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1. INTRODUCTION

Small-scale reflection is a formal proof methodology based on the pervasive use of
computation with symbolic representations. Symbolic representations are usually
hidden in traditional computational reflection (e.g., as used in the Coq[The10]
ring, or romega): they are generated on-the-fly by some heuristic algorithm and
directly fed to some decision or simplification procedure whose output is translated
back to ”logical” form before being displayed to the user. By contrast, in small-scale
reflection symbolic representations are ubiquitous; the statements of many top-level
lemmas, and of most proof subgoals, explicitly contain symbolic representations;
translation between logical and symbolic representations is performed under the
explicit, fine-grained control of the proof script.

The efficiency of small-scale reflection hinges on the fact that fixing a particular
symbolic representation strongly directs the behavior of a theorem-prover:

—Logical case analysis is done by enumerating the symbols according to their
inductive type: the representation describes which cases should be considered.

—Many logical functions and predicates are represented by concrete functions on
the symbolic representation, which can be computed once (part of) the symbolic
representation of objects is known: the representation describes what should be
done in each case.

Thus by controlling the representation we also control the automated behavior
of the theorem prover, which can be quite complex, for example if a predicate
is represented by a sophisticated decision procedure. The real strength of small-
scale reflection, however, is that even very simple representations provide useful
procedures. For example, the truth-table representation of connectives, evaluated
left-to-right on the Boolean representation of propositions, provides sufficient au-
tomation for most propositional reasoning.
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Small-scale reflection defines a basis for dividing the proof workload between the
user and the prover: the prover engine provides computation and database functions
(via partial evaluation, and definition and type lookup, respectively), and the user
script guides the execution of these functions, step by step. User scripts comprise
three kinds of steps:

—Deduction steps directly specify part of the construction of the proof, either top
down (so-called forward steps), or bottom-up (backward steps). A reflection step
that switches between logical and symbolic representation is just a special kind
of deductive step.

—Bookkeeping steps manage the proof context, introducing, renaming, discharging,
or splitting constants and assumptions. Case-splitting on symbolic representa-
tions is an efficient way to drive the prover engine, because most of the data
required for the splitting can be retrieved from the representation type, and be-
cause specializing a single representation often triggers the evaluation of several
representation functions.

—Rewriting steps use equations to locally change parts of the goal or assumptions.
Rewriting is often used to complement partial evaluation, bypassing unknown
parameters (e.g., simplifying (b && false) to false). Obviously, it’s also used
to implement equational reasoning at the logical level, for instance, switching to
a different representation.

It is a characteristic of the small-scale reflection style that the three kinds of
steps are roughly equinumerous, and interleaved; there are strong reasons for this,
chief among them the fact that goals and contexts tend to grow rapidly through
the partial evaluation of representations. This makes it impractical to embed most
intermediate goals in the proof script - the so-called declarative style of proof,
which hinges on the exclusive use of forward steps. This also means that subterm
selection, especially in rewriting, is often an issue.

The basic Coq tactic language is not well adapted as such to small-scale reflection
proofs. It is heavily biased towards backward steps, with little support for forward
steps, or even script layout. Many of the basic tactics implement fragile context
manipulation heuristics which hinder precise bookkeeping; on the other hand the
under-utilized ”intro patterns” provide excellent support for case splitting.

In the present document, we briefly summarize in the two first sections some
salient aspects of the SSReflect extension to the Coq language of script which
originates from the proof of the Four Color theorem [Gon08]. The SSReflect lan-
guage in itself can be considered as an alternative idiom to the one proposed by the
standard distribution of the Coq system, introducing some improvements (term
selection, enhanced rewriting, robustness of scripts,...). But the main contribution
of the research line drawn by the successful formal proof of the Four Color theorem
lies in the small scale reflection methodology. The two last sections of this tutorial
propose a guided tour in the basic libraries distributed with the SSReflect exten-
sion. The aim of this presentation is to set out the design patterns which govern the
definition of objects, and the structure of the theories developed on these objects,
including the crucial use of type classes and canonical structures. Due to time and
space constraints, we only present combinatoric data structures, and do not address
the higher-level libraries like the ones on finite groups or on matrices. This would
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deserve another tutorial. We mainly present here how the formalization of finite
objects benefits from small scale reflection. Yet we hope that this document will
help the reader to get started with the library, and to start building further their
own formalization on top of it.

2. INSTRUCTIONS FOR THE EXERCISES

This tutorial is intended for an audience already experienced with the notion of
formal proof and with a very basic knowledge of the Coq system. For instance we
do not recall the basic syntax and principles of the system or its elementary tactics.
We still hope that the tutorial can be followed by a novice.

The online reference manual of the Coq system can be found on the Coq website
[The10], as well as the html documentation of Coq standard libraries. The reader
might also benefit from further reading on the Coq system, like [BC04].

The latest version of the SSReflect language and libraries can be downloaded
here:

http://www.msr-inria.inria.fr/Projects/math-components/
The distribution contains sources files for the Coq[The10] language extension, the

SSReflect libraries, and detailed instructions for the installation of the system.
The first part of this tutorial is devoted to a quick guided tour of the SSReflect
language. We do not however include the full documentation of the language, but
we still try to remain as self-contained as possible. It is nevertheless good practice
to keep the SSReflect manual[GM] at hand while reading the present tutorial,
as we will sometimes refer to it for further explanation.

Exercises should be done in a file starting with the following incantation1:

Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq.
Require Import path choice fintype tuple finfun finset.

Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.

which loads the required libraries and sets the implicit arguments options used
throughout the libraries and this tutorial. Most of the exercises consist in proving
results that are already present in the libraries distributed with SSReflect. When
an exercise consists in defining a constant which is already present in the context (in
the loaded libraries), the user is asked to re-define it using the same name, prefixed
by tuto_ to avoid name clashes. Specifications to be formally proved by the reader
however usually feature the original constants available in the SSReflect libraries.
When an exercise consists in proving specifications that are already present in the
context, the user is asked to re-prove the specification using the same name, prefixed
by tuto_. These redundant lemmas, whose proofs are left as exercises, specify the
actual SSReflect constants (and not the tuto_-prefixed ones), so that the user
can benefit from all the additional results already present in SSReflect libraries.

1In versions ≤ 1.2 of SSReflect libraries, the library path was named paths. Hence replace the

second line with: Require Import paths choice ...
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Some exercises are not necessary intended to be easily doable by a beginner.
They most often comprise several similar questions, and the reader should be able
to understand how to solve the last questions after having read the solution of the
first one.

Solutions and comments can be found at the following address:
http://www.msr-inria.inria.fr/Projects/math-components/

Solutions to the exercises sometimes give useful information for the rest of the
section. The reader is advised to read the solution of an exercise before trying the
next one.

For advanced users, further documentation is available in each SSReflect li-
brary .v file header. Each header summarizes the main concepts and notations
defined in the library and gives some comments on the use of the objects defined.
See for instance the header of fintype.v.

We encourage every reader of the present tutorial to subscribe to the SSReflect
user mailing list. To subscribe, send an email entitled ’subscribe’ to:

ssreflect@msr-inria.inria.fr
This mailing list should be used for any further question or comment on the

exercises of this tutorial or on any development using the SSReflect extension.

3. A SCRIPT LANGUAGE FOR STRUCTURED PROOFS

A sizable fraction of proof scripts consists of steps that do not ”prove” anything
new, but instead perform menial bookkeeping tasks such as selecting the names of
constants and assumptions or splitting conjuncts. Indeed, SSReflect scripts ap-
pear to divide evenly between bookkeeping, formal algebra (rewriting), and actual
deduction. Although they are logically trivial, bookkeeping steps are extremely im-
portant because they define the structure of the dataflow of a proof script. This is
especially true for reflection-based proofs, which often involve large numbers of con-
stants and assumptions. Good bookkeeping consists in always explicitly declaring
(i.e., naming) all new constants and assumptions in the script, and systematically
pruning irrelevant constants and assumptions in the context. This is essential in
the context of an interactive development environment (IDE), because it facilitates
navigating the proof, allowing to instantly ”jump back” to the point at which a
questionable assumption was added, and to find relevant assumptions by browsing
the pruned context. While novice or casual Coq users may find the automatic name
selection feature of Coq convenient, this feature severely undermines the readabil-
ity and maintainability of proof scripts, much like automatic variable declaration in
programming languages. The SSReflect tactics are therefore designed to support
precise bookkeeping and to eliminate name generation heuristics. The bookkeeping
features of SSReflect are implemented as tacticals (or pseudo-tacticals), shared
across most SSReflect tactics, and thus form the foundation of the SSReflect
proof language.
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3.1 Sequents as stacks

During the course of a proof Coq always presents the user with a sequent whose
general form is

ci : Ti

. . .
dj := ej : Tj

. . .
Fk : Pk

. . .

forall (x` : T`) . . . ,
let ym := bm in . . . in
Pn -> . . . -> C

The goal to be proved appears below the double line; above the line is the context of
the sequent, a set of declarations of constants ci, defined constants di, and facts Fk

that can be used to prove the goal (usually, Ti, Tj : Type and Pk : Prop). The
various kinds of declarations can come in any order. The top part of the context
consists of declarations produced by the Section commands Variable, Let, and
Hypothesis. This section context is never affected by the SSReflect tactics: they
only operate on the upper part — the proof context. As in the figure above, the
goal often decomposes into a series of (universally) quantified variables (x` : T`),
local definitions let ym := bm in, and assumptions Pn ->, and a conclusion C (as
in the context, variables, definitions, and assumptions can appear in any order).
The conclusion is what actually needs to be proved — the rest of the goal can be
seen as a part of the proof context that happens to be “below the line”.

However, although they are logically equivalent, there are fundamental differences
between constants and facts on the one hand, and variables and assumptions on
the others. Constants and facts are unordered, but named explicitly in the proof
text; variables and assumptions are ordered, but unnamed : the display names of
variables may change at any time because of α-conversion.

Similarly, basic deductive steps such as apply can only operate on the goal be-
cause the Gallina terms that control their action (e.g., the type of the lemma used
by apply) only provide unnamed bound variables.2 Since the proof script can only
refer directly to the context, it must constantly shift declarations from the goal to
the context and conversely in between deductive steps.

In SSReflect these moves are performed by two tacticals ‘=>’ and ‘:’, so that
the bookkeeping required by a deductive step can be directly associated to that
step, and that tactics in an SSReflect script correspond to actual logical steps
in the proof rather than merely shuffle facts. The ‘=>’ tactical moves facts and
constants from “below the line” to variables and hypotheses “above the line”: it
performs introduction. The ‘:’ tactical moves things the other way around: it
performs discharge.

2Thus scripts that depend on bound variable names, e.g., via intros or with, are inherently

fragile.
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Fig. 1. A pure introduction step

Fig. 2. A pure discharge step

Still, some isolated bookkeeping is unavoidable, such as naming variables and
assumptions at the beginning of a proof. SSReflect provides a specific move
tactic for this purpose; about one out of every six tactics is a move.

Now move does essentially nothing: it is mostly a placeholder for ‘=>’ and ‘:’.
The ‘=>’ tactical moves variables, local definitions, and assumptions to the context,
while the ‘:’ tactical moves facts and constants to the goal. For example, the proof
of3

Lemma subnK : forall m n, n <= m -> m - n + n = m.

might start with

move=> m n lenm.

where move does nothing, but => m n lenm changes the variables and assumption
of the goal in the constants m n : nat and the fact lenm : n <= m, thus exposing
the conclusion m - n + n = m, as displayed on figure 1. This is exactly what the
specialized Coq tactic intros m n lenm would do, but ‘=>’ is much more general
(see [GM]).

The ‘:’ tactical is the converse of ‘=>’: it removes facts and constants from the
context by turning them into variables and assumptions. Thus as displayed on
figure 2, the tactic:

move: m lenm.

turns back m and lenm into a variable and an assumption, removing them from the
proof context, and changing the goal to

forall m, n <= m -> m - n + n = m.

which can be proved by induction on n using elim n.
Because they are tacticals, ‘:’ and ‘=>’ can be combined, as in

move: m lenm => p lenp.

3The name subnK means “right cancellation rule for nat subtraction”, see section 7.
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simultaneously renames m and lenm into p and lenp, respectively, by first turning
them into unnamed variables, then turning these variables back into constants and
facts.

Furthermore, SSReflect redefines the basic Coq tactics case, elim, and apply
so that they can take better advantage of ’:’ and ‘=>’. These Coq tactics require an
argument from the context but operate on the goal. Their SSReflect counterparts
use the first variable or constant of the goal instead, so they are “purely deductive”:
they do not use or change the proof context. There is no loss since ‘:’ can readily
be used to supply the required variable; for instance the proof of the subnK lemma
could continue with an induction on n:

elim: n.

This tactic removes n from the context, following the semantic of the ’:’ discharge
tactical. Experience shows that this feature helps controlling the otherwise ever
growing size of the context. This default behavior can nonetheless be turned off by
the variant:

elim: (n).

where the generalized object is not a pure identifier any longer. Better yet, this can
be combined with previous move and with the branching version of the => tactical
(described in [GM]), to encapsulate the inductive step in a single command:

elim: n m lenm => [m |n IHn m lt_n_m].

which breaks down the proof into two subgoals,

m - 0 + 0 = m

given m : nat, and

m - S n + S n = m

given m n : nat, lt_n_m : S n <= m, and

IHn : forall m, n <= m -> m - n + n = m.

An example of this strong recursion principle being generated on the fly is proposed
in section 3.5.

The ’:’ and ‘=>’ tacticals can be explained very simply if one views the goal as a
stack of variables and assumptions piled on a conclusion:

—tactic : a b c pushes the context constants a, b, c as goal variables before per-
forming tactic.

—tactic => a b c pops the top three goal variables as context constants a, b, c,
after tactic has been performed.

These pushes and pops do not need to balance out as in the examples above, so

move: m lenm => p.

would rename m into p, but leave an extra assumption n <= p in the goal.
Basic tactics like apply and elim can also be used without the ’:’ tactical: for

example we can directly start a proof of subnK by induction on the top variable m
with
Journal of Formalized Reasoning Vol. 3, No. 2, 2010.
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elim=> [|m IHm] n le_n_m.

3.2 Control flow

3.2.1 Indentation and bullets. The linear development of Coq scripts gives lit-
tle information on the structure of the proof other than the one provided by the
programmer (tabulations, comments...). In addition, replaying a proof after some
changes in the statement to be proved will usually not display enough information
to distinguish between the various branches of case analysis for instance. To help
the user with this organization of the proof script at development time, SSReflect
provides some bullets to highlight the structure of branching proofs. The available
bullets are -, + and *. Combined with tabulation, this highlights four nested levels
of branching (the deepest case we have ever encountered is three). Indeed, the use
of “simplifying and closing” switches (see section 3.5), of terminators (see section
3.2.2) and selectors (see section 3.3) is powerful enough to avoid needing more than
two levels of indentation most of the time. Note that these indentation levels and
bullets have no formal meaning: the fact that an indented script is actually well
indented is only guaranteed if each paragraph ends with a closing tactic like the
terminators of section 3.2.2.

Here is what a fragment of such a structured script can look like:

case E1: (abezoutn _ _) => [[| k1] [| k2]].
- rewrite !muln0 !gexpn0 mulg1 => H1.
move/eqP: (sym_equal F0); rewrite -H1 orderg1 eqn_mul1.
by case/andP; move/eqP.

- rewrite muln0 gexpn0 mulg1 => H1.
have F1: t %| t * S k2.+1 - 1.
apply: (@dvdn_trans (orderg x)); first by rewrite F0; exact:

dvdn_mull.
rewrite orderg_dvd; apply/eqP; apply: (mulgI x).
rewrite -{1}(gexpn1 x) mulg1 gexpn_add leq_add_sub //.
by move: P1; case t.

rewrite dvdn_subr in F1; last by exact: dvdn_mulr.
+ rewrite H1 F0 -{2}(muln1 (p ^ l)); congr (_ * _).
by apply/eqP; rewrite -dvdn1.

+ by move: P1; case: (t) => [| [| s1]].
- rewrite muln0 gexpn0 mul1g => H1.
...

The reader is not expected to understand what this code proves or does. But this
gives a flavor of what a correctly indented script should look like and illustrates a
good use of the by prefix terminator (see section 3.2.2).

3.2.2 Terminators. Consider the following dummy example, where .+1 is a no-
tation for the successor operation on natural numbers (i.e. the S constructor of the
nat inductive type):
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1 Fixpoint f n := if n is n’.+1 then (f n’).+2 else 0.
2

3 Lemma foo forall n, f (2 * n) = f n + f n.
4 Proof.
5 elim => [|n ihn].
6 rewrite muln0 //.
7 rewrite !addnS !addSn -/f.
8 rewrite mulnS.
9 rewrite -ihn //.

10 Qed.

The proof of foo goes by induction, thanks to line 5. Line 6 solves the first goal
generated, and the rest of the script solves the second and last goal. Now if we
replay the proof after changing value 0 into 1 in the definition of f, line 6 does not
solve the first case any more. But by accident, line 7 , which is meant to apply
only to the second goal, is now a legal operation on the first goal. Hence the script
breaks on line 8, which is not relevant to the goal at hand. This phenomenon can
be observed on much larger scales, and turns the maintenance of proof scripts into
an extremely tedious task.

To further structure scripts, SSReflect supplies terminating tacticals to explic-
itly close off tactics. When replaying scripts, we then have the nice property that
an error immediately occurs when a closed tactic fails to prove its subgoal.

It is hence recommended practice that the proof of any subgoal should end with
a tactic which fails if it does not solve the current goal. Standard Coq already pro-
vides some tactics of this kind, like discriminate, contradiction or assumption.

SSReflect provides a generic tactical which turns any tactic into a closing one.
Its general syntax is:

by 〈tactic〉.

The expression:

by [〈tactic〉1 | [〈tactic〉2 | ...].

is equivalent to:

[by 〈tactic〉1 | by 〈tactic〉2 | ...].

The latter form makes debugging easier.
In the previous proof of the foo lemma, we should replace line 6 by:

by rewrite muln0.

Hence the script cannot be executed further if what follows the by tactical does not
close this sub-case.

The by tactical is implemented using the user-defined, and extensible done tactic.
This done tactic tries to solve the current goal by some trivial means and fails if it
doesn’t succeed. Indeed, the tactic expression:

by 〈tactic〉.

is equivalent to:
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〈tactic〉; done.

Conversely, the tactic

by [ ].

is equivalent to:

done.

The default implementation of the done tactic, as an Ltac tactic, is to be found in
the ssreflect.v file. It looks like4:

Ltac done :=
trivial; hnf; intros; solve
[ do ![solve [trivial | apply: sym_equal; trivial]

| discriminate | contradiction | split]
| case not_locked_false_eq_true; assumption
| match goal with H : ~ _ |- _ => solve [case H; trivial] end ].

Since it is defined using Coq’s toplevel tactic language Ltac, the done tactic can
possibly be customized by the user, for instance to include an auto tactic. To
ensure compatibility with other users’ development it is however a better practice
to redefine an enriched my_done tactic if needed.

Another natural and common way of closing a goal is to apply a lemma which is
the exact one needed for the goal to be solved. For instance:

exact: MyLemma.

is equivalent to:

by apply: MyLemma.

Note that the list of tactics, possibly chained by semi-columns, that follows a by
keyword is considered as a parenthesized block applied to the current goal. Hence
for example if the tactic:

by rewrite my_lemma1.

succeeds, then the tactic:

by rewrite my_lemma1; apply: my_lemma2.

usually fails since it is equivalent to:

by (rewrite my_lemma1; apply: my_lemma2).

4The lemma not_locked_false_eq_true is needed to discriminate locked Boolean predicates. The

do tactical is an iterator. See [GM] for more details.
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Exercise 3.2.1 Prove the following propositional tautologies:

Section Tauto.
Variables A B C : Prop.

Lemma tauto1 : A -> A.
Proof.
...
Qed.

Lemma tauto2 : (A -> B) -> (B -> C) -> A -> C.
Proof.
...
Qed.

Lemma tauto3 : A /\ B <-> B /\ A.
Proof.
...
Qed.

End Tauto.

Your proof script should come in place of the dots, between Proof. and Qed.
Your proof is finished when the system raises a message saying so. Then the Qed
command rechecks the proof term constructed by your script. In the following, we
only give the statements of the lemmas to be proved and do not repeat Proof and
Qed any longer.

The standard Coq section mechanism allows to factorize abstractions globally.
Here in the section parameters A B C are fixed, and they are discharged after the
section Tauto is closed by the command End Tauto.

Exercise 3.2.2 Prove the following statements:

Section MoreBasics.
Variables A B C : Prop.
Variable P : nat -> Prop.

Lemma foo1 : ~(exists x, P x) -> forall x, ~P x.

Lemma foo2 : (exists x, A -> P x) -> (forall x, ~P x) -> ~A.

End MoreBasics.

Hint: Remember that the intuitionistic negation ~A is a notation for A -> False.
Also remember that the proof of an existential statement is a pair of the witness
and its proof, so you can destruct this pair by the case command.
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Exercise 3.2.3 The SSReflect ssrnat library crucially redefines the compari-
son predicates and operations on natural numbers. In particular, comparisons are
Boolean predicates, instead of the inductive versions provided by Coq standard li-
brary. Use the Search and Check commands (see section 7 or [GM]). For instance
the command

Search _ (_ < _).

lists all the available results on the comparison < on natural numbers. What is the
definition of the SSReflect leq predicate, denoted <= ? What is the definition of
< ? Prove the following statements:

Lemma tuto_subnn : forall n : nat, n - n = 0.

Lemma tuto_subn_gt0 : forall m n, (0 < n - m) = (m < n).

Lemma tuto_subnKC : forall m n : nat,
m <= n -> m + (n - m) = n.

Lemma tuto_subn_subA : forall m n p,
p <= n -> m - (n - p) = m + p - n.

3.3 Goal selectors

When composing tactics, the two tacticals first and last let the user restrict the
application of a tactic to only one of the subgoals generated by the previous tactic.
This covers the frequent cases where a tactic generates two or more subgoals, one
of which can be easily disposed of.

This is an other powerful way to linearize scripts, since it very often happens
that a trivial subgoal can be solved by a shorter tactic. For instance, the tactic:

〈tactic〉1; last by 〈tactic〉2.

tries to solve the last subgoal generated by 〈tactic〉1 using the 〈tactic〉2, and fails if
it does not succeeds. Its analogous

〈tactic〉1; first by 〈tactic〉2.

tries to solve the first subgoal generated by 〈tactic〉1 using the tactic 〈tactic〉2, and
fails if it does not succeeds.

SSReflect also offers an extension of this facility, by supplying tactics to per-
mute the subgoals generated by a tactic. The tactic:

〈tactic〉; last first.

inverts the order of the subgoals generated by 〈tactic〉. It is equivalent to:

〈tactic〉; first last.

More generally, the tactic:

〈tactic〉; last 〈strict num〉 first.
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where 〈strict num〉 is a natural number argument having value k, rotates the n
subgoals G1, . . . , Gn generated by 〈tactic〉 by k positions. The first subgoal becomes
Gn+1−k and the circular order of subgoals remains unchanged.

Conversely, the tactic:

〈tactic〉; first 〈strict num〉 last.

rotates the n subgoals G1, . . . , Gn generated by tactic in order that the first sub-
goal becomes Gk.

Finally, the tactics last and first combine with the branching syntax of Ltac:
if tactic 〈tactic〉0 generates n subgoals on a given goal, then tactic

tactic0; last k [tactic1|...|tacticm] || tacticm+1.

where k is a natural number, applies tactic1 to the n− k+ 1-th goal, ..., tacticm to
the n− k + 2−m-th goal and tacticm+1 to the others.

For instance, the script:

Inductive test : nat -> Prop :=
C1 : forall n, test n | C2 : forall n, test n |
C3 : forall n, test n | C4 : forall n, test n.

Goal forall n, test n -> True.
move=> n; case; last 2 [move=> k| move=> l]; idtac.

creates a goal with four subgoals, the first and last being nat -> True, the second
and third being True with respectively k : nat and l : nat in their context.

3.4 Forward chaining, backward chaining

Forward reasoning structures the script by explicitly specifying some assumptions
to be added to the proof context. It is closely associated with the declarative style
of proof, since an extensive use of these highlighted statements make the script
closer to a (very detailed) text book proof.

Forward chaining tactics allow to state an intermediate lemma and start a piece
of script dedicated to the proof of this statement. The use of closing tactics (see
section 3.2.2) and of indentation makes the portion of the script building the proof
of the intermediate statement syntactically explicit.

The have tactic.

The main SSReflect forward reasoning tactic is the have tactic. It can be used
in two modes: one starts a new (sub)proof for an intermediate result in the main
proof, and the other provides a proof term for this intermediate step explicitly.

In the first mode, the syntax of have in its defective form is:

have: 〈term〉.
This tactic supports open syntax for 〈term〉: no surrounding parenthesis are needed.

Applied to a goal G, it generates a first subgoal requiring a proof of 〈term〉 is
the context of G. The difference with the standard Coq tactic is that the second
subgoal generated is of the form 〈term〉 -> G, where 〈term〉 becomes the new top
assumption, instead of being introduced with a fresh name. For instance, consider
the following goal:
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Lemma find_ex_minn : forall P : nat -> bool,
exists n, P n -> {m | P m & forall n, P n -> n >= m}.

The command:

have: forall n, P n -> n >= 0.

leads to two subgoals, the first remaining to be proved being:

forall n, P n -> n >= 0

and the second:

(forall n, P n -> n >= 0) ->
exists n, Pn -> {m | P m & forall n, P n -> n >= m}.

In this example however, since the lemma is trivial for Coq, the preferred command
would be:

have: forall n, P n -> n >= 0 by done.

where the statement of an easy lemma can be followed by the short proof closing
it, like in:

have : forall x y, x + y = y + x by move=> x y; rewrite addnC.

The have tactic can be combined with SSReflect’s wildcard mechanism: a place-
holder materialized by a ’_’ represents a term whose type is abstracted. For in-
stance, the tactic:

have: _ * 0 = 0.

is equivalent to:

have: forall n : nat, n * 0 = 0.

In the same spirit, non-inferred implicit arguments are abstracted. For instance,
the tactic:

have: forall x y, (x, y) = (x, y + 0).

opens a new subgoal to prove that:
forall (T : Type)(x : T)(y : nat), (x, y)= (x, y + 0)

An alternative use of the have tactic is to provide the explicit proof term for the
intermediate lemma, using tactics of the form:

have [〈ident〉] := 〈term〉.

This tactic creates a new assumption of type that of 〈term〉. If the optional 〈ident〉
is present, this assumption is introduced under the name 〈ident〉. Note that the
body of the constant is lost for the user.

Again, non inferred implicit arguments and explicit holes are abstracted. For
instance, the tactic:

have H := forall x, (x, x) = (x, x).

adds to the context H : Type -> Prop. This is a schematic example but the feature
is specially useful when for instance the proof term involves a lemma with some
hidden implicit arguments.
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Variants: the suff and wlog tactics.

As is often the case in mathematical textbooks, forward reasoning may be used in
slightly different variants.

One of these variants is to show that the intermediate step L easily implies the
initial goal G. By easily we mean here that the proof of L⇒ G is shorter than the
one of L itself. This kind of reasoning step usually starts with: “It suffices to show
that ...”.

This is such a frequent way of reasoning that SSReflect has a variant of the
have tactic called suffices (whose abridged name is suff). The have and suff
tactics are equivalent and have the same syntax but the order of the generated
subgoals is swapped.

Another useful construct is reduction, showing that a particular case is in fact
general enough to entail a general property. This kind of reasoning step usually
starts with: “Without loss of generality, we can assume that ...”. Formally, this cor-
responds to the proof of a goal G by introducing a cut wlog statement-> G. Hence
the user shall provide a proof for both (wlog statement-> G)-> G and
wlog statement-> G. This proof pattern is specially useful when a symmetry argu-
ment simplifies a proof.

SSReflect implements this kind of reasoning step through the without loss
tactic, whose short name is wlog.

In its defective form:

wlog: / 〈term〉.

on a goal G, it creates two subgoals, respectively 〈term〉-> G and (〈term〉-> G)-> G.
But the wlog tactic also offers the possibility to generalize a list of constants on top
of the first 〈term〉-> G subgoal. Here is an example showing the beginning of the
proof that quotient and reminder of natural number Euclidean division are unique.

Lemma quo_rem_unicity: forall d q1 q2 r1 r2 : nat,
q1 * d + r1 = q2 * d + r2 -> r1 < d -> r2 < d -> (q1, r1) = (q2,

r2).
move=> d q1 q2 r1 r2.
wlog: q1 q2 r1 r2 / q1 <= q2.
by case (le_gt_dec q1 q2)=> H; last symmetry; eauto with arith.

Here we suppose without loss of generality that q1 <= q2, and generalize the con-
stants (and possibly facts) q1 q2 r1 r2. The first goal generated after the wlog
tactic is hence:

(forall q3 q4 r3 r4 : nat,
q3 <= q4 ->
q3 * d + r3 = q4 * d + r4 -> r3 < d ->
r4 < d -> (q3, r3) = (q4, r4)) ->

q1 * d + r1 = q2 * d + r2 -> r1 < d -> r2 < d ->
(q1, r1) = (q2, r2)

the second one being:
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q1 <= q2 ->
q1 * d + r1 = q2 * d + r2 -> r1 < d -> r2 < d ->
(q1, r1) = (q2, r2)

3.5 More SSReflect features, on an example

Some important features of the SSReflect language are not documented further
in the present tutorial but a detailed description can be found in [GM]. We have
mainly omitted:

—the subterm selection mechanism through occurrences and patterns
—the enhanced rewrite tactic
—the more complex introduction and discharge patterns

These features will be illustrated by the solutions of the exercises of the next sec-
tions. We give here an account of the facilities they provide on a detailed example
borrowed from [GS09].

The div library defines an Euclidean division algorithm edivn and a predicate
edivn_spec defining its specification.

Exercise 3.5.1 How is edivn programmed? What is its specification?

This way of specifying functions and relations is systematically used in SSReflect.
It offers a powerful tool for case analysis in proofs thanks to Coq second order
unification ability (see exercises 3.5.4 and 4.3.1). Below, let us prove that edivn
complies with edivn_spec.

1 Lemma edivnP : forall m d, edivn_spec m d (edivn m d).
2 Proof.
3 rewrite /edivn => m [|d] //=; rewrite -{1}[m]/(0 * d.+1 + m).
4 elim: m {-2}m 0 (leqnn m) => [|n IHn] [|m] q //=; rewrite ltnS =>

le_mn.
5 rewrite subn_if_gt; case: (ltnP m d) => [// | le_dm].
6 rewrite -{1}(subnK le_dm) -addSn addnA -mulSnr; apply: IHn.
7 apply: leq_trans le_mn; exact: leq_subr.
8 Qed.

The proof starts with an unfolding of the constant edivn, which is performed by
the rewrite /edivn tactic. This tactic is followed by an introduction step: we
introduce m and then

[|d]

performs a case-split on d. This case splitting introduction is followed by a so-called
simpl-and-closing switch:

//=

This switch, which applies to both branches, can be placed arbitrarily among in-
troduction items, after the introduction arrow =>. Its role here is to close the first
subgoal generated by the case-split. This //= switch is actually a combination of
//, which closes all the subgoals that can be trivially closed and
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/=

which simplifies all subgoals (generated by [|d] case split in this specific example),
like the simpl tactic in Coq. So //= simplifies all subgoals and solves the trivial
ones. Then in the only remaining subgoal, i.e. the second one, we replace the first
occurrence of m with 0 * d.+1 + m, using

rewrite -{1}[m]/(0 * d.+1 + m)

This tactic should be read as “replace the first ({1}) occurrence of the pattern m
([m]) by the term (0 * d.+1 + m)”. The pattern is here given as a full term m
but it could also be a term with holes like [_ * (x + _)]. This combination of
occurrence and pattern selection is also available for the bare rewrite tactic. In
this case, the tactic succeeds because 0 * d.+1 + m is convertible to m. The reason
why we replace m with the more complicated 0* d.+1 + m will become clear below.

Before the second line of the proof, the goal is

edivn_spec (0 * d.+1 + m) d.+1 (edivn_rec d m 0)

We now need a proof by strong induction rather than simple induction: instead of
using

nat_ind : forall P : nat -> Prop, P 0 ->
(forall n : nat, P n -> P n.+1) -> forall n : nat, P n

we would like to invoke a property resembling the generic strong induction principle:

forall P : nat -> Prop, P 0 ->
(forall n, (forall m, m <= n -> P m) -> P n.+1) -> forall n, P n

Depending on the situation, the strong induction principle that is required may
vary slightly, so there is no strong induction principle that suits every situation
(even in the specific case of naturals). In SSReflect this issue is addressed by the
ease to define on the fly non structural ad-hoc induction schemes. This is performed
by combining the elim tactic with the generalization patterns and the occurrence
selection.

In our case, in the second line of the proof,

(leqnn m)

pushes the hypothesis (m <= m) on top of the proof stack, immediately to the left
of (leqnn m)

0

generalizes 0 in an arbitrary natural n. So, in order to prove what we want, we first
prove a more general property. This was the purpose of the mysterious rewrite in
the first line of the proof. Then

{-2}m

generalizes every occurrence of m in the goal except for the second occurrence, which
is intended to correspond to the upper bound n in the generic strong induction
principle above. Finally
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elim: m

starts an induction on the upper bound m, which amounts to the strong induction
that we needed. This induction step generates two subgoals. Thanks to

[|n IHn]

we introduce an upper bound and the corresponding induction hypothesis in the
second subgoal. Note that these brackets have a different effect from the ones used
in the first line of the proof. There is no ambiguity: brackets after a case split or
an induction are used for parallel introduction while brackets after other tactics
which, like move or rewrite, do not generate new subgoals are casing brackets.

Exercise 3.5.2 What is the effect of each element in [|m] q //= ?

Finally,

rewrite ltnS

rewrites a strict inequality < into a non-strict inequality <= thanks to the lemma
ltnS. At the end of the third line of the proof, the goal is

edivn_spec (q * d.+1 + m.+1) d.+1
match m.+1 - d with
| 0 => (q, m.+1)
| m’.+1 => edivn_rec d m’ q.+1 end

Thanks to the lemma subn_if_gt (and thanks to inequality being defined through
subtraction in SSReflect, see exercise 3.2.3) we rewrite the match-with syntax
into the Coq if-then-else syntax. The next proof step is

case: (ltnP m d)

which again performs a case split between (m < d) and (d <= m).

Exercise 3.5.3 What is the effect of [// | le_dm]? Can you find an alternative,
flatter introduction pattern having the same effect?

Exercise 3.5.4 In the previous script, replace case: (ltnP m d) by case: ltnP.
What happens? What is the statement of ltnP? What is the definition of
ltn_xor_geq? On the model of ltn_xor_geq, define an inductive specification
tuto_compare_nat which performs a three-case split according to the order of two
natural numbers. Prove that:

Lemma tuto_ltngtP : forall m n,
compare_nat m n (m < n) (n < m) (m == n).

At the end of the fourth line of the proof, the goal is

edivn_spec (q * d.+1 + m.+1) d.+1 (edivn_rec d (m - d) q.+1)

The tactic

rewrite -{1}(subnK le_dm)
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rewrites, from right to left, only the first occurrence (because of the {1} specifica-
tion) of the first pattern that matches the equality of lemma subnK le_dm.

Then

rewrite -addSn

finds in the goal the first pattern that matches the equality of lemma addSn and
rewrites in the goal all occurrences of this pattern using the equality from right to
left (hence the minus symbol).

Exercise 3.5.5 What does the rest of the script do?

4. SMALL SCALE REFLECTION, FIRST EXAMPLES

4.1 The two sides of deduction

In the Calculus of Inductive Constructions [CH88, PM93], there is an obvious dis-
tinction between logical propositions and Boolean values. On the one hand, logical
propositions are objects of sort Prop which is the carrier of intuitionistic reasoning.
Logical connectives in Prop are types, which give precise information on the struc-
ture of their proofs; this information is automatically exploited by Coq tactics.
For example, Coq knows that a proof of A \/ B is either a proof of A or a proof
of B. The tactics left and right change the goal A \/ B to A and B, respectively;
dually, the tactic case reduces the goal A \/ B => G to two subgoals A => G and
B => G.

On the other hand, bool is an inductive datatype with two constructors true
and false. Logical connectives on bool are computable functions, defined by their
truth tables, using case analysis:

Definition (b1 || b2) := if b1 then true else b2.

Properties of such Boolean connectives are established using case analysis: the
tactic by case: b solves the goal

b || ~~ b = true

where ~~ denotes the boolean negation, by replacing b first by true and then by
false; in either case, the resulting subgoal reduces by computation to the trivial
true = true.

Moreover, Booleans can be injected into propositions using the coercion mecha-
nism:

Coercion is_true (b : bool) := b = true.

This allows any boolean formula b to be used in a context where Coq would expect
a proposition. It is then interpreted as (is_true b), i.e., the proposition b = true.
Coercions are elided by the pretty-printer, so they are essentially transparent to the
user. These coercions were in fact already present in the statement of the last two
lemmas of exercise 3.2.3.

Thus, Prop and bool are truly complementary: the former supports robust nat-
ural deduction, the latter allows brute-force evaluation. SSReflect supplies a
generic mechanism to have the best of the two worlds and move freely from a
propositional version of a decidable predicate to its boolean version. As a result
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one of the motos of the small scale reflection methodology is: “if a predicate is
decidable, it should be defined through a boolean predicate, possibly accompanied
with logical specifications”.

The bookkeeping facilities presented in section 3 are crafted to ease simultaneous
introduction/generalization of facts and casing, naming ... operations. The SSRe-
flect extension also provides a way to ease the combination of a stack operation
immediately followed by an interpretation of the fact being pushed, that is to say
to apply a lemma to this fact before passing it to a tactic for decomposition, appli-
cation and so on. This proves specially useful when interpreting boolean predicates
into logical ones.

4.1.1 Interpreting assumptions. Interpreting an assumption in the context of
a proof consists in applying a correspondence lemma to this assumption before
generalizing, and/or decomposing it. Such a correspondence lemma is called a
view lemma. For instance, with the extensive use of boolean reflection, it is quite
frequent to need to decompose the logical interpretation of (the boolean expression
of) a fact, rather than the fact itself. This can be achieved by a combination of
move : _ => _ switches, as in the following script, where || is a standard Coq
notation for the boolean disjunction:

Variables P Q : bool -> Prop.
Hypothesis P2Q : forall a b, P (a || b) -> Q a.

Goal forall a, P (a || a) -> True.
move=> a HPa; move: {HPa}(P2Q _ _ HPa) => HQa.

which transforms the hypothesis HPa : P a which has been introduced from the
initial statement into HQa : Q a. In this example, the view lemma is P2Q. This
operation is so common that the tactic shell has specific syntax for it. The following
scripts:

Goal forall a, P (a || a) -> True.
move=> a HPa; move/P2Q: HPa => HQa.

or more directly:

Goal forall a, P (a || a) -> True.
move=> a; move/P2Q=> HQa.

are equivalent to the former one. The former script shows how to interpret a fact
(already in the context), thanks to the discharge tactical ’:’ and the latter, how to
interpret the top assumption of a goal. Note that the number of wildcards to be
inserted in order to find the correct application of the view lemma to the hypothesis
has this time been automatically inferred.

The view mechanism is compatible with the case tactic:

Variables P Q: bool -> Prop.
Hypothesis Q2P : forall a b, Q (a || b) -> P a \/ P b.

Goal forall a b, Q (a || b) -> True.
move=> a b; case/Q2P=> [HPa | HPb].
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creates two new subgoals whose contexts do not contain HQ : Q (a || b) any
more, but respectively HPa : P a and HPb : P b. This view tactic performs:

move=> a b HQ; case: {HQ}(Q2P _ _ HQ) => [HPa | HPb].

The term on the right of the / view switch is the view lemma. Any term coercing
to a product type can be used as a view lemma.

The examples we have seen so far explicitly provided the direction of the trans-
lation to be performed. In fact, view lemmas need not be oriented. The view
mechanism is able to detect which application is relevant for the current goal. For
instance, the script:

Variables P Q: bool -> Prop.
Hypothesis PQequiv : forall a b, P (a || b) <-> Q a.

Goal forall a b, P (a || b) -> True.
move=> a b; move/PQequiv=> HQab.

has the same behavior as the first example above.
The view mechanism can automatically insert a view hint to transform the double

implication into the expected simple implication. The last script is in fact equivalent
to:

Goal forall a b, P (a || b) -> True.
move=> a b; move/(iffLR (PQequiv _ _)).

where:

Lemma iffLR : forall P Q, (P <-> Q) -> P -> Q.

4.1.2 Specializing assumptions. The special case when the head symbol of the
view lemma is a wildcard is used to interpret an assumption by specializing it. The
view mechanism hence offers the possibility to apply a higher-order assumption to
some given arguments.

For example, the script:

Goal forall z, (forall x y, x + y = z -> z = x) -> z = 0.
move=> z; move/(_ 0 z).

changes the goal into:

(0 + z = z -> z = 0) -> z = 0

4.1.3 Interpreting goals. In a similar way, it is often convenient to interpret a
goal by changing it into an equivalent proposition. The view mechanism of SSRe-
flect has a special syntax apply/ for combining simultaneous goal interpretation
operations and bookkeeping steps in a single tactic.

With the hypotheses of section 4.1.1, the following script, where ~~ denotes the
boolean negation:

Goal forall a, P ((~~ a) || a).
move=> a; apply/PQequiv.
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transforms the goal into Q (~~ a), and is equivalent to:

Goal forall a, P ((~~ a) || a).
move=> a; apply: (iffRL (PQequiv _ _)).

where iffLR is the analogous of iffRL for the converse implication.
Any SSReflect term whose type coerces to a double implication can be used

as a view for goal interpretation.
Note that the goal interpretation view mechanism supports both apply and exact

tactics. As expected, a goal interpretation view command exact/term should solve
the current goal or it fails.

4.1.4 The reflect predicate. In practice, double implication is not the most
efficient way to relate booleans and logical interpretations. The following inductive
predicate reflect indeed proves far more powerful:

Inductive reflect (P: Prop): bool -> Type :=
| Reflect_true: P => reflect P true
| Reflect_false: ~P => reflect P false.

The statement (reflect P b) asserts that (is_true b) and P are logically
equivalent propositions.

For instance, the following lemma:

Lemma andP: forall b1 b2 : bool, reflect (b1 /\ b2) (b1 && b2).

relates the boolean conjunction && to the logical one /\. Note that in andP, b1 and
b2 are two boolean variables and the proposition b1 /\ b2 hides two coercions.
The conjunction of b1 and b2 can then be viewed as b1 /\ b2 or as b1 && b2.

Expressing logical equivalences through this family of inductive types makes pos-
sible to take advantage from rewritable equations associated to case analysis of
Coq’s inductive types.

Since the standard equivalence predicate is defined in Coq as:

Definition iff (A B : Prop) := (A -> B) /\ (B -> A).

where /\ is the standard notation for logical and:

Inductive and (A B : Prop) : Prop :=
conj : A -> B -> and A B

This makes case analysis very different according to the way an equivalence property
has been defined.

For instance, if we have proved the lemma:

Lemma andE: forall b1 b2, (b1 /\ b2) <-> (b1 && b2).

let us compare the respective behaviors of andE and andP on a goal:

Goal forall b1 b2, if (b1 && b2) then b1 else ~~(b1||b2).

Expressing a reflection relation through the reflect predicate is hence a very
convenient way to deal with classical reasoning, by case analysis. Using the reflect
predicate moreover allows programming rich specifications inside its two construc-
tors, which will be automatically taken into account during destruction (see for
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instance exercises of section 4.3) . This formalization style gives far more efficient
specifications than quantified (double) implications.

A naming convention in SSReflect is to postfix the name of view lemmas with
P: orP relates || and \/, negP relates ~~ and ~, etc.

Exercise 4.1.1 State the lemma tuto_orP. Prove lemmas tuto_andP and
tuto_orP.

The view mechanism is compatible with reflect predicates. For example, the
script

Goal forall a b : bool, a -> b -> a /\ b.
move=> a b Ha Hb; apply/andP.

changes the goal a /\ b to a && b (see section 4.1.3).
Conversely, the script

Goal forall a b : bool, a /\ b -> a.
move=> a b; move/andP.

changes the goal a /\ b -> a into a && b -> a (see section 4.1.1).
The same tactics can also be used to perform the converse operation, changing a

boolean conjunction into a logical one. The view mechanism guesses the direction of
the transformation to be used i.e., the constructor of the reflect predicate which
should be chosen.

4.1.5 Interpreting equivalences. Equivalent boolean propositions are simply equal
boolean terms. A special construction helps the user to prove boolean equalities by
considering them as logical double implications (between their coerced versions),
while performing at the same time logical operations on both sides.

The syntax of double views is:

apply/〈term〉l/〈term〉r.

The term 〈term〉l is the view lemma applied to the left hand side of the equality,
〈term〉r is the one applied to the right hand side.

In this context, the identity view:

Lemma idP : reflect b1 b1.

is useful, for example the tactic:

apply/idP/idP.

transforms the goal ~~ (b1 || b2)= b3 into two subgoals, respectively
~~ (b1 || b2)-> b3 and b3 -> ~~ (b1 || b2).

The same goal can be decomposed in several ways, and the user may choose the
most convenient interpretation. For instance, the tactic:

apply/norP/idP.

applied on the same goal ~~ (b1 || b2)= b3 generates the subgoals
~~ b1 /\ ~~ b2 -> b3 and b3 -> ~~ b1 /\ ~~ b2.
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4.1.6 Proving reflect equivalences. Section 4.1.4 advocates the use of the re-
flect predicate to express logical equivalence between boolean predicates and their
logical interpretation. To prove such reflect equivalences, we had so far no other
choice than a naive case analysis on the value of the boolean. This is the proof
method used for proving elementary reflect statements like andP. However, when
it comes to proving more complex, composed statements, this remains a valid strat-
egy, but a very inefficient one. In fact, it is never used in practice for higher level
equivalences. The user of course expects to be able to prove such an equivalence
by the usual double implication. The swiss army knife to establish reflect equiv-
alences is in fact the following transitivity result:

Lemma iffP : forall (P Q : Prop) (b : bool),
reflect P b -> (P -> Q) -> (Q -> P) -> reflect Q b.

Exercise 4.1.2 Prove the lemma tuto_iffP by case analysis on the boolean value
b. Retry the proof, this time by case analysis on the hypothesis (reflect P b).

This lemma changes a reflect equivalence goal (reflect Q b) for a new one
(reflect P b) provided that the Prop statements P and Q are equivalent. Note
that the converse is trivial: changing an equivalence goal (reflect Q b) into
(reflect Q b’) with b equivalent to b’ is simply rewriting b into b’. Now
recall the trivial idP lemma proved in section 4.1.5. Forall (P Q : Prop) and
(b : bool), the term (iffP P Q b (idP b)) has type
((b -> Q)-> (Q -> b)-> reflect Q b). Hence on a goal of the form:

Goal reflect P b.

the tactic:

apply: (iffP idP).

generates the two subgoals (b -> P) and (P -> b), realizing the expected double
implication case split.

The iffP lemma of course accepts any reflect statement as an argument. On
a goal of the form:

Goal reflect (P1 /\ P2) (b1 && b2).

the tactic:

apply: (iffP andP).

generates the two subgoals (b1 /\ b2 -> P1 /\ P2) and (P1 /\ P2 -> b1 && b2).

4.2 Exercises: sequences

For technical reasons, the SSReflect library defines a clone of the standard Coq
list type:

Inductive seq (T : Type) : Type := Nil | Cons of T & seq T.

Note that in this definition, we use the anonymous argument feature of the SSRe-
flect language (see [GM]). The program computing the size of such a sequence
can be written as:
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Variable (T : Type).
Fixpoint size (s : seq T) :=
if s is _ :: s’ then (size s’).+1 else 0.

taking benefit of the conditional pattern feature of the SSReflect language (see [GM]).
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Exercise 4.2.1 Program the function tuto_cat catenating two sequences.
Here we take advantage of the Coq system Implicit Types feature (see

[The10]). This allows to bind variable names to a given type. Hence the code
of this exercise starts with the declarations:

Section Exo_4_2_1.w

Variable A : Type.
Implicit Types s : seq A.
Implicit Types x : A.

which opens a section for the code of this exercise, declares a local parameter A and
sets the type of bound variables starting with s (resp. x) to be of type (seq A)
(resp. A). Unless the bound variable is already declared with an explicit type in
which case, this latter type is considered.

The actual cat function of the seq library is equipped with the ++ infix notation.
Prove the lemma:

Lemma tuto_size_cat : forall s1 s2,
size (s1 ++ s2) = size s1 + size s2.

Note that variable s1 and s2 are automatically declared with type (seq A), without
any explicit cast, thanks to the previous Implicit Types declaration.

Program the function tuto_last, such that
(tuto_last x s) returns the last element of the sequence s if s is not empty and
otherwise returns x. Prove the lemma:

Lemma tuto_last_cat : forall x s1 s2,
last x (s1 ++ s2) = last (last x s1) s2.

Program the functions tuto_take (resp. tuto_drop), of type:

nat -> seq A -> seq A

such that (tuto_take n s) (resp. (tuto_drop n s)) computes the prefix of s of
size n (resp. the postfix of s skipping the n first elements), with default value s
(resp. the empty sequence [::]). Prove:

Lemma tuto_cat_take_drop : forall (n0 : nat)(s : seq A),
take n0 s ++ drop n0 s = s.

Program the tuto_rot function such that (tuto_rot n s) is the circular permu-
tation of s of order n. Prove that:

Lemma tuto_rot_addn : forall m n (s : seq A),
m + n <= size s -> rot (m + n) s = rot m (rot n s).

End Exo_4_2_1.

For this last proof, you will need more lemmas about the function programmed in
this exercise. Use the SSReflect Search command to find the statements you
need. You can also try to guess their name according to the SSReflect naming
conventions, and Check your guesses (see section 7).
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Combining sequences with boolean predicates makes possible to start proving
some combinatoric results.
Exercise 4.2.2 After declaring:

Section Exo_4_3_1.

Variable T : eqType.
Implicit Types x y : T.
Implicit Type b : bool.

program a function tuto_count which computes the number of elements of a se-
quence satisfying a boolean predicate.

Prove that:

Lemma tuto_count_predUI : forall a1 a2 s,
count (predU a1 a2) s + count (predI a1 a2) s
= count a1 s + count a2 s.

where predU is the boolean predicate union of its two arguments, and predI is the
boolean predicate intersection of its two arguments.

Hint: try to use the nat_congr tactic, an Ltac tactic defined in the ssrnat
library, to normalize arithmetic expressions and perform congruence.

Look for the definition of the filter function. Prove that:

Lemma count_filter : forall a s, count a s = size (filter a s).

and close the section with:

End Exo_4_3_1.

Combining sequences with boolean relations makes it possible to formalize decidable
paths:

Fixpoint path (T : Type)(e : rel T) x (p : seq T) {struct p} :=
if p is y :: p’ then e x y && path e y p’ else true.

where rel T is a binary boolean relation on T. Now let us state our first non trivial
reflection lemma:

Lemma pathP : forall (T : Type)(e : rel T)(x : T)(p : seq T) x0,
reflect
(forall i, i < size p -> e (nth x0 (x :: p) i) (nth x0 p i))
(path e x p).

Exercise 4.2.3 Prove the lemma tuto_pathP by induction on the path.

4.3 Exercises: Boolean equalities

The structures of types with boolean equality is the core of the hierarchy of struc-
tures defined by the SSReflect libraries. In the standard Coq DecidableType
library, a type whose Leibniz equality is decidable is hence specified by:

Parameter eq_dec (T : Type) : forall x y : T,
{x = y} + {~ (x = y)}.
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A proof of (eq_dec x y) is either a proof of (x = y), hence belong to the left
hand side of the sum, or a proof of ~(x = y), in the right hand side. A sum type
being an inductive type with two constructor (one for each side), one can perform
case analysis on a proof of (eq_dec x y), hence a case analysis on the equality or
dis-equality of the two elements x and y. In each branch, a proof of the assertion
valid in this branch is available as it should be an argument of the corresponding
constructor.

Small scale reflection favors the use of boolean predicates instead of such sum_bool
types. Indeed, unlike sum types, boolean predicates have the computational be-
havior expected to let reduction handle deductive steps that only rely on truth
table values. The SSReflect account of DecidableType is named eqType, and
its theory is developed in the eqtype library. The eqType structure can be thought
of5 as:

Module Equality.

Definition axiom T e := forall x y : T, reflect (x = y) (e x y).

Record mixin_of (T : Type) := Mixin {
op : rel T;
_ : axiom op

}.

Record type := Pack {
sort :> Type;
_ : mixin_of sort

End Equality.

This can be thought of as a kind of sigma type packing a type with a signature
and specifications. The signature + specification part is called a mixin. The actual
boolean comparison of an eqType structure can be accessed through the defined
eq_op operator:

eq_op : forall T : eqType, rel T

which enjoys some infix notations: (eq_op x y) is denoted by (x == y), and
(~~ (x == y)) by (x != y). This operator is defined by destructing T, and its
mixin. Moreover, we also define the eqP constant:

eqP : forall T : eqType, Equality.axiom eq_op

which accesses the reflection lemma associated to the boolean comparison.

5For technical reasons, the structure is slightly different. More insight about the actual formal-

izations is given in [GGMR09]
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Exercise 4.3.1 Prove the following lemmas:

Lemma tuto_eqxx : forall (T : eqType) (x : T), x == x.

Lemma tuto_predU1l : forall (T : eqType) (x y : T) (b : bool),
x = y -> (x == y) || b.

Lemma tuto_predD1P : forall (T : eqType) (x y : T) (b : bool),
reflect (x <> y /\ b) ((x != y) && b).

Lemma tuto_eqVneq : forall (T : eqType) (x y : T), {x = y} + {x != y
}.

Hint: Consider using view mechanisms for equivalence, goal and assumption inter-
pretation.
Remark : try starting the proof of eqVneq by the tactic:

move=> T x y; case: eqP.

What happens then?

Remark: An alternative to the case analysis on (eqVneq x y) is simply a simple
case analysis on the boolean value of (x == y). But one can also perform case anal-
ysis on (eqP x y): one branch features Reflect_true eq_xy where (eq_xy : x = y)
and the other branch Reflect_false neq_xy where
(neq_xy : ~(x = y)).

Besides giving a computational content to Leibniz equality, the boolean relation
embedded in an eqType structure also gives its decidability of course. An important
consequence of this decidability is the uniqueness of their equality proofs:

Theorem eq_irrelevance : forall (T : eqType) (x y : T),
forall (e1 e2 : x = y), e1 = e2.

The uniqueness of equality proofs for the nat and bool types is a consequence of
this theorem. boolean proof irrelevance is of particular interest for the definition of
sigma types with boolean specifications (see section 6.2).

5. TYPE INFERENCE USING CANONICAL STRUCTURES

5.1 Canonical Structures

The type-theoretic formalization of an algebraic or combinatorial structure com-
prises representation types (usually only one), constants and operations on the
type(s), and axioms satisfied by the operations. Within the propositions-as-types
framework of Coq, the interface for all of these components can be uniformly de-
scribed by a collection of dependent types: the type of operations depends on the
representation type, and the statement (also a “type”) of axioms depends on both
the representation type and the actual operations. In the examples and exercises
we have encountered so far, types, operations, and axioms have been represented
by collections of unbundled parameters, using the Variables, Parameters, and
Hypothesis commands.
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While this unbundling allows for maximal flexibility, it also induces a prolifer-
ation of arguments that is rapidly overwhelming. A typical algebraic structure,
such as a ring, involves half a dozen constants and even more axioms. Moreover
such structures are often nested, e.g., for the Cayley-Hamilton theorem (see the
charpoly library, out of the scope of this tutorial) one needs to consider the ring of
polynomials over the ring of matrices over a general commutative ring. The size of
the terms involved grows as Cn, where C is the average number of separate com-
ponents of a structure, and n is the structure nesting depth. For Cayley-Hamilton
we would have C = 15 and n = 3, and thus terms large enough to make theorem
proving impractical, given that algorithms in user-level tactics are more often than
not nonlinear.

Thus, at the very least, related operations and axioms should be packed using
Coq’s dependent records (Σ-types). Here is a toy example for a commutative
group:

Record zmodule_mixin_of (T : Type) : Type := ZmoduleMixin {
zero : T;
opp : T -> T;
add : T -> T -> T;
addA : associative add;
addC: commutative add;
addm0 : left_id zero add;
add0m : left_inverse zero opp add

}.

Record zmodule : Type := Zmodule {
carrier :> Type;
spec : zmodule_mixin_of carrier

}.

Again, the zmodule structure can be thought of as a kind of sigma type packing car-
rier type with a signature zmodule_mixin. For instance, Booleans can be equipped
with such a structure (with a xor as addition and identity as opposite):

Definition bool_zmoduleMixin := ZmoduleMixin addbA addbC addFb
addbb.

Definition bool_zmodule := Zmodule bool_zmoduleMixin.

Note that the four first arguments of bool_zmodule_mixin should be respectively
bool, false, (@id bool) and addb (see the role of the @ flag in annex 7). In fact,
they have been automatically inferred from the type of the other arguments. The
:> symbol after the carrier field indicates that the carrier : zmodule -> Type
projection is in fact declared on the fly as a coercion. Remember coercions provide
an explicit subtyping mechanism to the Coq system. They are silently inserted
during type inference. For instance the following declaration is valid:

Variable b : bool_zmodule.

is accepted by the system, even if bool_zmodule is not a type. The command

Check b.
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answers b : bool_zmodule, as expected. Yet if the global option of coercion dis-
play is set by the vernacular command:

Set Printing Coercions.

the answer of Check becomes b : carrier bool_zmodule. Once this structure
defined, it is possible to define handy notations and develop a theory for instances
of the structure. For instance, let us define a notation for the addition operation
of a zmodule. We first need a definition to access the operation through the nested
records.

Definition zmadd (Z : zmodule) := add (spec Z).

Then we define an infix notation:

Notation "x \+ y" := (@zmadd _ x y)(at level 50,left associativity).

where _ is a placeholder for an inhabitant of zmodule to be inserted by the type
inference mechanism. Now we can conveniently state and prove the following result:

Lemma zmaddAC : forall (m : zmodule)(x y z : m),
x \+ y \+ z = x \+ z \+ y.

Exercise 5.1.1 Prove that zmadd is associative and commutative. Prove lemma
zmaddAC. Refer to [GM] for the documentation of the SSReflect rewrite tactic
(in particular pattern selection).

Abstract algebraic structures are motivated by the factorization of notations and
theorems, which are supposed to be shared by every instance of a given structure.
In our toy example, we hence expect addition over Booleans to inherit from the
infix \+ notation, and from the lemma zmaddAC. But the following command:

Check false \+ true.

fails with the following error message:

Error: The term "false" has type "bool" while it is expected to have
type "carrier ?15".

Indeed, the expression false + true is a notation for @zmadd _ true false,
where _ is a placeholder for an argument of type zmodule. Type inference should
hence unify the type bool of arguments true and false with (carrier ?) where
? has type zmodule. There is no way for unification to guess now the ? hole can be
filled with bool_zmodule.

However Coq supports a way to provide hints to the unification algorithm called
Canonical Structures [Sai97]. It can be viewed as an instance of unification hints
as presented much more recently in [ARCT09]. This mechanism equips the system
with a type class mechanism [WB89]. In the context of a proof assistant this feature
notably enables proof inference by type inference. In the Coq system, an other type
classes mechanism à la [WB89] has been implemented [SO08], independently from
the canonical structures mechanism, but on top of a framework for dependent type
programming. It is this latter mechanism which is actually usually referred to as
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’Coq type classes’. In their current state, the SSReflect libraries only make use
of the canonical structures mechanism.

Going back to our previous example, we can provide the unification algorithm
with a hint to guess that if a zmodule structure is required on bool, then our
intention is that it has to be bool_zmodule:

Canonical Structure bool_zmodule.

After this declaration, the Check (false + true) command does not raise an error
message any more but answers: false + true : bool_zmodule. The canonical
structure declaration indeed stores some equations in a database known to the
unification algorithm. These equations will guide the algorithm in case some holes
remain in a unification problem. One equation is stored per named field in the
structure. In our example, declaring bool_zmodule as a canonical instance stores
the hint:

[ carrier ? w bool ] ⇒ ? = bool_zmodule
plus an additional hint for the spec projection, which will reveal useless 6. The

error message raised at our first attempt to type false + true complained that
false has type bool and was expected to have type (carrier ?). Now after the
canonical structure declaration, the first hint in the list gives a solution to this
problem.

Canonical structures not only enable the sharing of notations, but also that of
proofs: on the goal

Goal forall x y z : bool, x (+) y (+) z = x (+) z (+) y.

where (+) is a notation for the concrete xor operation addb, the command:

apply: zmaddAC.

solves the goal7. To avoid spurious folding and unfolding of definitions, it is a
recommended practice to use generic notations as often as possible on concrete
instance. Hence the previous goal would best be expressed as:

Goal forall x y z : bool, x \+ y \+ z = x \+ z \+ y.

This simple example reflects the structure of more intricate modular switches:

—Definition of generic abstract structures like zmodule. This can involve more
subtle curryfication and dependent types to achieve full modularity, inheritance
and sharing (see for instance [GGMR09]).

—Development of a generic theory for each structure, consisting of lemmas like
zmaddAC.

—Population of the generic structures. This consists in the definition of instances
of the structures, like bool_zmodule. These instances are most often declared
canonical.

6This is why throughout the SSReflect library projections corresponding to specifications are

usually not named to avoid polluting the database with hints which will never be used.
7For technical reasons, when working with Coq < v8.3, make sure to use the SSReflect rewrite

and apply: tactics to trigger canonical structure inference.
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—Development of specific theories of the instances. These libraries benefit from
the generic results (and notations) established at the abstract level thanks to the
canonical structure hints.

5.2 Canonical constructions

An important feature of canonical structures is that unification can chain several
steps of type inference, triggering a Prolog-like engine for proof inference. Let us
start with an elementary example, based on types with Boolean equality. The
record presented in section 4.3 is in fact the mixin of the eqType structure.

To declare an elementary (canonical) structure of eqType on a type T, one must
follow the following scheme:

(1) Define a Boolean comparison on the elements of type T;
(2) Prove that this equality is a Boolean reflection of Leibniz equality;
(3) Build the mixin packing T with the latter proof;
(4) Build the eqType structure on T.

Let us define a canonical structure of eqType on the type unit. The Boolean
comparison in that case is the function (fun _ _ : unit => true). The three
next steps respectively consist in:

Lemma unit_eqP : Equality.axiom (fun _ _ : unit => true).
Proof. by do 2!case; left. Qed.

Definition unit_eqMixin := EqMixin unit_eqP.

Canonical Structure unit_eqType := EqType unit unit_eqMixin.

Exercise 5.2.1 How would you define a canonical structure of eqType on type
bool? on type nat?

What is in each case the equation given as a hint to the unification algorithm?

Now dependent types may inherit some structure from their parameters, when
they are themselves equipped with some structure. For instance, there is a canonical
way of building a Boolean comparison of pairs of elements themselves comparable
by Boolean predicates. We say that the product of two eqTypes has a canonical
structure of eqType. Indeed the Boolean test:

Definition pair_eq (T1 T2 : eqType) :=
[rel u v : T1 * T2 | (u.1 == v.1) && (u.2 == v.2)].

is the expected Boolean comparison. It is defined using the notation for casted
boolean relations: the notation [rel x y : T | t] denotes the term (fun x y :
T => t), of type T -> T -> bool8.

Exercise 5.2.2 Prove the lemma:

Lemma tuto_pair_eqP : forall T1 T2, Equality.axiom (pair_eq T1 T2).

8Many variants of this notation are defined in the ssrbool library: with or without cast on the
arguments, ...
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Now we pose the following definitions:

Definition prod_eqMixin (T1 T2 : eqType) :=
EqMixin (@pair_eqP T1 T2).

Canonical Structure prod_eqType (T1 T2 : eqType) :=
EqType (T1 * T2) prod_eqMixin.

This canonical structure definition stores the following equation in the database:

[ Equality.sort ?1 w prod (Equality.sort ?2) (Equality.sort ?3)]
⇒

?1 = prod_eqType ?2 ?3

where prod is the constant hidden by the infix * notation of type product. We give
here an example where this hint is used, and triggers further canonical structure
inference. Remember from section 4.3 that the Boolean comparison operation of
an eqType is named eq_op, and supports the infix notation ==. After having solved
exercise 5.2.1, try the following command:

Check (true, 3) == (true && true, 1 + 2).

If the canonical structures of eqType have been correctly defined on bool and nat
(they are in fact introduced respectively in libraries ssrbool and ssrnat), then the
system should answer bool.

To type this expression, the system has to unfold the notation, hence to type the
term:

eq_op _ (true, 3) (true && true, 1 + 2)

where eq_op has type:

eq_op : forall T : eqType, rel (Equality.sort T)

as shown by the command Check eq_op in Set Printing Coercions mode. Since
the two last arguments of the term to be typed are of type (bool * nat). The
system should hence unify:

(Equality.sort ?) with (prod bool nat)
There is no way of solving this unification problem without extra information

coming from canonical structures. Canonical structure inference is triggered by
head constants: in this unification problem, the respective head symbols Equality.sort
and prod of both sides match the head symbols of product of eqType hint. This
hint says that we can obtain ? as (prod_eqType ?2 ?3) if we can solve the two
new problems: unify

bool with (Equality.sort ?2)
and

nat with (Equality.sort ?3)

And this should very much look like the solution of exercise 5.2.1.
To craft canonical constructions, always remember that their inference is trig-

gered by head constants and projections. Unfortunately, the vernacular support
for canonical structures is rather elementary, in fact limited to the:

Print Canonical Projections.

command, which lists the hints present in the database.
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5.3 Predtypes: canonical structures for notations

An important case where canonical structures implement a shared notation is the
infix notation for membership. In SSReflect libraries, if P is a boolean predicate,
the statement “x satisfies P” can be written applicatively as (P x) or using an
explicit infix connective, as (x \in P). In the latter case, P is called a “collective”
predicate and supports the notations:

—(x \in P) for “x satisfies the collective predicate P”
—(x \notin P) for “x does not satisfy the collective predicate P”

A collective predicate is typically a membership predicate for lists, finite types or
more generally, containers. A given predtype T is expected to support (at most)
a single membership (collective) predicate, giving an unambiguous meaning to the
Boolean expression (x \in A), with (A : T). When there is not natural way of
seeing a given type as a container, it is not relevant to equip it with a predtype
structure. To equip a type T with the two above prenex notations, the user should
declare a canonical structure of predType on T. We are not describing in detail
the technical aspect of the the predType structure definition here. It is sufficient
to understand that, just like an eqType structure bundles a type T with a Boolean
relation on T, which is required to reflect the Leibniz equality on T, a (predType T)
structures equips an other type with a canonical Boolean membership predicate.
For instance, the predicate:

mem_seq : forall T : eqType, seq T -> T -> bool

tests the membership of an element of type (T : eqType) (see section 4.3) in any
sequence (see section 4.2) of elements of T. Any type (seq T), with (T : eqType)
is canonically equipped with a predType structure using this membership definition.
Hence we can write:

Section SeqMem.

Variable T : eqType.

Implicit Type s : seq T.
Implicit Types x y : T.

Lemma tuto_in_cons : forall y s x,
(x \in y :: s) = (x == y) || (x \in s).

Proof. by []. Qed.

where the Implicit Types declarations avoid further otherwise necessary casts.

Exercise 5.3.1 In the same section SeqMem, prove the following lemmas:

Lemma tuto_in_nil : forall x, (x \in [::]) = false.

Lemma tuto_mem_seq1 : forall x y, (x \in [:: y]) = (x == y).

Lemma tuto_mem_head : forall x s, x \in x :: s.
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Note that while the bare definition of membership does not require the sequence to
be based on a type with Boolean equality, the entire SSReflect sequence library
is geared towards reflection, in the sense of the three lemmas proved in exercise
5.3.1.

It is sometimes desirable to change an infix notation (x \in P) into (P x). For
any collective predicate, this can be done using the generic rewrite multirule inE.
A mulirule is a Coq constant defined as a list of rewrite lemmas. The tactic:

rewrite inE.

looks in the list inE for the first rewrite rule which applies to the current goal and
hence changes the first occurrence of a pattern (x \in P) into (P x)9. For more
details on mulirules, please refer to [GM].

Exercise 5.3.2 Prove the following lemmas:

Lemma tuto_mem_cat : forall x s1 s2,
(x \in s1 ++ s2) = (x \in s1) || (x \in s2).

Lemma tuto_mem_behead: forall s, {subset behead s <= s}.

where the last statement stands for:

forall s x, x \in behead s -> x \in s

Program by induction a Boolean test tuto_has: pred T -> seq T -> bool
which tests whether a sequence features an element satisfying a given Boolean
predicate. Prove the following reflection lemma:

Lemma tuto_hasP : forall (a : pred T) s,
reflect (exists2 x, x \in s & a x) (has a s).

where the standard Coq constructor exists2 specifies a witness for
a conjunction of predicates. Program by induction a Boolean test
tuto_all: pred T -> seq T -> bool which tests whether all the elements of a
sequence satisfy a given Boolean predicate. Prove the following reflection lemmas:

Lemma tuto_allP : forall (a : pred T) s,
reflect (forall x, x \in s -> a x) (all a s).

Lemma tuto_allPn : forall (a : pred T) s,
reflect (exists2 x, x \in s & ~~ a x) (~~ all a s).

End SeqMem.

6. FINITE OBJECTS IN SSREFLECT

6.1 Finite types

6.1.1 Finite types constructions. Sequences are used to define types with a finite
number of inhabitants. A finType is not built out of distinct constructors but

9In fact, the generic inE multirule should usually be extended each time a new membership
predicate is defined. In the sequence library inE is for instance redefined to include lemmas
in_cons and mem_seq1.
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instead it consists of a sequence enumerating its elements. This proves to be more
efficient for combinatoric operations. A type (T : finType) hence embeds a type
with boolean equality and a duplicate-free sequence containing all the elements
of the carrier type. Let us equip the bool type with a (canonical) structure of
finType10:

Lemma bool_enumP : Finite.axiom [:: true; false].
Proof. by case. Qed.
Definition bool_finMixin := FinMixin bool_enumP.
Canonical Structure bool_finType := FinType bool bool_finMixin.

where the sequence [:: true; false] enumerates the inhabitants of the type (here
all the elements of the underlying eqType), and Finite.axiom is the specification:

Finite.axiom (T : eqType)(e : seq e) :=
forall x, count (@pred1 T x) e = 1.

which ensures that the sequence contains exactly one occurrence of each element of
the underlying eqType. The sequence enumerating the elements of (T : finType)
is (enum T). By construction it satisfies the Finite.axiom specification:

Lemma enumP : forall T : finType, Finite.axiom (Finite.enum T).

Exercise 6.1.1 Declare a canonical structure of finType on the unit type.

Now, canonical constructions can transmit a structure of finite type to a dependent
type whose parameters are themselves finite types. For instance, an option type
on a finite type is itself a finite type. The construction of the (canonical) structure
goes this way:

(1) Construct the enumeration of the inhabitants of the finite type:

Definition option_enum (T : finType) :=
None :: map some (Finite.enum T).

(2) Prove that it satisfies the finite type specification:

Lemma option_enumP : forall T : finType,
Finite.axiom (option_enum T).

(3) Construct the finite type mixin:

Definition option_finMixin (T : finType) :=
FinMixin option_enumP.

(4) Define the corresponding finType structure and declare it canonical11:

Canonical Structure option_finType :=
FinType (option T) option_finMixin.

10In versions ≤ 1.2 of the SSReflect libraries, the last line should be
Canonical Structure bool_finType:= FinType bool_finMixin
11In versions ≤ 1.2 of the SSReflect libraries, the last line should be
Canonical Structure option_finType:= FinType option_finMixin

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.



An introduction to small scale reflection in Coq · 133

Exercise 6.1.2 Prove lemma tuto_option_enumP.

It might be more convenient to build a finType by proving separately that the
enumeration is duplicate-free and that it contains all the elements of the under-
lying eqType. The fintype library hence provides an alternative mixin called
UniqFinMixin for this purpose.

Exercise 6.1.3 Define the function:

Definition tuto_sum_enum (T1 T2 : finType) : seq (T1 + T2) :=

where (T1 + T2) is the sum operation on types (see section 4.3), which enumerates
all the elements of (T1 + T2). Prove that it returns a duplicate-free sequence by
proving:

Lemma tuto_sum_enum_uniq : forall T1 T2, uniq (sum_enum T1 T2).

Then the following definitions declare a canonical construction of finType on the
sum of two arbitrary finTypes.

Definition sum_finMixin :=
UniqFinMixin sum_enum_uniq mem_sum_enum.
Canonical Structure sum_finType :=
FinType (T1 + T2) sum_finMixin.

Exercise 6.1.4 Using UniqFinMixin, build a canonical construction of finType
on the product of two arbitrary finTypes.

6.1.2 Cardinality, set operations. The cardinal operator applies to any boolean
predicate on a finType: if T : finType and A : T -> bool, then #|A| counts
the number of elements of T which are assigned a true value by A. Moreover, #|T|
denotes the number of elements of the whole finType. The enum operator12 builds
a duplicate-free list of all the elements of T satisfying A. Hence we have the key
property:

Lemma cardE : forall (T : finType)(A : pred T),
#|A| = size (enum A).

Moreover, two extensionally equal boolean predicates (on the same finType) have
the same enumeration:

Lemma eq_enum : forall P Q, P =i Q -> enum P = enum Q.

Seeing the boolean predicates of finType as characteristic functions, we can state
and prove the corresponding cardinality lemmas:

Section OpsTheory.

Variable T : finType.

12This operator should not be confused with the above Finite.enum field, which is a projection
of the finType structure.
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Implicit Types A B C P Q : pred T.
Implicit Types x y : T.
Implicit Type s : seq T.

Lemma card0 : #|@pred0 T| = 0.
Proof. by rewrite cardE enum0. Qed.

Lemma cardT : #|T| = size (enum T).
Proof. by rewrite cardE. Qed.

Lemma card1 : forall x, #|pred1 x| = 1.
Proof. by move=> x; rewrite cardE enum1. Qed.

Exercise 6.1.5 The boolean predicate (on boolean predicates over finite types):

Definition pred0b (T : finType) (P : pred T) := #|P| == 0.

characterizes an empty characteristic function. In the OpsTheory section prove the
lemma:

Lemma tuto_pred0P : forall P, reflect (P =1 pred0) (pred0b P).

Exercise 6.1.6 Again in section OpsTheory, prove that:

Lemma tuto_cardUI : forall A B,
#|[predU A & B]| + #|[predI A & B]| = #|A| + #|B|.

Lemma tuto_eq_card : forall A B, A =i B -> #|A| = #|B|.

where the bracket notations pretty-print set operations for collective predicates.
Hint: use the lemmas proved in the exercises of section 4.2.

The expression [disjoint A & B] is a boolean which is true if and only if the
collectives boolean predicates A, B : pred T where T is a finType are disjoint:
the intersection of A and B should satisfy pred0.

Exercise 6.1.7 Again in section OpsTheory, prove the lemmas:

Lemma tuto_disjoint0 : forall A, [disjoint pred0 & A].
Lemma tuto_disjoint_sym : forall A B, [disjoint A & B] = [disjoint

B & A].

Lemma tuto_disjointU : forall A B C,
[disjoint predU A B & C] = [disjoint A & C] && [disjoint B & C].

End OpsTheory.

Hint: try to use the congr tactic (see [GM]).

For any two boolean predicates pA and pB ranging over the same type T, we can say
that pA is a subset of pB if it selects elements of T that are also selected by pB which
is not a decidable test in the general test. Yet if A and B are two boolean predicates
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on the same finite domain, this notion indeed becomes a boolean test since there
is only finitely many values to inspect. The boolean predicate A \subset B, for
arguments A, B : pred T, holds if and only if (pred0b [predD A B]), i.e. if and
only if A\B is empty.

Exercise 6.1.8 Prove the reflection lemmas:

Lemma tuto_subsetP : forall A B,
reflect {subset A <= B} (A \subset B).

Lemma tuto_subsetPn : forall A B,
reflect (exists2 x, x \in A & x \notin B) (~~ (A \subset B)).

Hint: both these proofs should start by the tactic:

rewrite unlock.

to release the seals protecting unwanted reductions. This is imposed by the defini-
tion of subset. Technical details about these seals can be found in [GM], yet the
reader can safely skip this point.

Prove the lemmas:

Lemma tuto_subset_eqP : forall A B,
reflect (A =i B) ((A \subset B) && (B \subset A)).

Lemma tuto_subset_cardP : forall A B,
#|A| = #|B| -> reflect (A =i B) (A \subset B).

6.1.3 boolean quantifiers. On finite types, logical quantifiers can be reflected
into boolean ones: indeed, a universal statement amounts to a finite conjunction
of tests, and an existential one amounts to a boolean test on a finite number of
values. Then the boolean existential connective (existsb x, A x) is defined by
stating that A is not empty, in the sense of the pred0 predicate. The boolean
universal connective (forallb x, A b) is defined by stating that the complement
of A is empty. These boolean quantifiers satisfy the rules of classical logic (since
the domain of quantification is finite) and are provably equivalent to their logical
constructive counterparts.

Exercise 6.1.9 State and prove the reflection lemmas tuto_existsP and
tuto_forallP relating the Prop quantifiers with their boolean versions.

Prove the lemmas:

Lemma tuto_negb_forall : forall (T : finType)(P : pred T),
~~ (forallb x, P x) = (existsb x, ~~ P x).

Lemma tuto_negb_exists : forall (T : finType)(P : pred T),
~~ (existsb x, P x) = (forallb x, ~~ P x).
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Exercise 6.1.10 Prove that on any non-empty subset described by a predicate
(P : pred T), where (T : finType), a function F : T -> nat has a maximum
and a minimum.

Hint: the fintype library defines a pick choice operator, which is legal on a
type with a finite number of inhabitants. Hence [pick x | P] is Some x, for an
x such that P holds, or None if there is no such x. This operator is specified by a
pickP specification lemma. Also, the ssrnat library defines the minimum ex_minn
(resp. maximum ex_maxn) of the values satisfying a non-empty (reps. bounded
non empty) predicate p : pred nat. Use the Search command to investigate the
theory developed on these operations.

6.1.4 Example: a depth first search algorithm. In this section, we illustrate the
formalization of an algorithm, its specification and the formal proof of its correctness
on the case of a depth first search algorithm in a graph13. This commented proof
also illustrates the feature of the SSReflect language, and in particular of the
view mechanism, on an example of formalization by boolean reflection.

We consider a graph given by the finType of its vertices, and its neighbor func-
tion:

Variables (T : finType) (e : T -> seq T).

In this graph, there is an edge between two vertices x and y if and only if y is in
the image of x by the neighbor function e. Hence the adjacency relation is defined
by:

Definition grel := [rel x y | y \in e x].

using the bracket notation for boolean relations. The depth first search algorithm
computes all the vertices of a graph which are reachable from a given initial vertex
by a path in the graph. It proceeds by visiting recursively all the neighbors of the
initial vertex, then the neighbors of these neighbors, etc. Since the underlying graph
may feature cycles, it is necessary to mark the vertices visited by the algorithm to
avoid extraneous recursive calls and infinite loops. Consider the function:

Fixpoint dfs (n : nat) (a : seq T) (x : T) {struct n} :=
if n is n’.+1 then
if x \in a then a else foldl (dfs n’) (x :: a) (e x)

else a.

This function performs n steps of the depth first search, starting from the vertex x
with some already visited vertices stored in the sequence a. Our goal is to prove
the following specification:

Lemma dfs_pathP : forall x y,
reflect
(exists2 p, path grel x p & y = last x p)
(y \in dfs #|T| [::] x).

This specification ensures that a vertex y is reachable form the vertex x by a path
in the graph if and only if it is found in #|T| (the number of vertices in the graph)

13This formalization can be found in the SSReflect connect library.
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steps by the function dfs, starting from vertex x with an empty set of marked
vertices.

The core of this proof is the invariant of the dfs function:

Lemma dfsP : forall n x y (a : seq T),
#|T| <= #|a| + n ->
y \notin a -> reflect (dfs_path x y a) (y \in dfs n a x).

where the dfs_path predicate is defined as:

Inductive dfs_path x y (a : seq T) : Prop :=
DfsPath p of path grel x p & y = last x p & [disjoint x :: p & a].

meaning that the predicate (dfs_path x y a) holds if and only if there exists
(p : seq T) such that:

—two successive elements of the sequence x :: p are related by the grel relation
(they are adjacent in the graph),

—y is the last element of p,
—the sequence x :: p does not contain any element of the sequence a.

In other words (dfs_path x y a) holds if there is a path from x to y in the graph
which avoids the marked vertices of a. Now let us start the proof of theorem dfsP,
by induction on the natural number n:

Proof.
elim=> [|n IHn] x y a Hn Hy /=.

We are now ready to prove the base case of the induction.

Exercise 6.1.11 Why is the context of this subgoal inconsistent?

Indeed, the theorem:

Lemma max_card : forall (T : finType)(A : pred T),
#|A| <= #|T|.

is violated by this context. We would hence like to replace the current goal by
the absurd boolean statement that could be derived under such assumption. A
common and convenient way of performing this step of boolean contradiction is
the following: Suppose that you know that a boolean statement B is provable, to
replace the current goal by ~~B, just use the tactic:

case/idPn: PB

where PB is a proof of (is_true B). In our proof, this tactic is:

case/idPn: (max_card (predU1 y (mem a))).

Note that (mem a) is the standard way to transform a sequence into a predicate,
which is the characteristic function of the set of elements in the sequence.
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Exercise 6.1.12 Observe the effect of the previous tactic on the goal. Use the
vernacular command:

Show Proof.

to display the current state of the proof term. Look for the occurrence of idPn.
Which function is this occurrence an argument of? How has this function been
inserted (see [GM], section 8.2)? Try to decompose the last tactic into more ele-
mentary steps, without using the automatic insertion of view hints.

The subgoal is then closed by the following tactic:

by rewrite -ltnNge cardU1 (negPf Hy) addSn addnC.

Note the by closing tactic which ensures this subgoal is killed by this script.

Exercise 6.1.13 Use the command:

Check cardU1.

What is the type of each subterm? Why is this statement well-typed? Hint: Look
at the result of the command:

Set Printing Coercions.
Check cardU1.
Unset Printing Coercions.

Exercise 6.1.14 What is the type of negPf? What is the type of (negPf Hy)?
Why is this last statement well typed (same hint as exercise 6.1.13)?

For the inductive case, the proof goes by case analysis on x being an element of a:

case Hx: (x \in a).

Exercise 6.1.15 Prove the first case where Hx : (x \in a)= true. Hint: Don’t
forget to use the Search vernacular tactic (see [GM] for the syntax). For instance:

Search _ [disjoint _ & _].

lists all the available results on disjoint.

We now start a step of forward reasoning, proving an auxiliary result which will be
used several times in the rest of the proof:

have subset_dfs : forall m (u v : seq T),
u \subset foldl (dfs m) u v.

This command starts a new subgoal, with the same context as the main proof we
just left, but requiring a proof of the lemma.

Exercise 6.1.16 Prove this lemma (by double induction on n and b, generalizing
with respect to a). Again, use Search to find the lemmas needed. For instance:

Search (_ \in _ :: _).

shows all the theorems concluding that an element is in a non empty list.
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Back to the main proof, the lemma has now been added to the context, under the
name subset_dfs. Let us give a name to the sequence x :: a. To introduce an
abbreviation, we can use the tactic:

pose a’ := x :: a.

In the present case, it will be more convenient to introduce this new name under
the form of a new constant and an equality :

move Da’: (x :: a) => a’.

Now we reason by case analysis on the fact the (y \in a’):

case Hya’: (y \in a’).

This tactic introduces in each subgoal a hypothesis Hya’, giving the respective
values true and false to the boolean y \in a’. In the first subgoal, we know
that:

(y \in foldl (dfs n) a’ (e x)) = true

because of hypothesis Hya’ and of the lemma subset_dfs. The boolean y \in
foldl (dfs n)a’ (e x) can be rewritten to true using the tactic:

rewrite (subsetP (subset_dfs n _ _) _ Hya’).

Note that the same coercion is applied as in exercise 6.1.14.

Exercise 6.1.17 Finish the proof of this first case.

Now remains the case of Hya’: y \in a’ = false. Hypothesis Hn says that
#|T| <= #|a| + n.+1 but here we know more:

have Hna’: #|T| <= #|a’| + n by rewrite -Da’ /= cardU1 Hx /= add1n
addSnnS.

Since this proof is so short that both the statement of the lemma and its proof
use less than 80 characters, we can use this open syntax, without separating the
statement and the proof script by a point.

Exercise 6.1.18 Introduce a new object b and an equality hypothesis
Db : e x = b, like we did above to introduce the sequence a’.

Now, we will again reason forward using the command:

suffices IHb: reflect (exists2 x’, x’ \in b & dfs_path x’ y a’)
(y \in foldl (dfs n) a’ b).

This time, the proof of the intermediate result is postponed to the second subgoal,
and in the first subgoal, the context has been augmented with hypothesis IHb.

Exercise 6.1.19 Prove this subgoal. Hint: first transform it into two implications
using IHb (see section 4.1.6).

Here is a script which finishes the proof:
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elim: b a’ Hya’ Hna’ {a x Da’ Db Hy Hn Hx} => [|x b IHb] a Hy Hn /=.
by rewrite Hy; right; case.

have Ha := subset_dfs n a [ :: x ]; simpl in Ha.
case Hdfs_y: (y \in dfs n a x).
rewrite (subsetP (subset_dfs n _ b) _ Hdfs_y); left.
exists x; [ exact: mem_head | apply: (IHn _); auto; exact (negbT

Hy) ].
have Hca := subset_leq_card Ha; rewrite -(leq_add2r n) in Hca.
apply: {IHb Hca}(iffP (IHb _ Hdfs_y (leq_trans Hn Hca))).
move=> [x’ Hx’ [p Hp Ep Hpa]]; rewrite disjoint_sym in Hpa.
exists x’; [ exact: predU1r | exists p => // ].
rewrite disjoint_sym; exact (disjoint_trans Ha Hpa).

move=> [x’ Hx’ [p Hp Ep Hpa]].
case Hpa’: [disjoint x’ :: p & dfs n a x].
case/orP: Hx’ => [Dx’|Hx’]; last by exists x’; auto; exists p.
move: (pred0P Hpa x’); rewrite /= mem_head /= => Hax’.
case/idP: (pred0P Hpa’ x’); rewrite /= mem_head //=.
apply/(IHn _ _ _ Hn (negbT Hax’)).
exists (Nil T)=> //; first by move/eqP: Dx’.
by rewrite disjoint_has /= -(eqP Dx’) Hax’.

case/(IHn _ _ _ Hn (negbT Hy)): Hdfs_y.
case/pred0Pn: Hpa’ => [x’’ H]; case/andP: H => [ /= Hpx’’ Hdfs_x’’].
have Hax’’ := pred0P Hpa x’’; rewrite /= Hpx’’ in Hax’’.
case/(IHn _ _ _ Hn (negbT Hax’’)): Hdfs_x’’ => [q Hq Eq Hqa].
case/splitPl: {p}Hpx’’ Hp Ep Hpa => [p1 p2 Ep1].
rewrite path_cat -cat_cons disjoint_cat last_cat Ep1.
move/andP=> [Hp1 Hp2] Ep2; case/andP=> [Hp1a Hp2a]; exists (cat q p2

).
- by rewrite path_cat Hq -Eq.
- by rewrite last_cat -Eq.
by rewrite -cat_cons disjoint_cat Hqa.
Qed.

Exercise 6.1.20 List the places where a reflection lemma is used. Where is it used
as a function? Where has a Hint View been inserted? Can you comment the script
with the steps of the informal proof?

Exercise 6.1.21 Using dfsP, prove the specification:

Lemma dfs_pathP : forall x y,
reflect
(exists2 p, path grel x p & y = last x p)
(y \in dfs #|T| [::] x).

6.2 Sigma types with decidable specifications

Sigma types as defined in the standard Coq prelude Init.Specif (automatically
loaded by Coq), are a convenient way to define new types in comprehension style.
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They support a built-in curly bracket notation, so that:

Definition evens := {x : nat | exists k, 2 * k = x}.

is the type whose inhabitants are even natural numbers. They are implemented as
a pair whose first projection is usually a datatype, called the value, and the second
one a proof that the first element satisfy the definitional predicate. Sigma types do
not behave as conveniently as desired: let us prove that 2 can be seen as an element
of evens by two different ways. The first one is straightforward and the second one
make an unnecessary detour:

Definition two_even1 : evens.
Proof. by exists 2; exists 1. Defined.

Definition two_even2 : evens.
Proof. by exists 2; rewrite -(addn0 2) addn0; exists 1. Defined.

Goal two_even1 = two_even2.
reflexivity.
Abort.

The error message is due to the fact that not all the proofs of a given theorem
are equal. Try Print two_even1 and Print two_even2 to compare these two
terms. Since we are comparing pairs of elements whose second components are
(non convertible) proofs, there is no way these two elements are convertible. In
general, there is not even any reason why they should be provably equal. However
the situation is much different when the sigma type is defined by means of a boolean
predicate. Consider the definition:

Definition odds := {x : nat | odd x}.

where odd : nat -> bool is defined in the ssrnat library. Now we prove that 1
can be seen as an element of odds by two different ways:

Definition one_odd1 : odds.
Proof. by exists1. Defined.

Definition one_odd2 : odds.
Proof. by exists 1; rewrite -(addn0 1) addn0. Defined.

Goal one_odd1 = one_odd2.
try reflexivity. (* still not convertible *)
by congr exist; apply: bool_irrelevance.
Qed.

A sigma type with boolean specifications still does not allow to convert elements
sharing the same first projection. Hence the reflexivity tactic, which checks the
convertibility of the two sides, fails. Yet proof irrelevance holds for type bool:
for any (b : bool), all the proofs of (b = b) are the same. Since the second
projection of an element of type odds should a proof of (something convertible
to) (true = true), two elements of type odd sharing the same value are provably
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equal. Hence the bool_irrelevance lemma applies, reducing the goal to proving
the trivial equality (2 = 2).

To take advantage of this notable property, the SSReflect eqType library pro-
vides an special interface for subTypes. A subType is defined on top of a sigma
type by typically:

—Defining a sigma like type, under the form of an ad hoc Record type of the form:

Record myType (T : Type) := {myval :> T ; _ : P (myval)}

where(P : T -> bool) is a concrete predicate. This definition generates an
elimination scheme myTypeT.

—Use this scheme to declare a canonical structure of subType of T for mysubType:

Canonical Structure myTypeSubType :=
[subType for myval by myType_rect].

The above notation hides the generic construction patterns which automates the
definition of a subType instance.

Exercise 6.2.1 Define the Record type tuto_tuple_of: nat -> Type -> Type
such that (tuto_tuple_of n T) if the type of sequences on type T of fixed length
n. Remember that we want a boolean specification, and that the type nat has
a canonical structure of eqType. Craft this definition so that it also declares a
coercion from tuto_tuple_of to seq (see example in section 5.1).

Now define a canonical structure of subType on the type tuple_of.
Prove that [::] can be equipped with a canonical structure of tuple. Prove

that cons is an operation which builds tuple from a tuple (and a head element).
Prove that:

Lemma tuto_cat_tupleP : forall T n1 n2 (t1 : n1.-tuple T) (t2 :
n2.-tuple T),

size (t1 ++ t2) == n1 + n2.

where (n.-tuple T) is a notation for tuples of elements in t of length n.
Define a canonical construction of tuple for the catenation of two tuples.
Prove that similarly the sequence operations, drop, take, rot (see exercise 4.2.1)

canonically preserve the tuple structure of of their arguments.

Canonical instances of the subType structure benefit from generic operators and
lemmas such as the injection of an element of the sigma type myType into the bigger
type T:

val : forall (T : Type) (P : pred T) (s : subType P), s -> T

and the proof val_inj that val is injective.We also know that the value of a sigma
type satisfies its specification:

valP : forall (T : Type) (P : pred T) (sT : subType P) (u : sT),
P (val u)
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Exercise 6.2.2 Prove the lemmas:

Section TuplesExercises.
Variables (T : finType)(n : nat).

Lemma tuto_size_tuple : forall (t : n.-tuple T), size t = n.

Lemma leq_card_tuple : forall (t : n.-tuple T), #|t| <= n.

Lemma uniq_card_tuple : forall (t : n.-tuple T),
uniq t -> #|t| = n.

where again (n.-tuple T) is a notation for (tuple_of n T) defined in the SSRe-
flect tuple library.

Here is an excerpt of the tuple library:

Lemma tnth_default : forall (t : n.-tuple T)(i : ’I_n), T.
Proof. by case=> [[|//]]; move/eqP <-; case. Qed.

Definition tnth t i := nth (tnth_default t i) t i.

What type does the ’I_n notation stands for? Hint: use the Search command.
How could you define this type as a subType? What does the tnth function com-
putes? Prove that:

Lemma tuto_tnth_nth : forall (x : T)(t : n.-tuple T) i, tnth t i =
nth x t i.

(which answers the previous question...)

Moreover the operator Sub is a generic constructor for elements of a subtype:
(Sub x Px) where (x : T) and Px is a proof of (P x) constructs the correspond-
ing elements of the subtype of the elements of T satisfying property P. Note that
the predicate P is guessed automatically by the construction if the return type is
known.
Exercise 6.2.3 Define the element 2 of type (ordinal 3).

Define the type odds of odd integers, define the corresponding subType
odds_subType of nat. Define the element of 3 : odds_subType.

If a type T is equipped with a boolean equality, this equality (or more precisely its
restriction) is also a valid one for any sigma type defined on T. An important role
of the subType structure is to convey in a systematic way a structure of eqType14

present on the larger type T to any sigma type defined on T. There is in fact
a systematic construction of eqType for subtypes defined on top of an eqType.
Following the above notations, if myType has a canonical structure of subtype on a
type T equipped with a canonical structure of eqType, then a (canonical) structure
of eqType can be declared for myType by:

—Defining an eqMixin by the generic construction triggered by the following no-
tation:

14and of choiceType
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Definition myType_eqMixin := [eqMixin of myType by <:].

This notation requires a previous canonical structure of subType for myType.
—Defining the (canonical) eqType structure15:

Canonical Structure mySubType_eqType := EqType myType
myType_eqMixin.

Exercise 6.2.4 Define a canonical structure of eqType on odds (cf. exercise 6.2.3).
Define a canonical structure of eqType on tuple.

Prove the lemma:

Lemma tuto_map_tnth_enum : forall (t : n.-tuple T),
map (tnth t) (enum ’I_n) = t.

and its extensionality corollary:

Lemma tuto_eq_from_tnth : forall (t1 t2 : n.-tuple T),
tnth t1 =1 tnth t2 -> t1 = t2.

End TuplesExercises.

6.3 Finite functions, finite sets

An important application of the tuple construction, studied in the exercises of the
previous section, is the formalization of functions on finite domains. A function
(f : aT -> rT), where aT is a type with a finite number of inhabitants and rT
an arbitrary type, is completely determined by a finite object: the list of values
respectively assigned to the finite sequence of elements of the domain. Yet defining
such a function as a bare inhabitant of the arrow type (aT -> rT) is not enough to
benefit from this finiteness. For instance, the Calculus of Inductive Constructions
being essentially non extensional, we cannot use the fact that:

forall f1 f2 : aT -> rT, (forall x : aT, f1 x = f2 x) -> f1 = f2

even since in the present case, testing that (forall x : aT, f1 x = f2 x) only
requires a finite number of tests. This can prove specially uncomfortable for instance
in combinatoric proofs or in quotient constructions. The SSReflect finfun li-
brary implements a definition of functions with a fintype domain and an arbitrary
codomain, as tuples of values: (f : finfun aT rT) where (aT : finType) is a
#|aT|.-tuple of values in rT. The elements of aT being given as an (ordered) enu-
merating sequence, the finfun lists their respective values in the same order. Now
these functions, coerced to their functional types, enjoy the equivalence between
intensional and extensional equality:

Lemma ffunP : forall (aT : finType) rT (f1 f2 : {ffun aT rT},
f1 =1 f2 <-> f1 = f2.

15In versions ≤ 1.2 of the SSReflect libraries, the last line should be

Canonical Structure mySubType_eqType := EqType myType_eqMixin.
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An important special case of finite functions is the boolean one: they are character-
istic functions of subsets of the base finType. Otherwise said, they define a mask
on the finType domain. This case is important enough to deserve the definition of
a special subtype:

Inductive set_type (T : finType) := FinSet of {ffun pred T}.

denoted by {set T} where T is required to hold a canonical structure of finType.
In particular, as for finite functions, (Leibniz) intensional and extensional equalities
coincide for such sets:

Lemma setP : forall (T : fintype)(A B : {set T}), A =i B <-> A = B.

T : Type

F : finType

S : {set F}

1 11 1 10 0 0 01[ ]

Fig. 3. Finite sets as masks on finite types

Most usual set constructions are defined on these sets: if A, B : {set T} and
P : {set {set T}}:

− x \in A denotes that x belongs to A

− A \subset B denotes that A is a subset of B
− A \proper B denotes that A is a proper subset of B
− mem A is the boolean predicate corresponding to A

− finset p is the set corresponding to a boolean predicate p

− [set x | C] is the set containing the x such that C holds (x is bound in C)
− [set x \in D] is the set containing the x in the collective predicate D

− [set x \in D | C] is the set containing the x in D such that C holds
− set0 denotes the empty set
− [set: T] or setT denotes the full set, containing all the elements of the finType
T

− A :|: B is the union of A and B

− x |: A is union of the singleton x with the set A
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− A :&: B is the intersection of sets A and B

− ~: A is the complement of A (in the finType T)
− A :: B is the difference A minus B

− A : x is the set obtained by removing the element x from A

Finite sets also inherit from the cardinality theory developed on predicates on
fintypes, and the library specializes all the results proved on these predicates
to the set case.

Exercise 6.3.1 Prove the following lemmas:

Section setOpsExos.

Variable T : finType.
Implicit Types a x : T.
Implicit Types A B C D : {set T}.

Lemma tuto_eqEsubset : forall A B,
(A == B) = (A \subset B) && (B \subset A).

Lemma tuto_set1P : forall x a, reflect (x = a) (x \in [set a]).

Lemma tuto_setD1P : forall x A b,
reflect (x != b /\ x \in A) (x \in A :\ b).

Lemma tuto_setIA : forall A B C, A :&: (B :&: C) = A :&: B :&: C.

Lemma tuto_setUIl : forall A B C,
(A :&: B) :|: C = (A :|: C) :&: (B :|: C).

Lemma tuto_setCU : forall A B, ~: (A :|: B) = ~: A :&: ~: B.

End setOpsExos.

Hint: use the results proved in exercise 6.1.8, and the inE rewrite rule.
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Exercise 6.3.2 In this exercise, we prove the existence of a minimal subset satis-
fying a given property.

Section MinSet.

Variable T : finType.
Notation sT := {set T}.
Implicit Types A B C : sT.
Implicit Type P : pred sT.

Definition tuto_minset P A := forallb B : sT, ...

Complete the definition tuto_minset to give a boolean characterization of the
minimal subset satisfying the predicate P. Remember that boolean quantifiers have
already been studied in exercise 6.1.9.

Prove the following lemmas:

Lemma tuto_minset_eq : forall P1 P2 A,
P1 =1 P2 -> minset P1 A = minset P2 A.

Lemma tuto_minsetP : forall P A,
reflect ((P A) /\ (forall B, P B -> B \subset A -> B = A))

(minset P A).

Lemma tuto_minsetp : forall P A, minset P A -> P A.

Lemma tuto_minsetinf : forall P A B,
minset P A -> P B -> B \subset A -> B = A.

Complete the following proof:

Lemma tuto_ex_minset : forall P, (exists A, P A) -> {A | minset P
A}.

Proof.
move=> P exP; pose pS n := [pred B | P B && (#|B| == n)].
pose p n := ~~ pred0b (pS n); have{exP}: exists n, p n.
by case: exP => A PA; exists #|A|; apply/existsP; exists A;

rewrite PA /=.
case/ex_minnP=> n; move/pred0P; case: (pickP (pS n)) => // A.
...
Qed.

And finally prove that:

Lemma tuto_minset_exists : forall P C,
P C -> {A | minset P A & A \subset C}.

7. APPENDIX: CHECKING, SEARCHING, DISPLAYING INFORMATION

Using large and numerous libraries developed by others is never an easy task. This
section aims at giving hints to the user facing problems like: “Why does this lemma
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not apply?” or “Is there a lemma doing what I want here?”

7.0.1 Check. The command:

Check term.

displays the type of term. When called in proof mode, the term is checked in
the local context of the current subgoal. When term has been defined with implicit
arguments (like all the constants in the SSReflect libraries), you might encounter
an error message. In that case, try again with the command:

Check @term.

where the standard Coq @ flag disables the implicit argument mechanism.

7.0.2 Display. A more robust, but more verbose alternative to the Check com-
mand is:

Print term.

This command should always succeed if term is an object available in the context.
It displays information on the declared or defined term object, including its body,
type, and implicit arguments.

When Coq displays the current state of a proof, a lot of information can be
hidden to the user such as implicit arguments or inserted coercions (this is Coq’s
explicit subtyping mechanism). Such hidden information is also invisible in the
results of the Check and Print commands.

This default mode can be disabled by the global vernacular command:

Set Printing All.

7.0.3 Search. The vernacular command Search is used to browse the corpus of
lemmas available in the loaded libraries. The SSReflect version of the command
can be used to inspect this body selectively, using names, patterns, module names
in notation-compliant way. We recall here the documentation of this command.
The syntax is:

Search [〈pattern〉] [ [-][ 〈string〉[%〈key〉] | 〈pattern〉] ]∗ [in [ [-]〈name〉 ]+].

where 〈name〉 is the name of an open module. This command returns the list of
lemmas:

—whose conclusion contains a subterm matching the optional first 〈pattern〉. A -
reverses the test, producing the list of lemmas whose conclusion does not contain
any subterm matching the pattern;

—whose name contains the given strings. A - prefix reverses the test, producing the
list of lemmas whose name does not contain the string. A string that contains
symbols or is followed by a scope 〈key〉, is interpreted as the constant whose
notation involves that string (e.g., + for addn), if this is unambiguous; otherwise
the diagnostic includes the output of the Locate standard vernacular command.

—whose statement, including assumptions and types contains a subterm matching
the next patterns. If a pattern is prefixed by -, the test is reversed;
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—contained in the given list of modules, except the ones in the given modules
prefixed by a -.

Note that:

—Patterns with holes should be surrounded by parentheses.
—Search always volunteers the expansion of the notation, avoiding the need to

execute Locate independently. Moreover, a string fragment looks for any notation
that contains fragment as a substring. If the ssrbool library is imported, the
command:

Search "~~".

answers :

"~~" is part of notation (~~ _)
In bool_scope, (~~ b) denotes negb b
negbT forall b : bool, b = false -> ~~ b
contra forall c b : bool, (c -> b) -> ~~ b -> ~~ c
introN forall (P : Prop) (b : bool), reflect P b -> ~ P -> ~~ b

—A diagnostic is issued if there are different matching notations; it is an error if
all matches are partial.

—Similarly, a diagnostic warns about multiple interpretations, and signals an error
if there is no default one.

—The command Search in M. is a way of obtaining the complete signature of the
module M.

—Strings and pattern indications can be interleaved, but the first indication has a
special status if it is a pattern, and only filters the conclusion of lemmas:
—The command :

Search (_ =1 _) "bij".

lists all the lemmas whose conclusion features a ’=1’ and whose name contains
the string bij.

—The command :

Search "bij" (_ =1 _).

lists all the lemmas whose statement, including hypotheses, features a ’=1’ and
whose name contains the string bij.

Exercise 7.0.3 Use the Search command to know the name of the constant hidden
behind the * notation. Use the Print command to see how this operation is defined.

What is the constant denoted by ==>? How is it defined? What are the lemmas
concluding with something of the form _ ==> true?

What is the name of the lemma stating the commutativity of the && operator?

An other way of guessing the name of a lemma is to infer it. Patterns might
indeed reveal useless with the properties of operators are stated under a normalized
form such as (commutative andb). The list of operator properties used throughout
SSReflect libraries can be found in the header of the ssrfun library source file.
Lemmas in the distributed libraries respect the following name policy:
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—Generalities
—Most of the time the name of a lemma can be read off its statement: a lemma

named fee_fie_foe will say something about (fee .. (fie ..(foe ..)..)
..), e.g. lemma size_cat in seq.v.

—We often use a one-letter suffix to resolve overloaded notation, e.g., addn, addb,
addr denote nat, Boolean, ring addition, respectively. This policy does not
necessarily apply to constants that should always be hidden behind a generic
notation, and handled by a more generic theory.

—Finally, a handful of theorems have a historical name, e.g., Cayley_Hamilton
or factor_theorem.

—Structures and Records
—Each structure type starts with a lower case letter, and its constructor has the

same name but with a capital first letter.
—Each instance of a structure type has a name formed with the name of the

carrier type, followed by an underscore and the one of the structure type
like in seq_sub_subType, the structure of subType defined on seq_sub (see
fintype.v). Notable exceptions to this rule are canonical constructions taking
benefits of modular name spaces, like in ssralg.v.

—Suffixes
—Lemma whose conclusion is a predicate, or an equality for a predicate: that

predicate is a suffix of the lemma name, like in addn_eq0 or rev_uniq.
—Lemmas whose conclusion is a standard property such as \char, <|, etc.: the

property should be indicated by a suffix (like _char, _normal, etc), so the
lemma name should start by a description of the argument of the property,
such as its key property, or its head constant. Thus we have quotient_normal,
not normal_quotient, etc. This convention does not apply to monotony rules,
for which we either use the name of the property with the suffix for the op-
erator (e.g., groupM), or the name of the operator with the S suffix for subset
monotony (e.g., mulgS).

—We try to use and maintain the following set of lemma suffixes:
—0 : zero, or the empty set
—1 : unit, or the singleton set (use _set1 for the latter to disambiguate)
—2 : two, doubling, doubletons
—3 etc, similarly
—A : associativity
—C : commutativity, or set complement (use Cr for trailing complement)
—D : set difference
—E : definition elimination (often conversion lemmas)
—F : Boolean false, or finite type variant (as in canF_eq)
—G : group argument
—I : set intersection
—J : group conjugation
—K : cancellation lemmas
—L : left hand side (in canLR)
—M : group multiplication
—N : Boolean negation
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—P : characteristic properties (often reflection lemmas)
—R : group commutator, or right hand side (in canLR)
—S : subset argument, or integer successor (no ambiguity)
—T : Boolean truth and Type-wide sets
—U : set union
—V : group and multiply inverse
—W : weakening
—X : group exponentiation, and set cartesian product

Exercise 7.0.4 What is the name of the lemma stating the commutativity of the
* operation? What is the name of the lemma whose statement is:

forall b1 b2 b3, b1 || b2 || b3 = b2 || b1 || b3

Guess what could be the statement of the lemma setUIl? Verify your guess using
Check.
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mane Aı̈t Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem
Proving in Higher Order Logics, TPHOLs 2008 proceedings, volume
5170 of Lecture Notes in Computer Science, pages 278–293. Springer,
2008.

[The10] The Coq Development Team. The Coq System. http://coq.inria.fr,
2010.

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism
less ad hoc. In 16’th Symposium on Principles of Programming Lan-
guages. ACM Press, 1989.

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

http://hal.inria.fr/inria-00407778/en/
http://hal.inria.fr/inria-00407778/en/
http://coq.inria.fr

	Introduction
	Instructions for the exercises
	A script language for structured proofs
	Sequents as stacks
	Control flow
	Indentation and bullets
	Terminators

	Goal selectors
	Forward chaining, backward chaining
	More SSReflect features, on an example

	Small scale reflection, first examples
	The two sides of deduction
	Interpreting assumptions
	Specializing assumptions
	Interpreting goals
	The `reflect` predicate
	Interpreting equivalences
	Proving `reflect` equivalences

	Exercises: sequences
	Exercises: Boolean equalities

	Type inference using canonical structures
	Canonical Structures
	Canonical constructions
	Predtypes: canonical structures for notations

	Finite objects in SSReflect
	Finite types
	Finite types constructions
	Cardinality, set operations
	boolean quantifiers
	Example: a depth first search algorithm

	Sigma types with decidable specifications
	Finite functions, finite sets

	Appendix: Checking, searching, displaying information
	Check
	Display
	Search



