012, Pages 27–36.

28 · Coquand et al.

We often use the following operation on finite maps: if f : Ip → Im, we defined
f+ : I1+p → I1+m such that

f+0 = 0
f+(1 + x) = 1 + (f x)

If R is a ring, let 1n be the n × n identity matrix. We can also define addition
and multiplication of matrices as usual. We can decompose a non-empty m × n
matrix M in four components:

—the top-left element m00, which is an element of R

—the top-right line vector L = m01,m02, . . . ,m0(n−1)

—the bottom-left column vector C = m10,m20, . . . ,m(m−1)0

—the bottom-right (m− 1)× (n− 1) matrix Nij = m(1+i,1+j)m00 L

C N


With this decomposition, we define the central operation of our algorithm, which

defines a (m− 1)× (n− 1) matrix:

M ′ = m00N − CL

This operation M 7−→M ′ transforms a m×n matrix into a (m−1)×(n−1) matrix
is crucial in the Sasaki-Murao algorithm. In the special case where m = n = 2 the
matrix M ′ (of size 1× 1) can be identified with the determinant of M .

Lemma 1.1.1. For any m × n matrix M , for any map f : Ip → Im−1 and any
map g : Iq → In−1, we have the following identity:

M ′(f, g) = M(f+, g+)′

Proof. This lemma is easy to prove once one has realized two facts:

(1) Selecting a sub-matrix commutes with most of the basic operations about matri-
ces. In particular, (M −N)(f, g) = M(f, g)−N(f, g), (aM)(f, g) = aM(f, g).
For multiplication, we have (MN)(f, g) = M(f, id)N(id, g) where id is the
identity function.

(2) For any matrix M described as a block (r L C N), we have that M(f+, g+) is
the block (r L(id, g) C(f, id) N(f, g))

From this two observations, we then have:

M ′(f, g) = (rN − Cl)(f, g)
= rN(f, g)− C(f, id)L(id, g)

and

M(f+, g+)′ = rN(f, g)− C(f, id)L(id, g)

So, we can conclude that M ′(f, g) = M(f+, g+)′.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Sasaki-Murao · 29

The block decomposition suggests the following possible representation of matri-
ces in a functional language using the data type (where [R] is the type of lists over
the type R, using Haskell notation):

Mat R ::= Empty | Mat R [R] [R] (Mat R)

So a matrix M is either the empty matrix or a compound matrix Mat m L C N .
It is direct, using this representation, to define the operations of addition, multi-
plication on matrices, and the operation M ′ on non-empty matrices. From this
representation, we can also compute other standard views of a m× n matrix, such
as a list of lines l1, . . . , lm or as a list of columns c1, . . . , cn.

If M is a square n × n matrix over a ring R we write |M | the determinant of
M . A k-minor of M is a determinant |M(f, g)| for any strictly increasing maps
f : Ik → In and g : Ik → In. A leading principal minor of M is a determinant
|M(f, f)| where f is the inclusion of Ik into In.

1.2 The algorithm

We present Sasaki-Murao algorithm using functional programming notations. This
algorithm computes in polynomial time, not only the determinant of a matrix, but
also its characteristic polynomial. We assume that we have a representation of
polynomials over the ring R and that we are given an operation p/q on R[X] which
should be the quotient of p by q when q is a monic polynomial. This operation is
directly extended to an operation M/q of type Mat R[X] → R[X] → Mat R[X].
We define then an auxiliary function φ a M of type R[X] → Mat R[X] → R[X].
The definition is:

φ a Empty = a
φ a (Mat m L C N) = φ m ((mN − CL)/a)

From now on, we assume R to be a commutative ring.
The proof relies on the notion of regular element of a ring: a regular element of

R is an element a such that ax = 0 implies x = 0. An alternative (and equivalent)
definition is to say that multiplication by a is injective or that a can be cancelled
from ax = ay giving x = y.

Theorem 1.2.1. Let P be a square matrix of elements of R[X]. If all leading
principal minors of P are monic, then φ 1 P is the determinant of P . In partic-
ular, if P = X1n −M for some square matrix M of elements in R, φ 1 P is the
characteristic polynomial of M .

This gives a remarkably simple (and polynomial time [AL04]) algorithm for com-
puting the characteristic polynomial χM (X) of a matrix M . The determinant of
M is then χ−M (0).

2. CORRECTNESS PROOF

We first start to prove some auxiliary lemmas:

Lemma 2.0.2. If M is a n× n matrix, n > 0 then we have

mn−1
00 |M | = m00|M ′|.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

30 · Coquand et al.

In particular, if m00 is regular and n > 1, then we have

mn−2
00 |M | = |M ′|.

Proof. Let us view the matrix M as a list of lines l0, . . . , ln−1 and let N1 be the
matrix l0, m00l1, . . . , m00ln−1. The matrix N1 is computed from M by multiplying
all of its lines (except the first one) by m00. By the properties of the determinant,
we can assert that |N1| = mn−1

00 |M |.
Let N2 be the matrix l0, m00l1 −m10l0, . . . , m00ln−1 −m(n−1)0l0. The matrix

N2 is computed from N1 by subtracting a multiple of l0 from every line except l0:

m00l1+i ← m00l1+i −m(1+i)0l0.

By the properties of the determinant, we can assert that |N2| = |N1|.

Using the definition of the previous section, we can also view the matrix M
as the block matrix (m00 L C N), and then the matrix N2 is the block matrix
(m00 L 0 M ′). Hence we have |N2| = m00|M ′|. From this equality, we can now
prove that

mn−1
00 |M | = |N1| = |N2| = m00|M ′|.

If m00 is regular and n > 2, this equality simplifies to mn−2
00 |M | = |M ′|

Corollary 2.0.3. Let M be a n × n matrix with n > 0. If f and g are two
strictly increasing maps from Ik to In−1, then |M ′(f, g)| = mk−1

00 |M(f+, g+)| if m00

is regular.

Proof. Using Lemma 1.1.1, we know that M ′(f, g) = M(f+, g+)′, so this corol-
lary follows from Lemma 2.0.2.

Let a be an element of R and M a n × n matrix. We say that a and M are
related if and only if

(1) a is regular

(2) ak divides each k + 1 minor of M

(3) each principal minor of M is regular

Lemma 2.0.4. Let a be a regular element of R and M a n × n matrix, with
n > 0. If a and M are related, then a divides every element of M ′. Furthermore if
aN = M ′ then m00 and N are related and if n > 1

mn−2
00 |M | = an−1|N |

Proof. Let us start by stating two simple facts: m00 is a 1× 1 principal minor
of M and for all i, j, M ′ij is a 2 × 2 minor of M . Therefore, since a and M are
related, m00 is regular and a divides all the M ′ij (by having k = 1), so a divides
M ′.

Let us write M ′ = aN , we now need to show that m00 and N are related, and if
n > 1,

mn−2
00 |M | = an−1|N |

Let us consider two strictly increasing maps f : Ik → In−1, g : Il → In−1, we have
|M ′(f, g)| = uk−1|M(f+, g+)| by Corollary 2.0.3. From the definition of related,

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Sasaki-Murao · 31

we also know that ak divides |M(f+, g+)|. Since M ′ = aN we have |M ′(f, g)| =
ak|N(f, g)|. If we write bak = |M(f+, g+)|, we have that bakuk−1 = ak|N(f, g)|.
Since a is regular, this equality implies buk−1 = |N(f, g)|, and we see that uk−1

divides each k minor of N . This also shows that |N(f, g)| is regular whenever
|M(f+, g+)| is regular. In particular, each principal minor of N is regular. Finally,
since |M ′| = an−1|N | we have mn−2

00 |M | = an−1|N | by Lemma 2.0.2.

Since any monic polynomial is also a regular element of the ring of polynomials,
Theorem 1.2.1 follows directly from Lemma 2.0.4 by performing a straightforward
induction over the size n. In the case where P is X1n −M for some square matrix
M over R, we can use the fact that any principal minor of X1n −M is the charac-
teristic polynomial of a smaller matrix, and thus is always monic. In the end, the
second part of the conclusion follows directly for the first: φ 1 (X1n−M) = χM (X).

Now, we explain how to derive some Sylvester equalities from Lemma 2.0.4. If
we look at the computation of φ 1 P we get a chain of equalities

φ 1 P = φ u1 P1 = φ u2 P2 = · · · = φ un−1 Pn−1

and we have that uk is the k : th leading principal minor of P , while Pk is the
(n− k)× (n− k) matrix

Pk(i, j) = |P (fi,k, fj,k)|

where fi,k(l) = l if l < k and fi,k(k) = i + k. (We have P0 = P .) Lemma 2.0.4
shows that we have for k < l

|Pk|un−l−1l = |Pl|un−k−1k

This is a Sylvester equality for the matrix P = X1n − M . If we evaluate this
identity at X = 0, we get the corresponding Sylvester equality for the M matrix
over an arbitrary commutative ring.

3. REPRESENTATION IN TYPE THEORY

The original functional program is easily described in Type Theory, since it is an
extension of simply typed λ-calculus:

Variable R : ringType.

Variable CR : cringType R.

Definition cpoly := seq CR. (* polynomials are lists *)

Inductive Matrix : Type :=

| eM (* the empty matrix *)

| cM of CR & seq CR & seq CR & Matrix.

Definition ex_dvd_step d (M : Matrix cpoly) :=

mapM (fun x => divp_seq x d) M.

(* main "\phi" function of the algorithm *)

Fixpoint exBareiss_rec (n : nat) (g : cpoly) (M : Matrix cpoly)

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

32 · Coquand et al.

{struct n} : cpoly := match n,M with

| _,eM => g

| O,_ => g

| S p, cM a l c M =>

let M’ := subM (multEM a M) (mults c l) in

let M’’ := ex_dvd_step g M’ in

exBareiss_rec p a M’’

end.

(* This function computes det M for a matrix of polynomials *)

Definition exBareiss (n : nat) (M : Matrix cpoly) : cpoly :=

exBareiss_rec n 1 M.

(* Applied to xI - M, this gives another definition of the

characteristic polynomial *)

Definition ex_char_poly_alt (n : nat) (M : Matrix CR) :=

exBareiss n (ex_char_poly_mx n M).

(* The determinant is the constant part of the char poly *)

Definition ex_bdet (n : nat) (M : Matrix CR) :=

nth (zero CR) (ex_char_poly_alt n (oppM M)) 0.

The Matrix type allows to define “ill-shaped” matrices since there are no links
between the size of the blocks. When proving correctness of the algorithm, we have
to be careful and only consider valid inputs.

As we previously said, this is a simple functional program, but its correctness
involves nontrivial mathematics. We choose to use the SSReflect library to
formalize the proof because it already contains many results that we need. The
main scheme is to translate this program using SSReflect data types, prove its
correctness and then prove that both implementations output the same results on
valid inputs following the methodology presented in [DMS12b].

First, here is a description of the SSReflect data types we need:

(* ’I_n *)

Inductive ordinal (n: nat) : predArgType := Ordinal m of m < n.

Variable R : ringType.

(* ’M[R]_(m,n) a.k.a. ’M_(m,n) *)

Inductive matrix R m n := Matrix of {ffun ’I_m * ’I_n -> R}.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Sasaki-Murao · 33

(* {poly R} *)

Record polynomial := Polynomial {

polyseq :> seq R;

_ : last 1 polyseq != 0

}.

Here dependent types are used to express well-formedness. For example, poly-
nomials are encoded as lists (of their coefficients) with a proof that the last one is
not zero. With this restriction, we are sure that one list exactly represent a unique
polynomial. Matrices are described as finite functions over the finite sets of indexes.

With this definition, it is easy to define the sub-matrix M(f, g) along with minors:

(* M(f,g) *)

Definition submatrix m n p q (f : ’I_p -> ’I_m) (g : ’I_q -> ’I_n)

(A : ’M[R]_(m,n)) : ’M[R]_(p,q) :=

\matrix_(i < p, j < q) A (f i) (g j).

Definition minor m n p (f : ’I_p -> ’I_m) (g : ’I_p -> ’I_n)

(A : ’M[R]_(m,n)) : R := \det (submatrix f g A).

Using SSReflect notations and types, we can now write the steps of the func-
tional program (where rdivp is the pseudo-division operation [Knu81] of R[X]):

Definition dvd_step (m n : nat) (d : {poly R})

(M: ’M[{poly R}]_(m,n)) : ’M[{poly R}]_(m,n) :=

map_mx (fun x => rdivp x d) M.

(* main "\phi" function of the algorithm *)

Fixpoint Bareiss_rec m a : ’M[{poly R}]_(1 + m) -> {poly R} :=

match m return ’M[_]_(1 + m) -> {poly R} with

| S p => fun (M : ’M[_]_(1 + _)) =>

let d := M 0 0 in (* up left *)

let l := ursubmx M in (* up right *)

let c := dlsubmx M in (* down left *)

let N := drsubmx M in (* down right *)

let M’ := d *: N - c *m l in

let M’’ := dvd_step a M’ in

Bareiss_rec d M’’

| _ => fun M => M 0 0

end.

Definition Bareiss (n : nat) (M : ’M[{poly R}]_(1 + n)) :=

Bareiss_rec 1 M.

Definition char_poly_alt n (M : ’M[R]_(1 + n)) :=

Bareiss (char_poly_mx M).

Definition bdet n (M : ’M[R]_(1 + n)) :=

(char_poly_alt (-M))‘_0.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

34 · Coquand et al.

The main achievement of this paper is the formalized proof of correctness (de-
tailed in the previous section) of this program:

Lemma BareissE : forall n (M : ’M[{poly R}]_(1 + n)),

(forall p (h h’ : p.+1 <= 1 + n), monic (pminor h h’ M)) ->

Bareiss M = \det M.

Lemma char_poly_altE : forall n (M : ’M[R]_(1 + n)),

char_poly_alt M = char_poly M.

Lemma bdetE n (M : ’M[R]_(1 + n)) : bdet M = \det M.

Now we want to prove that the original functional program is correct. Both
implementations are very close to each other, so to prove the correctness of the
ex_bdet program, we just have to show that it computes the same result than bdet

on similar (valid) inputs. This is one of the advantages of formalizing correctness
of program in Type Theory: one can express the program and its correctness in
the same language!

Lemma exBareiss_recE :

forall n (g : {poly R}) (M : ’M[{poly R}]_(1 + n)),

trans (Bareiss_rec g M) = exBareiss_rec (1+n) (trans g) (trans M).

Lemma exBareissE : forall n (M : ’M[{poly R}]_(1 + n)),

trans (Bareiss M) = exBareiss (1 + n) (trans M).

Lemma ex_char_poly_mxE : forall n (M : ’M[R]_n),

trans (char_poly_mx M) = ex_char_poly_mx n (trans M).

Lemma ex_detE : forall n (M : ’M[R]_(1 + n)),

trans (bdet M) = ex_bdet (1 + n) (trans M).

To link the two implementations, we rely on CoqEAL [DMS12a], a library built
on top of SSReflect libraries that we are currently developing. It allows to mirror
the main algebraic hierarchy of SSReflect with more concrete data types (e.g.
here we mirror the matrix type ’M[R]_(m,n) by the concrete type Matrix CR,
assuming CR mirrors R) in order to prove the correctness of functional programs
using the whole power of SSReflect libraries.

This process is done in the same manner as in [GGMR09] using the canonical
structure mechanism of Coq to overload the trans function, which can then be
uniformly called on elements of the ring, polynomials or matrices. This function
links the SSReflect structures to the one we use for the functional program de-
scription, ensuring that the correctness properties are translated the program that
we actually run in practice.

We can easily prove that translating a SSReflect matrix into a Matrix always
lead to a “valid” Matrix, and there is a bijection between SSReflect matrices and
“valid” matrices, so we are sure that our program computes the correct determinant
for all valid inputs.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

Sasaki-Murao · 35

In the end, the correctness of ex_bdet is proved using the lemmas bdetE and
ex_bdetE, stating that for any valid input, ex_bdet outputs the determinant of the
matrix:

Lemma ex_bdet_correct (n : nat) (M : ’M[R]_(1 + n)) :

trans (\det M) = ex_bdet (1 + n) (trans M).

4. CONCLUSIONS AND BENCHMARKS

In this paper the formalization of a polynomial time algorithm for computing the
determinant over any commutative ring has been presented. In order to be able to
do the formalization in a convenient way a new correctness proof more suitable for
formalization has been found. The formalized algorithm has also been refined to
a more efficient version on simple types, following the methodology of [DMS12b].
This work can be seen as an indication that this methodology works well on more
complicated examples involving many different computable structures, in this case
matrices of polynomials.

We have tested the implementation on randomly generated matrices with Z co-
efficients:

(* Random 3x3 matrix *)

Definition M3 :=

cM 10%Z [:: (-42%Z); 13%Z] [:: (-34)%Z; 77%Z]

(cM 15%Z [:: 76%Z] [:: 98%Z]

(cM 49%Z [::] [::] (@eM _ _))).

Time Eval vm_compute in ex_bdet 3 M3.

= (-441217)%Z

Finished transaction in 0. secs (0.006667u,0.s)

Definition M10 := (* Random 10x10 matrix *).

Time Eval vm_compute in ex_bdet 10 M10.

= (-406683286186860)%Z

Finished transaction in 1. secs (1.316581u,0.s)

Definition M20 := (* Random 20x20 matrix *).

Time Eval vm_compute in ex_bdet 20 M20.

= 75728050107481969127694371861%Z

Finished transaction in 63. secs (62.825904u,0.016666s)

This indicates that the implementation is indeed quite efficient, we believe that
the slow-down of the last computation is due to the fact that the size of the deter-
minant is so large and that the intermediate arithmetic operations has to be done
on very big numbers. We have verified this by extracting the function to Haskell
and the determinant of the 20×20 matrix can then be computed in 0.273 seconds.
The main reasons for this is that the Haskell program has been compiled and
have an efficient implementation of arithmetic operations for large numbers.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

36 · Coquand et al.

The main contribution of this paper is to express Sasaki-Murao algorithm as a
functional program and show that, in this form, it admits a quite simple proof
of correctness, arguably simpler than proofs available in the literature [AL04] (for
instance, we don’t have to rely on Sylvester identities). For doing this proof for-
mally, it is furthermore convenient and elegant to have a single formalism (here
type theory) in which we can write the algorithm, its specification and its proof of
correctness.

References

[AL04] J. Abdeljaoued and H. Lombardi. Méthodes matricielles - Introduction
à la complexité algébrique. Springer, 2004.

[DMS12a] M. Dénès, A. Mörtberg, and V. Siles. CoqEAL, the Coq Effective
Algebra Library, 2012. http://www-sop.inria.fr/members/Maxime.
Denes/coqeal.

[DMS12b] Maxime Dénès, Anders Mörtberg, and Vincent Siles. A refinement
based approach to computational algebra in Coq. In Interactive Theo-
rem Proving, volume 7406 of LNCS, pages 83–98, 2012.

[GGMR09] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging
mathematical structures. In Proceedings 22nd International Conference
on Theorem Proving in Higher Order Logics (TPHOLs’09), volume
5674 of LNCS, pages 327–342, 2009.

[GM10] Georges Gonthier and Assia Mahboubi. An introduction to small scale
reflection in Coq. Journal of Formalized Reasoning, 3(2):95–152, 2010.

[Knu81] Donald E. Knuth. The art of computer programming, volume 2:
seminumerical algorithms. Addison-Wesley, 1981.

[MS12] A. Mörtberg and V. Siles. Formalization of Bareiss/Sasaki-
Murao algorithm, 2012. http://www.cse.chalmers.se/~siles/coq/

formalisation.html.

[SM82] Tateaki Sasaki and Hirokazu Murao. Efficient Gaussian Elimination
Method for Symbolic Determinants and Linear Systems. ACM Trans.
Math. Softw., 8(3):277–289, September 1982.

[Tea10] Coq Development Team. The Coq Proof Assistant Reference Manual,
version 8.3. Technical report, 2010.

Journal of Formalized Reasoning Vol. 5, No. 1, 2012.

