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We describe a HOL Light formalization of Hermite’s proof that the base of the natural logarithm

e is transcendental. This is the first time a proof of this fact has been formalized in a theorem

prover.

1. INTRODUCTION

A transcendental number is one that is not the root of any non-zero polynomial
having integer coefficients. It immediately follows that no rational number q is
transcendental, since q can be written as a/b where a and b are integers, and thus
q is a root of bx − a. Furthermore, the transcendentals are a proper subset of the
irrationals, since for example the irrational

√
2 is a root of x2 − 2.

The existence of transcendental numbers was first established by Liouville in
1844 [11] by exhibiting a transcendental continued fraction. A later and simpler
proof for their existence is due to Cantor [2, 4], who used a straightforward count-
ing argument to show that the non-transcendental (called algebraic) numbers are
countable. The result then follows from the fact that the reals are uncountable.
The first decimal number demonstrated to be transcendental

∑∞
n=1 10−n! has come

to be known as Liouville’s constant. Transcendental numbers play an important
role in Mathematics historically; for examples the fact that π is transcendental was
used in the proof of the impossibility of squaring the circle, and the 7th Hilbert
problem pertains to transcendental numbers.

The first non-fabricated number proven to be transcendental was the base of the
natural logarithm e, as established by Hermite in 1873 [9]. This paper describes a
formalization of (a simplification of) Hermite’s proof using the HOL Light theorem
prover; this is the first time this theorem has been formalized.1

2. HOL LIGHT PRELIMINARIES

HOL Light (hereafter simply HOL) is an interactive theorem prover for classical
higher order logic [8]. Though HOL traces its ancestral roots to formal verification
of computer systems, it has extended its applicability into the realm of many areas
of Mathematics. Wiedijk [15] provides a comprehensive comparison of doing Math-
ematics in HOL with many other theorem proving systems by considering proofs of
the irrationality of

√
2. Currently, proofs of 76 of the 100 Mathematical theorems

tracked by Wiedijk’s website [16] have been formulated in HOL Light, more than
any other theorem prover. These include a selection of well-known results from
diverse fields such as Number Theory, Geometry, Logical Foundations, Computer
Science, Analysis, and Combinatorics. For a recent example of an intricate proof
in HOL see Harrison’s formalization of Dirichlet’s Theorem [7].

1The HOL Light proof script is available for download at www.cs.ubc.ca/~jbingham/etrans.html.
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The logic used by HOL is called simple type theory, which was proposed by
Church as a potential foundation for Mathematics [3]. Like most theorem proving
systems, all proofs are ultimately performed by the computer according to a small
set of primitive inference rules. A key innovation in HOL and related provers is the
notion of a tactic, which allows the user to perform backwards reasoning in order to
prove a conjecture. Though HOL includes decision procedures and semi-procedures
for various fragments of its logic, much of the reasoning to prove deep mathematical
results must ultimately be done manually. The manual reasoning manifests as a
proof script written in HOL’s meta language Ocaml, weaving together chains of
forward inferences and backwards tactics. It is important to emphasize, however,
that no matter how complex this code is, HOL ensures soundness – it is impossible
to prove a theorem that is not true.

In HOL, formal mathematical expressions are called terms. HOL has a rich
typing system and each term has a well-defined type, which for examples may be
B (boolean), N (natural number), R (real number), T ∗ (finite list with elements
having type T ), or T1 → T2 → · · · → Tk → T (k-ary functions with arguments
of types T1, T2, . . . , Tk that return type T ). Terms of different types semantically
denote distinct objects, an important implication being that e.g. 42 the natural is
not equal to 42 the real. A function & is used to map from the former to the latter;
i.e. the term 42 represents a natural while &42 is a real.

Although a HOL term and all its sub-terms have types, often these types are left
implicit since they can be inferred from context. For example the function pow has
type R → N → R, and raises the given real to the power of the given natural and
returns the real result. We can infer that the term z * (x pow n) + y has type R.
Note that whereas traditional Mathematics notation usually indicates a function’s
arguments as a comma separated list wrapped in parenthesis, HOL uses neither the
commas nor the parentheses (though parentheses are used to delimit sub-terms).
So for example if f and h are respectively functions of two and three arguments,
HOL expresses h(w, f(x, y), z) as the term h w (f x y) z. Note, however, that
HOL allows for selected functions to be written infix; in the example term above
each of the functions *, pow, and + are displayed in this style.

It is important to mention HOL’s treatment of predicates. Traditionally, a predi-
cate P over a set X (also called a relation when X is a Cartesian product) is simply
a subset of X, i.e. P ⊆ X. For instance, the predicate prime defines a subset of
N. Since the notion of a function is central in the HOL logic (and the notion of
sub-set is not-so-central), HOL predicates are functions of the type X → B with the
obvious connection to the traditional predicate: the function yields true for x ∈ X
iff x ∈ P .

In this paper, we follow the formatting convention of Harrison, where HOL terms
are placed in a box, and are typeset using fixed-font ASCII almost exactly as
they appear on the computer screen, except the ASCII is augmented with a few
logic symbols (∀, ∃, ∧, ⇒, λ, etc). Terms of boolean type that have been proven
equivalent to the boolean constant True are called theorems and are indicated by
prefixing with the traditional turn-style notation |-, for example the HOL theorem
that states that real multiplication (right) distributes over real addition is displayed
as:
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|- ∀ x y z. (x + y) * z = x * z + y * z

HOL has a sound mechanism for introducing definitions into its logic; the result of
which is simply a theorem asserting the definition.2 Hence there is no distinction
between a definition and a theorem; both are indicated using |-. For example, the
predicate prime is defined by the theorem

|- ∀ p. prime p ⇔ ¬(p = 1) ∧ (∀ x. x divides p ⇒ x = 1 ∨ x = p)

This says that for all p ∈ N, p is prime if and only if p 6= 1 and any x that divides
p must be equal to either 1 or p.

Polynomials in HOL [5] are represented simply as lists of reals specifying the
coefficients, with the head being the constant term, the second element being the
coefficient of x, the third the coefficient of x2, etc.3 To evaluate a polynomial f at
the point x one applies the fundamental function poly:

|- (poly [] x = &0) ∧
(poly (CONS h t) x = h + x * poly t x)

Here CONS is the list constructor function of type R→ R∗ → R∗ that pre-appends
the real to the list-of-reals, yielding a new list, while [] is the empty list. Thus
evaluating the empty polynomial is always 0 for any x, while a non-empty poly-
nomial f is evaluated recursively by adding the constant term to x multiplied by
the evaluation of the tail of f at x. Thus poly can be though of as characterizing
Horner’s Rule:

n∑
i=0

cix
i = c0 + x(c1 + x(c2 + · · ·+ x(cn−1 + xcn) · · · ))

Common operations one might apply to polynomials are defined to directly act on
R∗, for example polynomial addition ++ has type R∗ → R∗ → R∗ and is defined
recursively by

|- ([] ++ p2 = p2) ∧
(p1 ++ [] = p1) ∧
((CONS h1 t1) ++ (CONS h2 t2) = CONS (h1 + h2) (t1 ++ t2))

Multiplying a polynomial by a real constant and by another polynomial, denoted
## and ** respectively, are defined similarly:

|- c ## [] = [] ∧ c ## CONS h t = CONS (c * h) (c ## t)

|- ([] ** l2 = []) ∧
((CONS h t) ** l2 =

(if t = [] then h ## l2 else (h ## l2) ++ CONS (&0) (t ** l2)))

HOL definitions that involve iteration are most commonly expressed in the inductive
style of the above definitions; the HOL system requires a proof that the induction
is well-founded, although in many cases it can deduce this proof automatically.

2Soundness is ensured by in some cases demanding that before defining an object with a given
property, one must supply a theorem stating that such an object exists.
3HOL lists are displayed with the head on the left, meaning that the coefficient order is reversed;
e.g. the list [&7; &0; -- &42; &1] represents the polynomial x3 − 42x2 + 7.
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Many of the polynomials we manipulate in our proof have integer coefficients.
HOL uses the predicate integer over R to indicate if a real is an integer. Since
polynomials are just lists of reals, we can assert that a polynomial f has integer
coefficients by ALL integer f, where ALL is a list-theoretic operator that is true
iff all elements of the given list satisfy the given predicate. In the coarse of this
work, we found it necessary to prove many obvious theorems about how integer

commutes with various polynomial operations, for examples:

|- ∀ f1 f2. (ALL integer f1) ∧ (ALL integer f2)

⇒ (ALL integer (f1 ** f2))

|- ∀ f. (ALL integer f) ⇒ (ALL integer (poly_diff f))

Here poly_diff performs differentiation on polynomials in the expected way.
Since a polynomial is any list of reals, polynomials can very well have trailing

zeros, which means the degree is not necessarily one less than the length. HOL
defines a function degree that is one less than the length of the polynomial after
any such zeros are chopped off. It follows that (LENGTH p) - 1 is guaranteed to be
at least degree p. This fact is exploited in some of the summations in our proof;
even though it is only necessary to sum up to the degree, it makes proofs simpler to
have some summations go to (LENGTH p) - 1 or simply LENGTH p; in such cases
the theorems still hold since any additional terms are 0.

For specifying derivatives of functions of type R → R, HOL defines a relation
diffl ⊆ (R→ R)× R× R [6]. Intuitively, (f, a, x) ∈ diffl iff the function f has
a derivative at x, and furthermore the derivative has value a. Basic calculus tells
us that this holds iff

a = lim
h→0

f(x+ h)− f(x)

h

after expanding the limit operator into its epsilon-delta definition, the definition in
HOL becomes4

|- ∀ f x a.

(f diffl a) x ⇔
(∀ e. &0 < e

⇒ (∃ d. &0 < d ∧
(∀ x’. &0 < abs x’ ∧ abs x’ < d

⇒ abs ((f (x + x’) - f x) / x’ - a) < e)))

One of several equivalent ways to define the natural exponentiation function is
via an infinite summation: ex =

∑∞
n=0 x

n/n!. In HOL this manifests as

|- ∀ x. exp x = suminf (λ n. inv (&(FACT n)) * x pow n)

Intuitively, suminf takes a function g : N→ R and returns the infinite sum g(0) +
g(1) + g(2) + · · · , assuming it converges. Here g is the function that takes n ∈
N to the HOL term inv (&(FACT n)) * x pow n, where inv reciprocates a real
number, & is the injection from N to R, and FACT is the factorial function on N. Note
also that here we use λ-abstraction, which is a central notion in HOL; given a term

4HOL prints diffl f a x using an infix notation (f diffl a) x.
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t of type T1 and a variable v of type T2, λv.t is a term of type T2 → T1 representing
the function that substitutes a value for v in t. Given the above definition of exp,
the number of interest e itself is simply written by the HOL term exp &1.

The formalization of the transcendental predicate in HOL was done previously,
since Harrison has done a HOL proof of Liouville’s Theorem.
Noting that poly p = poly [] is a way of asserting that p’s coefficients are all 0,
the following predicate definitions should be self-explanatory:

|- ∀ x. algebraic x ⇔
(∃ p. ALL integer p ∧ ¬(poly p = poly []) ∧ poly p x = &0)

|- ∀ x. transcendental x ⇔ ¬algebraic x

3. THE PROOF

The proof was constructed following the informal proof at the PlanetMath web-
site [1], which in turn follows a simplification of Hermite’s proof [9] done by Hurwitz
in 1893 [10].

We start by assuming that e is algebraic and hence there exists a polynomial with
integer coefficients c(x) such that c(e) = 0. A central operation on a polynomial

f(x) used by the proof is to take the sum of all derivatives, which we denote f̂(x).
From our assumption that e is algebraic and some lemmas about how f(x) and

f̂(x) are related, a certain equation (†) is constructed. (†) involves the assumed

polynomial c(x), an arbitrary polynomial f(x) (and the corresponding f̂(x)), and
e itself. Next a particular choice of f(x) called gn,p(x) is defined (4); gn,p(x) is
parameterized by positives integer n and p. The proof reaches a contradiction by
showing that if we set n = deg(c) and select p to be a large enough prime (which
is always possible thanks to the infitude of the primes), then taking f = gn,p in
(†) yields a contradiction since the LHS is a non-zero integer whereas the RHS has
absolute value less-than 1.

In Section 3.1 we make some definitions and give two preliminary lemmas. Next
the key equation (†) is developed in Section 3.2. The contradictory properties in-
volving the LHS and RHS of the key equation are respectively proven in Sections 3.3
and 3.4. These results are put together to prove e’s transcendence in Section 3.5.

3.1 Preliminary Lemmas

For a polynomial f(x), let deg(f) denote the degree of f , and let f (i)(x) denote the

ith derivative of f(x). Let f̂(x) denote the sum of derivatives (SOD) of f(x), i.e.

f̂(x) =

deg(f)∑
i=0

f (i)(x) (1)

In HOL we define SOD as a function of type R∗ → R∗, building up the definition
from that of iterated polynomial differentiation and SODN, which sums the first n
derivatives. Note also that SUC is the successor function on N.

|- ∀ f. (poly_diff_iter f 0 = f) ∧
(poly_diff_iter f (SUC n) = poly_diff (poly_diff_iter f n))

|- ∀ f n. SODN = iterate poly_add (0..n) (λ i.poly_diff_iter f i)

|- ∀ f. SOD = SODN f (LENGTH f)
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Let us define Φ(x) = e−xf̂(x) and consider its derivative

Φ′(x) = e−x(f̂ ′(x)− f̂(x)) = −e−xf(x) (2)

In HOL, Φ is really a function of both the implicit polynomial f and the explicit
real argument x and thus has type R∗ → R→ R. We make the definition5

|- Phi f x = (exp (-- x)) * (poly (SOD f) x)

and prove (2), formulated in terms of the diffl predicate:

|- ∀ x f.( (Phi f) diffl (--(exp (--x)) * (poly f x)) ) x

We now apply the Mean Value Theorem (MVT) to the function Φ on the interval
with end points 0 and x. Much to the author’s delight, MVT comes pre-proven in
the HOL Library:

|- ∀ f a b.

a < b ∧
(∀ x. a <= x ∧ x <= b ⇒ f contl x) ∧
(∀ x. a < x ∧ x < b ⇒ f differentiable x)

⇒ ∃ l z.

a < z ∧
z < b ∧
(f diffl l)(z) ∧
(f(b) - f(a) = (b - a) * l)

Note that f ranges over all functions of type R → R, hence the pre-conditions of
continuity and differentiability on the interval of interest [a, b]. By applying MVT
to Φ on the interval [0, x], the informal proof asserts that there exists a real ξ such
that 0 < ξ < x and

Φ(x)− Φ(0) = e−xf̂(x)− f̂(0) = Φ′(ξ)x = −e−ξf(ξ)x (3)

Similar to Φ, ξ is implicitly dependent on both x and f , which means that in HOL
ξ has type R→ R∗ → R. Thus (3) becomes

|- ∀ x f. &0 < x

⇒ &0 < xi x f ∧
xi x f < x ∧
Phi f x - Phi f (&0) = x * --exp (--xi x f) * poly f (xi x f)

Noting that (3) implies f̂(0) = e−xf̂(x) + e−ξf(ξ)x, we arrive at the following
lemma about ξ.

Lemma 1. For any x > 0, there exists 0 < ξx < x such that

f̂(0)ex = f̂(x) + xex−ξxf(ξx)

In HOL, the range constraint on ξ is woven into the definition of ξ given above,
hence Lemma 1’s manifestation does not mention this constraint explicitly

5Negation of a real number or integer in HOL is expressed using the unary operator --.
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|- ∀ x f. &0 < x ⇒
poly (SOD f) (&0) * exp x =

poly (SOD f) x + x * exp (x - xi x f) * poly f (xi x f)

Considering the Taylor expansion of the polynomial f about the point x = a:

f(x) =

deg(f)∑
i=0

f (i)(a)
(x−a)i

i!

Comparing with (1) we obtain:

Lemma 2. The value f̂(a) is obtained so that in the Taylor expansion of the
polynomial f(x) about the point a, the powers x−a, (x−a)2, . . . , (x−a)deg(f) are
replaced respectively by the numbers 1!, 2!, . . . , deg(f)!.

Formalizing Lemma 2 must be done somewhat indirectly. The lemma makes a
claim about making appropriate substitutions for certain non-trivial sub-expressions
of some formula (that is equal to f(x)) yielding a new formula with a known value

(i.e. f̂(a)). As far as the author knows, it is impossible to directly define an operator
in the HOL logic that describes this substitution. However, using λ-abstractions,
one can in effect describe a substitution where the substitution target is simply a
variable. We thus construct a HOL term τ that is the Taylor expansion of f(x)
about the point a, except (x−a)i is replaced by the term s i, where s is a free
variable. In this light we formalize Lemma 2 as two HOL theorems; the first says
roughly that substituting (x − a)i for s in τ is equal to f(x), while the second

states that substituting i! for s in τ is equal to f̂(a). These substitutions are sim-
ply formalized by applying the λ-abstraction λs.τ to the terms to be substituted
in. Recalling that in HOL f(x) and f̂(a) are respectively written poly f x and
poly (SOD f) a, the two theorems are as follows.

|- ∀ f a x.

poly f x =

(λ s. psum (0,LENGTH f)

(λ m. poly (poly_diff_iter f m) a / &(FACT m) * s m))

(λ i. (x - a) pow i)

|- ∀ f x a.

poly (SOD f) a =

(λ s. psum (0,LENGTH f)

(λ m. poly (poly_diff_iter f m) a / &(FACT m) * s m))

(λ i. &(FACT i))

Both of these theorems have three lambda abstractions, only the third of which
differs between them.

(1) s is the target of the substitution in τ , having type N→ R
(2) m has type N and is the abstraction that psum sums over

(3) i abstracts the respective expressions (x− a)i and i! so they become functions
as required by λ s
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3.2 The Equation (†)
Let us make the supposition that e is algebraic. Then there exists integers c0, . . . , cn
with c0 > 0 such that

n∑
i=0

cie
i = 0

Now let f be any polynomial, and let us multiply the above by f̂(0)

c0f̂(0) +

n∑
i=1

cif̂(0)ei = 0

By virtue of Lemma 1 we can rewrite this as

c0f̂(0) +

n∑
i=1

ci

(
f̂(i) + iei−ξif(ξi)

)
= 0

Rearranging we obtain the key equation
n∑
i=0

cif̂(i) = −
n∑
i=1

icie
i−ξif(ξi) (†)

For readability and convenience, we have elected to define HOL constants cor-
responding to the LHS and RHS of (†). Of course since both sides depend on the
polynomials c and f , these become arguments; note that extracting the ith element
of a list (where the first element is the 0th) is done via the function EL:

|- LHS c f = sum (0..(PRE (LENGTH c)))

(λ i.(EL i c) * (poly (SOD f) (&i)))

|- RHS c f = -- sum (1..(PRE (LENGTH c)))

(λ i. (&i)

* (EL i c)

* (exp ((&i) - (xi (&i) f)))

* (poly f (xi (&i) f)) )

Armed with these definitions we can more succinctly formalize the condition under
which (†) holds, i.e. the assumption that e is not transcendental, which is hence
added as an antecedent. Note also the existential and universal quantification,
respectively, over the polynomials c and f .

|- ¬(transcendental (exp &1)) ⇒
∃ c. (ALL integer c) ∧

((LENGTH c) > 1) ∧
((EL 0 c) > &0) ∧
(∀ f .((LHS c f) = (RHS c f)))

The proof proceeds by demonstrating that one may select a polynomial f(x)
such that the LHS of (†) is a non-zero integer whereas the RHS has absolute value
strictly less than 1, which is contradictory. We will denote the particular choice of
f(x) by gn,p(x), which is defined by

gn,p(x) =
xp−1

(p− 1)!
((x−1)(x−2) · · · (x−n))

p
(4)
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Later n will be set to (an upper bound on) deg(c), while p will be a prime number
that is large enough to satisfy certain bounds. An important feature of the poly-
nomial gn,p(x) is that it has a zero of order p at x = 0 and a zero of order p at each
of x = 1, . . . , n; also the derivatives have zeros at these points. The higher order
of the latter zeros along with the primality of p are involved with showing that the
LHS of (†) is non-zero [13].

The formal definition of gn,p in HOL is:

|- g n p = (&1/(&(FACT (p - 1)))) ##

((poly_exp [&0; &1] (p-1))

** (poly_exp (poly_mul_iter (λ i.[-- &i; &1]) n) p))

Note that x is absent from this definition because g has type N→ N→ R∗, i.e. it
maps to the polynomial represented by (4), not the evaluation of this polynomial
at a point x. This definition involves the polynomial-level functions ## and ** dis-
cussed in Section 2, as well as functions for iterative polynomial multiplication and
polynomial exponentiation, which have straightforward definitions. Also, note the
polynomials x and x−i are respectively represented by [&0; &1] and [-- &i; &1]

.

3.3 The LHS is a Non-zero Integer

The following lemma can be seen to be true by simple manipulation of (4):

Lemma 3. There exists integers Ap−1, Ap, Ap+1 . . . where Ap−1 = (−1)np(n!)p

and

gn,p(x) =
1

(p−1)!

(
Ap−1x

p−1 +Apx
p +Ap+1x

p+1 + · · ·
)

(5)

In spite the conceptual simplicity, proving Lemma 3 in HOL turns out to be rather
tedious. Nevertheless, we were able to establish:

|- ∀ n p.

p > 0 ⇒ n > 0 ⇒
∃ As .

((g n p) = (&1/(&(FACT (p - 1)))) ## As)

∧ (∀ i. i < (p-1) ⇒ (EL i As) = &0)

∧ ((EL (p-1) As) = ((-- &1) pow (n * p)) * ((&(FACT n)) pow p))

∧ (ALL integer As)

The above warrants some explanation. The sequence Ap−1, Ap, . . . is naturally
formalized as a real list As. In HOL, extracting the ith element of a list (where
the first element is the 0th) is done via the function EL. So that Ap−1 is really the
(p − 1)th element, we conceptually pad As with p − 1 zeros at the beginning; the
fact that the first p−1 entries are zeros is indicated by the fifth line of the theorem.
Recalling that ## multiplies a HOL polynomial by a real constant, it should be
clear that the fourth line corresponds to (5). Lemma 3 includes the constraints
that Ap−1 = (−1)np(n!)p and that the Ai are integers; these correspond to the final
two lines respectively.
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Observe6 that (5) is essentially the Taylor expansion of gn,p(x) about the point
a = 0. Hence we can apply Lemma 2 to (5) in order to establish a key fact about
ĝn,p(0)

ĝn,p(0) =
1

(p−1)!
(Ap−1(p−1)! +App! +Ap+1(p+1)! + · · · )

= (n!)p(−1)np + pK0

for some integer K0. The corresponding formalization has no surprises:

|- p > 1 ⇒ n > 0 ⇒
∃ K0. integer K0 ∧

poly (SOD (g n p)) (&0)

= &(FACT n) pow p * (-- &1) pow (n * p) + &p * K0

Now let us add the constraint that the prime p is strictly greater than n. Then
(n!)p(−1)np is not divisible by p, and it follows that ĝn,p(0) is a non-zero integer
that is not divisible by p.

The only thing messy about formalizing this is that HOL understandably defines
its divides predicate on the type Z, so we must apply the mappings & : N → Z
and int_of_real : R→ Z to the terms we relate with divides (which are of type
N and R, respectively).

|- n > 0 ⇒ p > n ⇒ prime p ⇒
(integer (poly (SOD (g n p)) (&0)))

∧ ¬((&p) divides (int_of_real (poly (SOD (g n p)) (&0))))

∧ ¬((poly (SOD (g n p)) (&0)) = &0)

We now do a similar analysis, but for ĝn,p(i) where i ∈ {1, , 2, . . . , n}. Let us
Taylor-expand gn,p(x) about the point i.

gn,p(x) =
1

(p−1)!

(
Bp(x−i)p +Bp+1(x−i)p+1 + . . .

)
where the Bi’s are integers. Using Lemma 2 then gives the result

ĝn,p(i) =
1

(p−1)!
(p!Bp + (p+1)!Bp+1 + · · · ) = pKi

for some integer Ki. We can conclude that ĝn,p(1), ĝn,p(2), . . . , ĝn,p(n) are integers
and are all divisible by p.

|- p > n ⇒ n > 0 ⇒
∀ v. (1 <= v ∧ v <= n) ⇒

(integer (poly (SOD (g n p )) (&v)))

∧ ((&p) divides (int_of_real (poly (SOD (g n p )) (&v))))

Using the above two theorems about ĝn,p(0) and ĝn,p(i) for 1 ≤ i ≤ n we can
infer that the LHS is an integer having the form c0ĝn,p(0) + pK for some integer
K, and that ĝn,p(0) is indivisible by p. Now if we assume that p > |c0| then also c0

6The Taylor expansion of a polynomial about a = 0 is simply the polynomial itself.
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is indivisible by p, and thus so too is c0ĝn,p(0). This brings us to the result of this
subsection about the LHS of (†) when we plug in gn,p for f .

Lemma 4. Let p be a prime such that p > deg(c) and p > |c0|. Then
∑n
i=0 ciĝn,p(i)

is a non-zero integer.

It turns out that without loss of generality we can assume c0 > 0, hence we have
added this antecedent and reduced p > |c0| to p > c0 in the HOL’s statement of
Lemma 4.

|- n > 0 ⇒ p > n ⇒ prime p ⇒ &p > (EL 0 c) ⇒
(EL 0 c) > (&0) ⇒ n = PRE (LENGTH (c)) ⇒ (ALL integer c) ⇒
(integer (LHS c (g n p))) ∧ ¬((LHS c (g n p)) = &0)

3.4 The RHS has absolute value < 1

For this section we take n to be PRE (LENGTH c), which is (an upper bound on)
deg(c). Assuming 0 < x < n, the factors x, x−1, . . . , x−n in the definition of gn,p
(4) all have absolute value less than n:

|- &0 < x ∧ x < &n

⇒ ∀ i. 0 <= i ∧ i <= n ⇒ abs(poly [-- &i; &1] x) <= &n)

and thus

|gn,p(x)| <
1

(p−1)!
np−1(nn)p (6)

|- p > 1 ⇒
&0 < x ∧ x < &n ⇒
(abs (poly (g n p) x)) <=

(&1/(&(FACT (p - 1)))) * ((&n) pow (p - 1)) * ((&n pow n) pow p)

From Lemma 1 we have that 0 < ξi < n for each 1 ≤ i ≤ n and thus from (6) we
find

|gn,p(ξi)| <
1

(p−1)!
np−1(nn)p

Also since 0 < ξi < n, we have that e1−ξi < en for all 1 ≤ i ≤ n. Letting cm be
the greatest of |c0|, |c1|, . . . , |cn|, it follows that the RHS of (†) for f = gn,p has
absolute value less than (

n∑
i=1

i

)
cme

n 1

(p−1)!
np−1(nn)p (7)

Using a HOL definition max_abs that picks out the maximum absolute value from
a list of reals, we have the corresponding HOL theorem:

|- abs (RHS c (g (PRE (LENGTH c)) p)) <=

(sum (1..PRE (LENGTH c)) &) *

( (max_abs c) *

(exp (&(PRE (LENGTH c)))) *

&1 / &(FACT (p - 1)) *

&(PRE (LENGTH c)) pow (p - 1) *

&(PRE (LENGTH c)) pow PRE (LENGTH c) pow p )

Journal of Formalized Reasoning Vol. 4, No. 1, 2011.



82 · Jesse Bingham

Proof Portion Gzipped HOL/TeX

Lemma 1 3854/421 = 9.2

Lemma 2 2850/314 = 9.1
Equation (†) 3449/535 = 6.4

Definition of gn,p 281/180 = 1.6

LHS (†) 16035/906 = 17.7
RHS (†) 4487/563 = 8.0

Finale 1467/331 = 4.4

all 32423/3250 = 10.0

Table I. The De Bruijn factor: the ratio of information content between HOL Light proof and
PlanetMath LaTex source.

For fixed n, the the limit as p→∞ of (7) is 0, which brings us to the main result
of this subsection.

Lemma 5. There exists p0 such that for all p > p0 we have∣∣∣∣∣−
n∑
i=1

icie
i−ξign,p(ξi)

∣∣∣∣∣ < 1

In HOL, Lemma 5 is expressed

|- ∀ c. ∃ p0. ∀ p. p > p0 ⇒ abs (RHS c (g (PRE (LENGTH c)) p)) < &1

3.5 Finale

Outside of HOL, the informal proof is complete; clearly (†) along with Lemma 4,
Lemma 5, and the infitude of the primes yield a contradiction, which arises from
the supposition that e is algebraic. However HOL requires a bit of glue reasoning
to get the final theorem. For instance, we had to prove that a real number that is
nonzero and integral cannot have absolute value strictly less than 1:

|- ∀ x. ((integer x) ∧ ¬(x = &0)) ⇒ ¬(abs x < &1)

Also, HOL’s library contains a theorem stating that there are infinite p ∈ N that
are prime; but what we really need is this slightly different way of expressing the
same result:

|- ∀ n. ∃ p. prime p ∧ p > n

which took a bit of work to prove. Regardless, the final goal was reached:

|- transcendental (exp (&1))

4. CONCLUSIONS

Wiedijk [14] has proposed a metric to estimate the ratio of the information content
in formal vs. informal proofs. The idea is to compress the theorem prover proof
script and the latex source of the informal proof; the ratio of the resulting file sizes
gives some sense of the additional information (and hence human effort) involved
in the formalization. This ratio, dubbed the de Bruijn factor, has been observed
to often hover around 4, though in some cases it is as high as 9.8 for a part of
a proof [7]. However, all known comparisons of this nature involve formal proofs
done by very experienced theorem prover users, often the developers of the theorem
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prover itself. The present proof was the first substantial proof the author attempted
in HOL light (or any theorem prover for that matter), and hence one expects higher
factors.

Indeed, the de Bruijn factors for the present proof is 10.0; the factors for the
various parts of our proof are given in Table I. Interestingly, before the definition
of poly_mul_iter was added to the file that defines gn,p, the ratio was incredibly
close to 1 (181/180). In this case it appears that the effort involved in making a
nontrivial definition (which involved no proof) is equivalent in the two domains.7

After completing the proof and gaining a considerably deep “bag of tricks” for
doing HOL light proofs, the author choose (rather arbitrarily) a theorem of LHS
(†) (which has by far the highest de Bruijn factor) to re-prove. The new proof has
a compressed file size that is a factor of 2.14 smaller than the original. If the same
reduction was achievable for all of LHS (†), the factor for this part would become
8.3.

The author has little experience using any other theorem proving systems, es-
pecially for doing Mathematical proofs, hence we refrain from stating any com-
parisons. Generally we were quite pleased with HOL, but there was one notable
frustration. Many terms in this work involved more than one of the types: naturals
N, integers Z, and reals R. Since HOL’s default pretty printer suppresses type an-
notations, and common arithmetic functions like + and − are overloaded to work
on all three types, there was often confusion about the typing of various subterms.
Of course this is easily fixable if one installs their own pretty printer that always
displays type annotations on variables of these types. A more fundamental issue is
that one must apply mappings to go in between these three domains, which can be
tedious. As a partial solution, the author wrote a conversion that takes a term over
reals and returns a theorem stating that it is equivalent to an analogous term over
integers, under the antecedent that all involved real variables x satisfy integer x.

Finally, we note that there exists a proof of the transcendence of π that is based
on the machinery of Hermite’s proof of the transcendence of e [12]. We are thus
optimistic that much of the work of this paper can be leveraged to prove that π is
transcendental in HOL.
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