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Computer proof assistants vary along many dimensions. Among the mature implementations, the

Coq system is distinguished by two key features. First, we have support for programming with

dependent types in the tradition of type theory, based on dependent function types and inductive
type families. Second, we have a domain-specific language for coding correct-by-construction

proof automation. Though the Coq user community has grown quite large, neither of the aspects

I highlight is widely used. In this tutorial, I aim to provide a pragmatic introduction to both,
showing how they can bring significant improvements in productivity.

1. INTRODUCTION

Today, several computer proof assistants have gone mainstream, as more people are
using them who do not specialize in formalized mathematics. Early research laid
the foundations for how systems of sufficient expressivity could be built. Thanks to
the success of that research, today it is worth turning attention to the pragmatics of
building large formal developments. Software engineers have developed techniques
that reliably reduce the costs of writing, understanding, and maintaining large pro-
grams. Similar insights in proof engineering are accumulating as a wider audience
gets involved. This tutorial aims to introduce two such ideas that I have found very
useful.

The setting is the Coq proof assistant, which, to me, is distinguished from others
by two key properties.

First, Coq is based on dependent type theory. In particular, Coq’s implemented
logic follows closely the formalism called the Calculus of Inductive Constructions.
By programming with dependent types, it is often possible to “prove theorems”
without writing anything that looks like a proof. Instead, this work is done via an
extension of the familiar ideas of type-checking, with some of the same light-weight
feel when compared to classical formal methods. Dependent types are especially
useful for encoding “boring” structural invariants of data in a way that prevents
the construction of any invalid object.

Second, Coq includes a domain-specific language Ltac for coding proof-finding
procedures that are correct by construction. Coq satisfies the de Bruijn Criterion,
which says that proofs must be checkable by a small, general-purpose, trustworthy
kernel. On top of this simple language of proof terms, it is possible to build a
tower of abstraction, where single “proof steps” correspond to high-level inference
rules or decision procedures. Each schema of steps is implemented as a program
called a tactic. There is no need to worry that a tactic bug will lead to acceptance
of a false theorem, as tactics justify their decisions in terms of the core proof
language. With Coq’s Ltac language, every primitive operation generates a proof
term automatically, and many useful combinators are provided, yielding a Turing-
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complete language specialized for proof procedures.
Most Coq users are not taking much advantage of these features today. Most

definitions of mathematical objects via programming use code that could just as
well be written in ML, and most proofs go through much detail step by step. The
former decision forces the explicit threading of invariant assertions through proofs
in an ad-hoc way, and the latter decision leads to proof scripts that are very brittle.
The style of automation I will use in this article goes beyond just making it easier
to build the first version of a proof: with sufficient foresight, it is often possible to
change a theorem statement without touching a line of proof.

Thus, this tutorial is meant for experienced Coq users and newcomers alike. The
material here comes from excerpts of a draft textbook, which can be found online
at

http://adam.chlipala.net/cpdt/

All of the examples in this article are rendered from literate Coq code, which can
be stepped through interactively in a visual Coq environment. The book Web site
includes a link to the full book source, which includes this article’s sections among
its chapters.

The code in this article is tested with Coq version 8.2pl1, though parts may work
with other versions. Coq may be downloaded from

http://coq.inria.fr/

Two main graphical environments for Coq are available: CoqIDE, a standalone
program; and Proof General, an Emacs mode. My experience is with Proof General,
so I will begin the tutorial with some brief instructions on using it. Proof General
can be downloaded from

http://proofgeneral.inf.ed.ac.uk/

Most of the tutorial is interface-independent.

There is a good base of educational material on the basics of Coq, which many
people have used with success. In this article, I will focus on the tools that wind
up consistently underused, among almost all Coq users. To clear up space for that
content, I will avoid introducing some concepts that most Coq users are already
learning without much trouble. For instance, I assume an understanding of the
Curry-Howard Isomorphism, and I do not spend much time introducing the basics of
inductive type definitions. Instead, the content here is all geared toward explaining
how to write programs that make effective use of dependent typing, along with
how to prove things about those programs. I use an unusually high level of proof
automation, but space prevents explaining the building blocks behind it. Think of
the automated proofs in this article as an advertisement for a style that is introduced
more carefully in the book that these sections are excerpted from.

The next section introduces dependently-typed programs and their proofs, via
some examples in simple compiler verification. After that, we take a step back
and spend some time with subset types and their variations, a kind of dependent
typing closer to what most programmers are used to. Next, we return to the full
power of inductive type families, working through a few examples, including verified
program optimization, red-black trees, and regular expression matching. In that
Journal of Formalized Reasoning Vol. 3, No. 2, 2010.
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style of development, we often find ourselves wanting to employ the same kinds
of rich data structures, much as lists recur in traditional functional programming.
A section considers the possibilities for implementing such structures. The final
section introduces perhaps the most arcane and least known aspect of dependently-
typed programming, reasoning about programs that manipulate equality proofs.

2. ORIENTATION

I will start off by jumping right in to a fully-worked set of examples, building cer-
tified compilers from increasingly complicated source languages to stack machines.
We will meet a few useful tactics and see how they can be used in manual proofs,
and we will also see how easily these proofs can be automated instead. This section
is meant as something of a teaser, demonstrating a relatively advanced example
that showcases Coq’s special advantages. The proofs shown here should give a
basic sense of interaction with Coq, but I do not claim to give an introduction to
the details needed to write those proofs, even elsewhere in the article, for the space
reasons mentioned above. In this section, I also use advanced dependent typing
techniques that will be introduced more systematically in later sections.

I assume that you have installed Coq and Proof General. As always, you can
step through the source file StackMachine.v for this section interactively in Proof
General. Alternatively, to get a feel for the whole lifecycle of creating a Coq de-
velopment, you can enter the pieces of source code in this section in a new .v file
in an Emacs buffer. If you do the latter, include two lines Require Import List
Tactics. and Set Implicit Arguments. at the start of the file, to match some
code hidden in this rendering of the section source, and be sure to run the Coq
binary coqtop with the command-line argument -I SRC, where SRC is the path to
a directory containing the book source. In either case, you will need to run make
in the root directory of the book source distribution before getting started. If you
have installed Proof General properly, it should start automatically when you visit
a .v buffer in Emacs.

There are some minor headaches associated with getting Proof General to pass
the proper command line arguments to the coqtop program. The best way to add
settings that will be shared by many source files is to add a custom variable setting
to your .emacs file, like this:

(custom-set-variables
...
’(coq-prog-args ’("-I" "SRC"))
...

)

The extra arguments demonstrated here are the proper choices for working with the
code for this book. The ellipses stand for other Emacs customization settings you
may already have. It can be helpful to save several alternate sets of flags in your
.emacs file, with all but one commented out within the custom-set-variables
block at any given time.

With Proof General, the portion of a buffer that Coq has processed is highlighted
in some way, like being given a blue background. You step through Coq source files
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by positioning the point at the position you want Coq to run to and pressing C-C
C-RET. This can be used both for normal step-by-step coding, by placing the point
inside some command past the end of the highlighted region; and for undoing, by
placing the point inside the highlighted region.

2.1 Arithmetic Expressions Over Natural Numbers

We will begin with that staple of compiler textbooks, arithmetic expressions over
a single type of numbers.

2.1.1 Source Language. We begin with the syntax of the source language.

Inductive binop : Set := Plus | Times.

Our first line of Coq code should be unsurprising to ML and Haskell programmers.
We define an algebraic datatype binop to stand for the binary operators of our
source language. There are just two wrinkles compared to ML and Haskell. First,
we use the keyword Inductive, in place of data, datatype, or type. This is not just
a trivial surface syntax difference; inductive types in Coq are much more expressive
than garden variety algebraic datatypes, essentially enabling us to encode all of
mathematics, though we begin humbly in this section. Second, there is the : Set
fragment, which declares that we are defining a datatype that should be thought of
as a constituent of programs. Later, we will see other options for defining datatypes
in the universe of proofs or in an infinite hierarchy of universes, encompassing both
programs and proofs, that is useful in higher-order constructions.

Inductive exp : Set :=
| Const : nat → exp
| Binop : binop → exp → exp → exp.

Now we define the type of arithmetic expressions. We write that a constant may
be built from one argument, a natural number; and a binary operation may be built
from a choice of operator and two operand expressions.

A note for readers following along in the PDF version: coqdoc, the program used
to render this article from Coq source, supports pretty-printing of tokens in LaTeX
or HTML. Where you see a right arrow character, the source contains the ASCII
text ->. Other examples of this substitution appearing in this section are a double
right arrow for => and the inverted ’A’ symbol for forall. When in doubt about
the ASCII version of a symbol, you can consult this article’s source code.

Now we are ready to say what these programs mean. We will do this by writ-
ing an interpreter that can be thought of as a trivial operational or denotational
semantics.

Definition binopDenote (b : binop) : nat → nat → nat :=
match b with
| Plus ⇒ plus
| Times ⇒ mult

end.

The meaning of a binary operator is a binary function over naturals, defined with
pattern-matching notation analogous to the case and match of ML and Haskell, and
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referring to the functions plus and mult from the Coq standard library. The keyword
Definition is Coq’s all-purpose notation for binding a term of the programming
language to a name, with some associated syntactic sugar, like the notation we see
here for defining a function. That sugar could be expanded to yield this definition:

Definition binopDenote : binop → nat → nat → nat := fun (b : binop) ⇒
match b with
| Plus ⇒ plus
| Times ⇒ mult

end.

In this example, we could also omit all of the type annotations, arriving at:

Definition binopDenote := fun b ⇒
match b with
| Plus ⇒ plus
| Times ⇒ mult

end.

Languages like Haskell and ML have a convenient principal typing property, which
gives us strong guarantees about how effective type inference will be. Unfortunately,
Coq’s type system is so expressive that any kind of “complete” type inference is im-
possible, and the task even seems to be hard heuristically in practice. Nonetheless,
Coq includes some very helpful heuristics, many of them copying the workings of
Haskell and ML type-checkers for programs that fall in simple fragments of Coq’s
language.

This is as good a time as any to mention the preponderance of different lan-
guages associated with Coq. The theoretical foundation of Coq is a formal system
called the Calculus of Inductive Constructions (CIC), which is an extension of the
older Calculus of Constructions (CoC). CIC is quite a spartan foundation, which
is helpful for proving metatheory but not so helpful for real development. Still, it
is nice to know that it has been proved that CIC enjoys properties like strong nor-
malization, meaning that every program (and, more importantly, every proof term)
terminates; and relative consistency with systems like versions of Zermelo-Fraenkel
set theory, which roughly means that you can believe that Coq proofs mean that
the corresponding propositions are “really true,” if you believe in set theory.

Coq is actually based on an extension of CIC called Gallina. The text after the
:= and before the period in the last code example is a term of Gallina. Gallina
adds many useful features that are not compiled internally to more primitive CIC
features. The important metatheorems about CIC have not been extended to the
full breadth of these features, but most Coq users do not seem to lose much sleep
over this omission.

Commands like Inductive and Definition are part of the vernacular, which
includes all sorts of useful queries and requests to the Coq system.

Finally, there is Ltac, Coq’s domain-specific language for writing proofs and
decision procedures. We will see some basic examples of Ltac later in this section,
in the form of atomic proof steps similar to what we would expect from single
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sentences of informal proofs. The language is Turing-complete, allowing for more
complex patterns of automation, a few of which we will see demonstrated in later
sections. Details of the art of Ltac programming can be found in the book that this
article is excerpted from.

We can give a simple definition of the meaning of an expression:

Fixpoint expDenote (e : exp) : nat :=
match e with
| Const n ⇒ n
| Binop b e1 e2 ⇒ (binopDenote b) (expDenote e1 ) (expDenote e2 )

end.

We declare explicitly that this is a recursive definition, using the keyword Fixpoint.
The rest should be old hat for functional programmers.

It is convenient to be able to test definitions before starting to prove things about
them. We can verify that our semantics is sensible by evaluating some sample uses.

Eval simpl in expDenote (Const 42).
= 42 : nat

Eval simpl in expDenote (Binop Plus (Const 2) (Const 2)).
= 4 : nat

Eval simpl in expDenote
(Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7)).
= 28 : nat

2.1.2 Target Language. We will compile our source programs onto a simple stack
machine, whose syntax is:

Inductive instr : Set :=
| IConst : nat → instr
| IBinop : binop → instr.

Definition prog := list instr.
Definition stack := list nat.

An instruction either pushes a constant onto the stack or pops two arguments,
applies a binary operator to them, and pushes the result onto the stack. A program
is a list of instructions, and a stack is a list of natural numbers.

We can give instructions meanings as functions from stacks to optional stacks,
where running an instruction results in None in case of a stack underflow and results
in Some s’ when the result of execution is the new stack s’. :: is the “list cons”
operator from the Coq standard library.

Definition instrDenote (i : instr) (s : stack) : option stack :=
match i with
| IConst n ⇒ Some (n :: s)
| IBinop b ⇒
match s with
| arg1 :: arg2 :: s’ ⇒ Some ((binopDenote b) arg1 arg2 :: s’ )
| ⇒ None
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end
end.

With instrDenote defined, it is easy to define a function progDenote, which iterates
application of instrDenote through a whole program.

Fixpoint progDenote (p : prog) (s : stack) {struct p} : option stack :=
match p with
| nil ⇒ Some s
| i :: p’ ⇒
match instrDenote i s with
| None ⇒ None
| Some s’ ⇒ progDenote p’ s’

end
end.

There is one interesting difference compared to our previous example of a Fixpoint.
This recursive function takes two arguments, p and s. It is critical for the sound-
ness of Coq that every program terminate, so a shallow syntactic termination check
is imposed on every recursive function definition. One of the function parameters
must be designated to decrease monotonically across recursive calls. That is, every
recursive call must use a version of that argument that has been pulled out of the
current argument by some number of match expressions. expDenote has only one
argument, so we did not need to specify which of its arguments decreases. For prog-
Denote, we resolve the ambiguity by writing {struct p} to indicate that argument
p decreases structurally.

Recent versions of Coq will also infer a termination argument, so that we may
write simply:

Fixpoint progDenote (p : prog) (s : stack) : option stack :=
match p with
| nil ⇒ Some s
| i :: p’ ⇒
match instrDenote i s with
| None ⇒ None
| Some s’ ⇒ progDenote p’ s’

end
end.

2.1.3 Translation. Our compiler itself is now unsurprising. ++ is the list con-
catenation operator from the Coq standard library.

Fixpoint compile (e : exp) : prog :=
match e with
| Const n ⇒ IConst n :: nil
| Binop b e1 e2 ⇒ compile e2 ++ compile e1 ++ IBinop b :: nil

end.

Before we set about proving that this compiler is correct, we can try a few test
runs, using our sample programs from earlier.
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Eval simpl in compile (Const 42).
= IConst 42 :: nil : prog

Eval simpl in compile (Binop Plus (Const 2) (Const 2)).
= IConst 2 :: IConst 2 :: IBinop Plus :: nil : prog

Eval simpl in compile
(Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7)).
= IConst 7 :: IConst 2 :: IConst 2 :: IBinop Plus :: IBinop Times :: nil : prog

We can also run our compiled programs and check that they give the right re-
sults.

Eval simpl in progDenote (compile (Const 42)) nil.
= Some (42 :: nil) : option stack

Eval simpl in progDenote (compile (Binop Plus (Const 2) (Const 2))) nil.
= Some (4 :: nil) : option stack

Eval simpl in progDenote (compile
(Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7))) nil.
= Some (28 :: nil) : option stack

2.1.4 Translation Correctness. We are ready to prove that our compiler is im-
plemented correctly. We can use a new vernacular command Theorem to start a
correctness proof, in terms of the semantics we defined earlier:

Theorem compile correct : ∀ e,
progDenote (compile e) nil = Some (expDenote e :: nil).

Though a pencil-and-paper proof might clock out at this point, writing “by a
routine induction on e,” it turns out not to make sense to attack this proof directly.
We need to use the standard trick of strengthening the induction hypothesis. We
do that by proving an auxiliary lemma:

Lemma compile correct’ : ∀ e p s,
progDenote (compile e ++ p) s = progDenote p (expDenote e :: s).

After the period in the Lemma command, we are in the interactive proof-editing
mode. We find ourselves staring at this ominous screen of text:

1 subgoal

============================
∀ (e : exp) (p : list instr) (s : stack),

progDenote (compile e ++ p) s = progDenote p (expDenote e :: s)

Coq seems to be restating the lemma for us. What we are seeing is a limited case
of a more general protocol for describing where we are in a proof. We are told that
we have a single subgoal. In general, during a proof, we can have many pending
subgoals, each of which is a logical proposition to prove. Subgoals can be proved in
any order, but it usually works best to prove them in the order that Coq chooses.

Next in the output, we see our single subgoal described in full detail. There is a
double-dashed line, above which would be our free variables and hypotheses, if we
Journal of Formalized Reasoning Vol. 3, No. 2, 2010.
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had any. Below the line is the conclusion, which, in general, is to be proved from
the hypotheses.

We manipulate the proof state by running commands called tactics. Let us start
out by running one of the most important tactics:

induction e.

We declare that this proof will proceed by induction on the structure of the
expression e. This swaps out our initial subgoal for two new subgoals, one for each
case of the inductive proof:

2 subgoals

n : nat
============================
∀ (s : stack) (p : list instr),

progDenote (compile (Const n) ++ p) s =
progDenote p (expDenote (Const n) :: s)

subgoal 2 is:
∀ (s : stack) (p : list instr),

progDenote (compile (Binop b e1 e2 ) ++ p) s =
progDenote p (expDenote (Binop b e1 e2 ) :: s)

The first and current subgoal is displayed with the double-dashed line below
free variables and hypotheses, while later subgoals are only summarized with their
conclusions. We see an example of a free variable in the first subgoal; n is a free
variable of type nat. The conclusion is the original theorem statement where e has
been replaced by Const n. In a similar manner, the second case has e replaced
by a generalized invocation of the Binop expression constructor. We can see that
proving both cases corresponds to a standard proof by structural induction.

We begin the first case with another very common tactic.

intros.

The current subgoal changes to:

n : nat
s : stack
p : list instr
============================
progDenote (compile (Const n) ++ p) s =
progDenote p (expDenote (Const n) :: s)

We see that intros changes ∀-bound variables at the beginning of a goal into
free variables.

To progress further, we need to use the definitions of some of the functions
appearing in the goal. The unfold tactic replaces an identifier with its definition.

unfold compile.
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n : nat
s : stack
p : list instr
============================
progDenote ((IConst n :: nil) ++ p) s =
progDenote p (expDenote (Const n) :: s)

unfold expDenote.

n : nat
s : stack
p : list instr
============================
progDenote ((IConst n :: nil) ++ p) s = progDenote p (n :: s)

We only need to unfold the first occurrence of progDenote to prove the goal:

unfold progDenote at 1.

n : nat
s : stack
p : list instr
============================
(fix progDenote (p0 : prog) (s0 : stack) {struct p0} :

option stack :=
match p0 with
| nil ⇒ Some s0
| i :: p’ ⇒

match instrDenote i s0 with
| Some s’ ⇒ progDenote p’ s’
| None ⇒ None (A:=stack)
end

end) ((IConst n :: nil) ++ p) s =
progDenote p (n :: s)

This last unfold has left us with an anonymous fixpoint version of progDenote,
which will generally happen when unfolding recursive definitions. Fortunately, in
this case, we can eliminate such complications right away, since the structure of
the argument (IConst n :: nil) ++ p is known, allowing us to simplify the internal
pattern match with the simpl tactic:

simpl.

n : nat
s : stack
p : list instr
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============================
(fix progDenote (p0 : prog) (s0 : stack) {struct p0} :
option stack :=
match p0 with
| nil ⇒ Some s0
| i :: p’ ⇒

match instrDenote i s0 with
| Some s’ ⇒ progDenote p’ s’
| None ⇒ None (A:=stack)
end

end) p (n :: s) = progDenote p (n :: s)

Now we can unexpand the definition of progDenote:

fold progDenote.

n : nat
s : stack
p : list instr
============================
progDenote p (n :: s) = progDenote p (n :: s)

It looks like we are at the end of this case, since we have a trivial equality. Indeed,
a single tactic finishes us off:

reflexivity.

On to the second inductive case:

b : binop
e1 : exp
IHe1 : ∀ (s : stack) (p : list instr),

progDenote (compile e1 ++ p) s = progDenote p (expDenote e1 :: s)
e2 : exp
IHe2 : ∀ (s : stack) (p : list instr),

progDenote (compile e2 ++ p) s = progDenote p (expDenote e2 :: s)
============================
∀ (s : stack) (p : list instr),
progDenote (compile (Binop b e1 e2 ) ++ p) s =
progDenote p (expDenote (Binop b e1 e2 ) :: s)

We see our first example of hypotheses above the double-dashed line. They are
the inductive hypotheses IHe1 and IHe2 corresponding to the subterms e1 and e2,
respectively.

We start out the same way as before, introducing new free variables and unfolding
and folding the appropriate definitions. The seemingly frivolous unfold/fold pairs
are actually accomplishing useful work, because unfold will sometimes perform
easy simplifications.
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intros.
unfold compile.
fold compile.
unfold expDenote.
fold expDenote.

Now we arrive at a point where the tactics we have seen so far are insufficient.
No further definition unfoldings get us anywhere, so we will need to try something
different.

b : binop
e1 : exp
IHe1 : ∀ (s : stack) (p : list instr),

progDenote (compile e1 ++ p) s = progDenote p (expDenote e1 :: s)
e2 : exp
IHe2 : ∀ (s : stack) (p : list instr),

progDenote (compile e2 ++ p) s = progDenote p (expDenote e2 :: s)
s : stack
p : list instr
============================

progDenote ((compile e2 ++ compile e1 ++ IBinop b :: nil) ++ p) s =
progDenote p (binopDenote b (expDenote e1 ) (expDenote e2 ) :: s)

What we need is the associative law of list concatenation, available as a theorem
app ass in the standard library.

Check app ass.

app ass
: ∀ (A : Type) (l m n : list A), (l ++ m) ++ n = l ++ m ++ n

We use it to perform a rewrite:

rewrite app ass.

changing the conclusion to:

progDenote (compile e2 ++ (compile e1 ++ IBinop b :: nil) ++ p) s =
progDenote p (binopDenote b (expDenote e1 ) (expDenote e2 ) :: s)

Now we can notice that the lefthand side of the equality matches the lefthand
side of the second inductive hypothesis, so we can rewrite with that hypothesis,
too:

rewrite IHe2.

progDenote ((compile e1 ++ IBinop b :: nil) ++ p) (expDenote e2 :: s) =
progDenote p (binopDenote b (expDenote e1 ) (expDenote e2 ) :: s)

The same process lets us apply the remaining hypothesis.
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rewrite app ass.
rewrite IHe1.

progDenote ((IBinop b :: nil) ++ p) (expDenote e1 :: expDenote e2 :: s) =
progDenote p (binopDenote b (expDenote e1 ) (expDenote e2 ) :: s)

Now we can apply a similar sequence of tactics to that that ended the proof of
the first case.

unfold progDenote at 1.
simpl.
fold progDenote.
reflexivity.

And the proof is completed, as indicated by the message:

Proof completed.

And there lies our first proof. Already, even for simple theorems like this, the
final proof script is unstructured and not very enlightening to readers. If we extend
this approach to more serious theorems, we arrive at the unreadable proof scripts
that are the favorite complaints of opponents of tactic-based proving. Fortunately,
Coq has rich support for scripted automation, and we can take advantage of such
a scripted tactic (defined elsewhere) to make short work of this lemma. We abort
the old proof attempt and start again.

Abort.

Lemma compile correct’ : ∀ e s p, progDenote (compile e ++ p) s =
progDenote p (expDenote e :: s).
induction e; crush.

Qed.

We need only to state the basic inductive proof scheme and call a tactic that
automates the tedious reasoning in between. In contrast to the period tactic ter-
minator from our last proof, the semicolon tactic separator supports structured,
compositional proofs. The tactic t1 ; t2 has the effect of running t1 and then run-
ning t2 on each remaining subgoal. The semicolon is one of the most fundamental
building blocks of effective proof automation. The period terminator is very useful
for exploratory proving, where you need to see intermediate proof states, but final
proofs of any serious complexity should have just one period, terminating a single
compound tactic that probably uses semicolons.

The crush tactic comes from the library associated with this article and is not
part of the Coq standard library. The book’s library contains a number of other
tactics that are especially helpful in highly-automated proofs.

The proof of our main theorem is now easy. We prove it with four period-
terminated tactics, though separating them with semicolons would work as well;
the version here is easier to step through.

Theorem compile correct : ∀ e,
progDenote (compile e) nil = Some (expDenote e :: nil).
intros.
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e : exp
============================

progDenote (compile e) nil = Some (expDenote e :: nil)

At this point, we want to massage the lefthand side to match the statement of
compile correct’. A theorem from the standard library is useful:

Check app nil end.

app nil end
: ∀ (A : Type) (l : list A), l = l ++ nil

rewrite (app nil end (compile e)).

This time, we explicitly specify the value of the variable l from the theorem
statement, since multiple expressions of list type appear in the conclusion. rewrite
might choose the wrong place to rewrite if we did not specify which we want.

e : exp
============================

progDenote (compile e ++ nil) nil = Some (expDenote e :: nil)

Now we can apply the lemma.

rewrite compile correct’.

e : exp
============================

progDenote nil (expDenote e :: nil) = Some (expDenote e :: nil)

We are almost done. The lefthand and righthand sides can be seen to match
by simple symbolic evaluation. That means we are in luck, because Coq identifies
any pair of terms as equal whenever they normalize to the same result by symbolic
evaluation. By the definition of progDenote, that is the case here, but we do not
need to worry about such details. A simple invocation of reflexivity does the
normalization and checks that the two results are syntactically equal.

reflexivity.
Qed.

2.2 Typed Expressions

In this section, we will build on the initial example by adding additional expression
forms that depend on static typing of terms for safety. We will use Coq’s support
for dependent types, where the type of a term may contain other executable terms.
A canonical example is a type of arrays indexed by array sizes, where a function
might take arguments n and a, assigning to a the type array(int,n) to express
that n is the size of a. In Coq, dependent types arise from dependent function types
and inductive type families, which, in this article, we will introduce implicitly by
example.

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.



An Introduction to Programming and Proving with Dependent Types in Coq · 15

2.2.1 Source Language. We define a trivial language of types to classify our
expressions:

Inductive type : Set := Nat | Bool.

Now we define an expanded set of binary operators.

Inductive tbinop : type → type → type → Set :=
| TPlus : tbinop Nat Nat Nat
| TTimes : tbinop Nat Nat Nat
| TEq : ∀ t, tbinop t t Bool
| TLt : tbinop Nat Nat Bool.

The definition of tbinop is different from binop in an important way. Where we
declared that binop has type Set, here we declare that tbinop has type type →
type→ type→ Set. We define tbinop as an indexed type family. Indexed inductive
types are at the heart of Coq’s expressive power; almost everything else of interest
is defined in terms of them.

ML and Haskell have indexed algebraic datatypes. For instance, their list types
are indexed by the type of data that the list carries. However, compared to Coq,
ML and Haskell 98 place two important restrictions on datatype definitions.

First, the indices of the range of each data constructor must be type variables
bound at the top level of the datatype definition. There is no way to do what
we did here, where we, for instance, say that TPlus is a constructor building a
tbinop whose indices are all fixed at Nat. Generalized algebraic datatypes (GADTs)
are a popular feature in GHC Haskell and other languages that removes this first
restriction.

The second restriction is not lifted by GADTs. In ML and Haskell, indices of
types must be types and may not be expressions. In Coq, types may be indexed by
arbitrary Gallina terms. Type indices can live in the same universe as programs,
and we can compute with them just like regular programs. Haskell supports a
hobbled form of computation in type indices based on multi-parameter type classes,
and recent extensions like type functions bring Haskell programming even closer to
“real” functional programming with types, but, without dependent typing, there
must always be a gap between how one programs with types and how one programs
normally.

We can define a similar type family for typed expressions.

Inductive texp : type → Set :=
| TNConst : nat → texp Nat
| TBConst : bool → texp Bool
| TBinop : ∀ arg1 arg2 res,

tbinop arg1 arg2 res → texp arg1 → texp arg2 → texp res.

Thanks to our use of dependent types, every well-typed texp represents a well-
typed source expression, by construction. This turns out to be very convenient
for many things we might want to do with expressions. For instance, it is easy
to adapt our interpreter approach to defining semantics. We start by defining a
function mapping the types of our languages into Coq types:

Definition typeDenote (t : type) : Set :=
match t with
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| Nat ⇒ nat
| Bool ⇒ bool

end.

It can take a few moments to come to terms with the fact that Set, the type of
types of programs, is itself a first-class type, and that we can write functions that
return Sets. Past that wrinkle, the definition of typeDenote is trivial, relying on
the nat and bool types from the Coq standard library.

We need to define a few auxiliary functions, implementing our boolean binary
operators that do not appear with the right types in the standard library. They are
entirely standard and ML-like, with the one caveat being that the Coq nat type
uses a unary representation, where O is zero and S n is the successor of n.

Definition eq bool (b1 b2 : bool) : bool :=
match b1, b2 with
| true, true ⇒ true
| false, false ⇒ true
| , ⇒ false

end.

Fixpoint eq nat (n1 n2 : nat) : bool :=
match n1, n2 with
| O, O ⇒ true
| S n1’, S n2’ ⇒ eq nat n1’ n2’
| , ⇒ false

end.

Fixpoint lt (n1 n2 : nat) : bool :=
match n1, n2 with
| O, S ⇒ true
| S n1’, S n2’ ⇒ lt n1’ n2’
| , ⇒ false

end.

Now we can interpret binary operators:

Definition tbinopDenote arg1 arg2 res (b : tbinop arg1 arg2 res)
: typeDenote arg1 → typeDenote arg2 → typeDenote res :=
match b in (tbinop arg1 arg2 res)
return (typeDenote arg1 → typeDenote arg2 → typeDenote res) with
| TPlus ⇒ plus
| TTimes ⇒ mult
| TEq Nat ⇒ eq nat
| TEq Bool ⇒ eq bool
| TLt ⇒ lt

end.

This function has just a few differences from the denotation functions we saw
earlier. First, tbinop is an indexed type, so its indices become additional arguments
to tbinopDenote. Second, we need to perform a genuine dependent pattern match
to come up with a definition of this function that type-checks. In each branch of
the match, we need to use branch-specific information about the indices to tbinop.
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General type inference that takes such information into account is undecidable, so
it is often necessary to write annotations, like we see above on the line with match.

The in annotation restates the type of the term being case-analyzed. Though we
use the same names for the indices as we use in the type of the original argument
binder, these are actually fresh variables, and they are binding occurrences. Their
scope is the return clause. That is, arg1, arg2, and arg3 are new bound variables
bound only within the return clause typeDenote arg1 → typeDenote arg2 → type-
Denote res. By being explicit about the functional relationship between the type
indices and the match result, we regain decidable type inference.

In fact, recent Coq versions use some heuristics that can save us the trouble of
writing match annotations, and those heuristics get the job done in this case. We
can get away with writing just:

Definition tbinopDenote arg1 arg2 res (b : tbinop arg1 arg2 res)
: typeDenote arg1 → typeDenote arg2 → typeDenote res :=
match b with
| TPlus ⇒ plus
| TTimes ⇒ mult
| TEq Nat ⇒ eq nat
| TEq Bool ⇒ eq bool
| TLt ⇒ lt

end.

The same tricks suffice to define an expression denotation function in an unsur-
prising way:

Fixpoint texpDenote t (e : texp t) : typeDenote t :=
match e with
| TNConst n ⇒ n
| TBConst b ⇒ b
| TBinop b e1 e2 ⇒ (tbinopDenote b) (texpDenote e1 ) (texpDenote e2 )

end.

We can evaluate a few example programs to convince ourselves that this semantics
is correct.

Eval simpl in texpDenote (TNConst 42).
= 42 : typeDenote Nat

Eval simpl in texpDenote (TBConst true).
= true : typeDenote Bool

Eval simpl in texpDenote
(TBinop TTimes (TBinop TPlus (TNConst 2) (TNConst 2)) (TNConst 7)).
= 28 : typeDenote Nat

Eval simpl in texpDenote
(TBinop (TEq Nat) (TBinop TPlus (TNConst 2) (TNConst 2)) (TNConst 7)).
= false : typeDenote Bool

Eval simpl in texpDenote
(TBinop TLt (TBinop TPlus (TNConst 2) (TNConst 2)) (TNConst 7)).
= true : typeDenote Bool
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2.2.2 Target Language. Now we want to define a suitable stack machine target
for compilation. In the example of the untyped language, stack machine programs
could encounter stack underflows and “get stuck.” This was unfortunate, since we
had to deal with this complication even though we proved that our compiler never
produced underflowing programs. We could have used dependent types to force all
stack machine programs to be underflow-free.

For our new languages, besides underflow, we also have the problem of stack slots
with naturals instead of bools or vice versa. This time, we will use indexed typed
families to avoid the need to reason about potential failures.

We start by defining stack types, which classify sets of possible stacks.

Definition tstack := list type.

Any stack classified by a tstack must have exactly as many elements, and each
stack element must have the type found in the same position of the stack type.

We can define instructions in terms of stack types, where every instruction’s type
tells us what initial stack type it expects and what final stack type it will produce.

Inductive tinstr : tstack → tstack → Set :=
| TINConst : ∀ s, nat → tinstr s (Nat :: s)
| TIBConst : ∀ s, bool → tinstr s (Bool :: s)
| TIBinop : ∀ arg1 arg2 res s,

tbinop arg1 arg2 res
→ tinstr (arg1 :: arg2 :: s) (res :: s).

Stack machine programs must be a similar inductive family, since, if we again
used the list type family, we would not be able to guarantee that intermediate stack
types match within a program.

Inductive tprog : tstack → tstack → Set :=
| TNil : ∀ s, tprog s s
| TCons : ∀ s1 s2 s3,

tinstr s1 s2
→ tprog s2 s3
→ tprog s1 s3.

Now, to define the semantics of our new target language, we need a representation
for stacks at runtime. We will again take advantage of type information to define
types of value stacks that, by construction, contain the right number and types of
elements.

Fixpoint vstack (ts : tstack) : Set :=
match ts with
| nil ⇒ unit
| t :: ts’ ⇒ typeDenote t × vstack ts’

end%type.

This is another Set-valued function. This time it is recursive, which is perfectly
valid, since Set is not treated specially in determining which functions may be
written. We say that the value stack of an empty stack type is any value of type
unit, which has just a single value, tt. A nonempty stack type leads to a value stack
that is a pair, whose first element has the proper type and whose second element
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follows the representation for the remainder of the stack type. We write %type so
that Coq knows to interpret × as Cartesian product rather than multiplication.

This idea of programming with types can take a while to internalize, but it
enables a very simple definition of instruction denotation. Our definition is like
what you might expect from a Lisp-like version of ML that ignored type information.
Nonetheless, the fact that tinstrDenote passes the type-checker guarantees that our
stack machine programs can never go wrong.
Definition tinstrDenote ts ts’ (i : tinstr ts ts’ ) : vstack ts → vstack ts’ :=
match i with
| TINConst n ⇒ fun s ⇒ (n, s)
| TIBConst b ⇒ fun s ⇒ (b, s)
| TIBinop b ⇒ fun s ⇒
match s with

(arg1, (arg2, s’ )) ⇒ ((tbinopDenote b) arg1 arg2, s’ )
end

end.
Why do we choose to use an anonymous function to bind the initial stack in every

case of the match? Consider this well-intentioned but invalid alternative version:

Definition tinstrDenote ts ts’ (i : tinstr ts ts’ ) (s : vstack ts) : vstack ts’ :=
match i with
| TINConst n ⇒ (n, s)
| TIBConst b ⇒ (b, s)
| TIBinop b ⇒
match s with

(arg1, (arg2, s’ )) ⇒ ((tbinopDenote b) arg1 arg2, s’ )
end

end.

The Coq type-checker complains that:

The term "(n, s)" has type "(nat * vstack ts)%type"
while it is expected to have type "vstack ?119".

The text ?119 stands for a unification variable. We can try to help Coq figure
out the value of this variable with an explicit annotation on our match expression.

Definition tinstrDenote ts ts’ (i : tinstr ts ts’ ) (s : vstack ts) : vstack ts’ :=
match i in tinstr ts ts’ return vstack ts’ with
| TINConst n ⇒ (n, s)
| TIBConst b ⇒ (b, s)
| TIBinop b ⇒
match s with

(arg1, (arg2, s’ )) ⇒ ((tbinopDenote b) arg1 arg2, s’ )
end

end.

Now the error message changes.
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The term "(n, s)" has type "(nat * vstack ts)%type"
while it is expected to have type "vstack (Nat :: t)".

Recall from our earlier discussion of match annotations that we write the an-
notations to express to the type-checker the relationship between the type indices
of the case object and the result type of the match. Coq chooses to assign to the
wildcard after TINConst the name t , and the type error is telling us that the type
checker cannot prove that t is the same as ts. By moving s out of the match, we
lose the ability to express, with in and return clauses, the relationship between
the shared index ts of s and i .

There are reasonably general ways of getting around this problem without push-
ing binders inside matches. However, the alternatives are significantly more in-
volved, and the technique we use here is almost certainly the best choice, whenever
it applies.

We finish the semantics with a straightforward definition of program denotation.

Fixpoint tprogDenote ts ts’ (p : tprog ts ts’ ) : vstack ts → vstack ts’ :=
match p with
| TNil ⇒ fun s ⇒ s
| TCons i p’ ⇒ fun s ⇒ tprogDenote p’ (tinstrDenote i s)

end.

2.2.3 Translation. To define our compilation, it is useful to have an auxiliary
function for concatenating two stack machine programs.

Fixpoint tconcat ts ts’ ts” (p : tprog ts ts’ ) : tprog ts’ ts” → tprog ts ts” :=
match p with
| TNil ⇒ fun p’ ⇒ p’
| TCons i p1 ⇒ fun p’ ⇒ TCons i (tconcat p1 p’ )

end.

With that function in place, the compilation is defined very similarly to how it
was before, modulo the use of dependent typing.

Fixpoint tcompile t (e : texp t) (ts : tstack) : tprog ts (t :: ts) :=
match e with
| TNConst n ⇒ TCons (TINConst n) (TNil )
| TBConst b ⇒ TCons (TIBConst b) (TNil )
| TBinop b e1 e2 ⇒ tconcat (tcompile e2 )

(tconcat (tcompile e1 ) (TCons (TIBinop b) (TNil )))
end.

One interesting feature of the definition is the underscores appearing to the right
of ⇒ arrows. Haskell and ML programmers are quite familiar with compilers that
infer type parameters to polymorphic values. In Coq, it is possible to go even
further and ask the system to infer arbitrary terms, by writing underscores in place
of specific values. You may have noticed that we have been calling functions without
specifying all of their arguments. For instance, the recursive calls here to tcompile
omit the t argument. Coq’s implicit argument mechanism automatically inserts
underscores for arguments that it will probably be able to infer. Inference of such
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values is far from complete, though; generally, it only works in cases similar to those
encountered with polymorphic type instantiation in Haskell and ML.

The underscores here are being filled in with stack types. That is, the Coq
type inferencer is, in a sense, inferring something about the flow of control in the
translated programs. We can take a look at exactly which values are filled in:

Print tcompile.

tcompile =
fix tcompile (t : type) (e : texp t) (ts : tstack) {struct e} :

tprog ts (t :: ts) :=
match e in (texp t0 ) return (tprog ts (t0 :: ts)) with
| TNConst n ⇒ TCons (TINConst ts n) (TNil (Nat :: ts))
| TBConst b ⇒ TCons (TIBConst ts b) (TNil (Bool :: ts))
| TBinop arg1 arg2 res b e1 e2 ⇒

tconcat (tcompile arg2 e2 ts)
(tconcat (tcompile arg1 e1 (arg2 :: ts))

(TCons (TIBinop ts b) (TNil (res :: ts))))
end

: ∀ t : type, texp t → ∀ ts : tstack, tprog ts (t :: ts)

We can check that the compiler generates programs that behave appropriately
on our sample programs from above:

Eval simpl in tprogDenote (tcompile (TNConst 42) nil) tt.
= (42, tt) : vstack (Nat :: nil)

Eval simpl in tprogDenote (tcompile (TBConst true) nil) tt.
= (true, tt) : vstack (Bool :: nil)

Eval simpl in tprogDenote (tcompile (TBinop TTimes
(TBinop TPlus (TNConst 2) (TNConst 2)) (TNConst 7)) nil) tt.
= (28, tt) : vstack (Nat :: nil)

Eval simpl in tprogDenote (tcompile (TBinop (TEq Nat)
(TBinop TPlus (TNConst 2) (TNConst 2)) (TNConst 7)) nil) tt.
= (false, tt) : vstack (Bool :: nil)

Eval simpl in tprogDenote (tcompile (TBinop TLt
(TBinop TPlus (TNConst 2) (TNConst 2)) (TNConst 7)) nil) tt.
= (true, tt) : vstack (Bool :: nil)

2.2.4 Translation Correctness. We can state a correctness theorem similar to
the last one.

Theorem tcompile correct : ∀ t (e : texp t),
tprogDenote (tcompile e nil) tt = (texpDenote e, tt).

Again, we need to strengthen the theorem statement so that the induction will
go through. This time, I will develop an alternative approach to this kind of proof,
stating the key lemma as:

Lemma tcompile correct’ : ∀ t (e : texp t) ts (s : vstack ts),
tprogDenote (tcompile e ts) s = (texpDenote e, s).
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While lemma compile correct’ quantified over a program that is the “continua-
tion” for the expression we are considering, here we avoid drawing in any extra
syntactic elements. In addition to the source expression and its type, we also
quantify over an initial stack type and a stack compatible with it. Running the
compilation of the program starting from that stack, we should arrive at a stack
that differs only in having the program’s denotation pushed onto it.

Let us try to prove this theorem in the same way that we settled on in the last
section.

induction e; crush.

We are left with this unproved conclusion:

tprogDenote
(tconcat (tcompile e2 ts)

(tconcat (tcompile e1 (arg2 :: ts))
(TCons (TIBinop ts t) (TNil (res :: ts))))) s =

(tbinopDenote t (texpDenote e1 ) (texpDenote e2 ), s)

We need an analogue to the app ass theorem that we used to rewrite the goal in
the last section. We can abort this proof and prove such a lemma about tconcat.

Abort.

Lemma tconcat correct : ∀ ts ts’ ts” (p : tprog ts ts’ ) (p’ : tprog ts’ ts”)
(s : vstack ts),
tprogDenote (tconcat p p’ ) s
= tprogDenote p’ (tprogDenote p s).
induction p; crush.

Qed.

This one goes through completely automatically.
Some code behind the scenes registers app ass for use by crush. We must register

tconcat correct similarly to get the same effect:

Hint Rewrite tconcat correct : cpdt.

We ask that the lemma be used for left-to-right rewriting, and we ask for the
hint to be added to the hint database called cpdt, which is the database used by
crush. Now we are ready to return to tcompile correct’, proving it automatically
this time.

Lemma tcompile correct’ : ∀ t (e : texp t) ts (s : vstack ts),
tprogDenote (tcompile e ts) s = (texpDenote e, s).
induction e; crush.

Qed.

We can register this main lemma as another hint, allowing us to prove the final
theorem trivially.

Hint Rewrite tcompile correct’ : cpdt.

Theorem tcompile correct : ∀ t (e : texp t),
tprogDenote (tcompile e nil) tt = (texpDenote e, tt).
crush.
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Qed.

3. SUBSET TYPES AND VARIATIONS

Coq is often used for what we might call “classical program verification.” We write
programs, write their specifications, and then prove that the programs satisfy their
specifications. In that setting, the programs that people write in Coq are normal
functional programs that we could just as well have written in Haskell or ML. In
this section, we discuss one of the simplest approaches to mixing programming and
proving.

3.1 Introducing Subset Types

Let us consider several ways of implementing the natural number predecessor func-
tion. We start by displaying the definition from the standard library:

Print pred.
pred = fun n : nat ⇒ match n with

| 0 ⇒ 0
| S u ⇒ u
end

: nat → nat

We can use a new command, Extraction, to produce an OCaml version of this
function.

Extraction pred.

(** val pred : nat -> nat **)

let pred = function
| O -> O
| S u -> u

Returning 0 as the predecessor of 0 can come across as somewhat of a hack. In
some situations, we might like to be sure that we never try to take the predecessor
of 0. We can enforce this by giving pred a stronger, dependent type.

Lemma zgtz : 0 > 0 → False.
crush.

Qed.

Definition pred strong1 (n : nat) : n > 0 → nat :=
match n with
| O ⇒ fun pf : 0 > 0 ⇒ match zgtz pf with end
| S n’ ⇒ fun ⇒ n’

end.

We expand the type of pred to include a proof that its argument n is greater
than 0. When n is 0, we use the proof to derive a contradiction, which we can use
to build a value of any type via a vacuous pattern match. When n is a successor,
we have no need for the proof and just return the answer. The proof argument
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can be said to have a dependent type, because its type depends on the value of the
argument n.

Coq’s Eval command can execute particular invocations of pred strong1 just as
easily as it can execute more traditional functional programs. Note that Coq has
decided that argument n of pred strong1 can be made implicit, since it can be
deduced from the type of the second argument, so we need not write n in function
calls.
Theorem two gt0 : 2 > 0.

crush.
Qed.
Eval compute in pred strong1 two gt0.

= 1
: nat

One aspect in particular of the definition of pred strong1 may be surprising. We
took advantage of Definition’s syntactic sugar for defining function arguments in
the case of n, but we bound the proofs later with explicit fun expressions. Let
us see what happens if we write this function in the way that at first seems most
natural.

Definition pred strong1’ (n : nat) (pf : n > 0) : nat :=
match n with
| O ⇒ match zgtz pf with end
| S n’ ⇒ n’

end.
Error: In environment
n : nat
pf : n > 0
The term "pf" has type "n > 0" while it is expected to have type
"0 > 0"

The term zgtz pf fails to type-check. Somehow the type checker has failed to
take into account information that follows from which match branch that term
appears in. The problem is that, by default, match does not let us use such implied
information. To get refined typing, we must always rely on match annotations,
either written explicitly or inferred.

In this case, we must use a return annotation to declare the relationship between
the value of the match discriminee and the type of the result. There is no annotation
that lets us declare a relationship between the discriminee and the type of a variable
that is already in scope; hence, we delay the binding of pf, so that we can use the
return annotation to express the needed relationship.

We are lucky that Coq’s heuristics infer the return clause (specifically, return
n > 0 → nat) for us in this case. In general, however, the inference problem is
undecidable. The known undecidable problem of higher-order unification reduces
to the match type inference problem. Over time, Coq is enhanced with more and
more heuristics to get around this problem, but there must always exist matches
whose types Coq cannot infer without annotations.
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Let us now take a look at the OCaml code Coq generates for pred strong1.

Extraction pred strong1.

(** val pred_strong1 : nat -> nat **)

let pred_strong1 = function
| O -> assert false (* absurd case *)
| S n’ -> n’

The proof argument has disappeared! We get exactly the OCaml code we would
have written manually. This is our first demonstration of the main technically
interesting feature of Coq program extraction: proofs are erased automatically. The
terms nat and 1 < 2 are both types; the former is inhabited by natural numbers,
while the latter is inhabited by proofs of the fact 1 < 2. In Coq, every type itself
has a type, and, from the perspective of extraction, the crucial difference between
nat and 1 < 2 is in their types.

Check nat.
nat : Set

Check 1 < 2.
1 < 2 : Prop

Extraction will erase exactly those values whose types have type Prop.
We can reimplement our dependently-typed pred based on subset types, defined

in the standard library with the type family sig. This type family uses Coq’s mech-
anism for inductive type definitions, which extend the familiar algebraic datatype
definitions from Haskell and ML. This definition has two parameters, A and P ,
which are like the single type parameter of a polymorphic list type. The sig type
has one constructor, exist, and we give the type of exist in full, rather than just
giving the types of its arguments, as we do with algebraic datatypes. The more ex-
plicit form is necessary because, in Coq, the return type of a constructor is allowed
to depend on the values of its arguments.

Print sig.
Inductive sig (A : Type) (P : A → Prop) : Type :=

exist : ∀ x : A, P x → sig P
For sig : Argument A is implicit
For exist: Argument A is implicit

sig is a Curry-Howard twin of existential quantification in logic, except that sig
is in Type, while ex (the type family for ∃) is in Prop. That means that sig values
can survive extraction, while ex proofs will always be erased. The actual details of
extraction of sigs are more subtle, as we will see shortly.

We rewrite pred strong1, using some syntactic sugar for subset types.

Locate ”{ : | }”.
Notation Scope
”{ x : A | P }” := sig (fun x : A ⇒ P)
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: type scope
(default interpretation)

Definition pred strong2 (s : {n : nat | n > 0}) : nat :=
match s with
| exist O pf ⇒ match zgtz pf with end
| exist (S n’ ) ⇒ n’

end.

To build a value of a subset type, we use the exist constructor, and the details of
how to do that follow from the output of our earlier Print sig command.

Eval compute in pred strong2 (exist 2 two gt0).
= 1
: nat

Extraction pred strong2.

(** val pred_strong2 : nat -> nat **)

let pred_strong2 = function
| O -> assert false (* absurd case *)
| S n’ -> n’

We arrive at the same OCaml code as was extracted from pred strong1, which
may seem surprising at first. The reason is that a value of sig is a pair of two
pieces, a value and a proof about it. Extraction erases the proof, which reduces the
constructor exist of sig to taking just a single argument. An optimization eliminates
uses of datatypes with single constructors taking single arguments, and we arrive
back where we started.

We can continue on in the process of refining pred’s type. Let us change its result
type to capture that the output is really the predecessor of the input.

Definition pred strong3 (s : {n : nat | n > 0})
: {m : nat | proj1 sig s = S m} :=
match s return {m : nat | proj1 sig s = S m} with
| exist 0 pf ⇒ match zgtz pf with end
| exist (S n’ ) pf ⇒ exist n’ (refl equal )

end.

Eval compute in pred strong3 (exist 2 two gt0).
= exist (fun m : nat ⇒ 2 = S m) 1 (refl equal 2)
: {m : nat | proj1 sig (exist (lt 0) 2 two gt0) = S m}

The function proj1 sig extracts the base value from a subset type. Besides the
use of that function, the only other new thing is the use of the exist constructor
to build a new sig value, and the details of how to do that follow from the output
of our earlier Print command. The body of the sig type is an equality, so we can
use the reflexivity proof rule refl equal explicitly. It also turns out that we need to
include an explicit return clause here, since Coq’s heuristics are not smart enough
to propagate the result type that we wrote earlier.
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By now, the reader is probably ready to believe that the new pred strong leads
to the same OCaml code as we have seen several times so far, and Coq does not
disappoint.

Extraction pred strong3.

(** val pred_strong3 : nat -> nat **)

let pred_strong3 = function
| O -> assert false (* absurd case *)
| S n’ -> n’

We have managed to reach a type that is, in a formal sense, the most expressive
possible for pred. Any other implementation of the same type must have the same
input-output behavior. However, there is still room for improvement in making this
kind of code easier to write. Here is a version that takes advantage of tactic-based
theorem proving. We switch back to passing a separate proof argument instead of
using a subset type for the function’s input, because this leads to cleaner code.

Definition pred strong4 (n : nat) : n > 0 → {m : nat | n = S m}.
refine (fun n ⇒
match n with
| O ⇒ fun ⇒ False rec
| S n’ ⇒ fun ⇒ exist n’

end).

We build pred strong4 using tactic-based proving, beginning with a Definition
command that ends in a period before a definition is given. Such a command enters
the interactive proving mode, with the type given for the new identifier as our proof
goal. We do most of the work with the refine tactic, to which we pass a partial
“proof” of the type we are trying to prove. There may be some pieces left to fill
in, indicated by underscores. We make use of the combinator False rec, which will
return a value of any type when given a proof of False.

Any underscore that Coq cannot reconstruct with type inference is added as a
proof subgoal. In this case, we have two subgoals:

2 subgoals

n : nat
: 0 > 0

============================
False

subgoal 2 is:
S n’ = S n’

We can see that the first subgoal comes from the second underscore passed to
False rec, and the second subgoal comes from the second underscore passed to
exist. In the first case, we see that, though we bound the proof variable with an
underscore, it is still available in our proof context. It is hard to refer to underscore-
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named variables in manual proofs, but automation makes short work of them. Both
subgoals are easy to discharge that way, so let us back up and ask to prove all
subgoals automatically.

Undo.
refine (fun n ⇒
match n with
| O ⇒ fun ⇒ False rec
| S n’ ⇒ fun ⇒ exist n’

end); crush.
Defined.

We end the “proof” with Defined instead of Qed, so that the definition we
constructed remains visible. This contrasts to the case of ending a proof with Qed,
where the details of the proof are hidden afterward. Let us see what our proof
script constructed.

Print pred strong4.
pred strong4 =
fun n : nat ⇒
match n as n0 return (n0 > 0 → {m : nat | n0 = S m}) with
| 0 ⇒

fun : 0 > 0 ⇒
False rec {m : nat | 0 = S m}

(Bool.diff false true
(Bool.absurd eq true false

(Bool.diff false true
(Bool.absurd eq true false (pred strong4 subproof n )))))

| S n’ ⇒
fun : S n’ > 0 ⇒
exist (fun m : nat ⇒ S n’ = S m) n’ (refl equal (S n’ ))

end
: ∀ n : nat, n > 0 → {m : nat | n = S m}

We see the code we entered, with some proofs filled in. The first proof obligation,
the second argument to False rec, is filled in with a nasty-looking proof term that
we can be glad we did not enter by hand. The second proof obligation is a simple
reflexivity proof.

Eval compute in pred strong4 two gt0.
= exist (fun m : nat ⇒ 2 = S m) 1 (refl equal 2)
: {m : nat | 2 = S m}

We are almost done with the ideal implementation of dependent predecessor. We
can use Coq’s syntax extension facility to arrive at code with almost no complexity
beyond a Haskell or ML program with a complete specification in a comment.

Notation ”!” := (False rec ).
Notation ”[ e ]” := (exist e ).

Definition pred strong5 (n : nat) : n > 0 → {m : nat | n = S m}.
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refine (fun n ⇒
match n with
| O ⇒ fun ⇒ !
| S n’ ⇒ fun ⇒ [n’ ]

end); crush.
Defined.

By default, notations are also used in pretty-printing terms, including results of
evaluation.

Eval compute in pred strong5 two gt0.
= [1]
: {m : nat | 2 = S m}

One other alternative is worth demonstrating. Recent Coq versions include a
facility called Program that streamlines this style of definition. Here is a complete
implementation using Program.

Obligation Tactic := crush.

Program Definition pred strong6 (n : nat) ( : n > 0)
: {m : nat | n = S m} :=
match n with
| O ⇒
| S n’ ⇒ n’

end.

Printing the resulting definition of pred strong6 yields a term very similar to
what we built with refine. Program can save time in writing programs that use
subset types. Nonetheless, refine is often just as effective, and refine gives more
control over the form the final term takes, which can be useful when you want to
prove additional theorems about your definition. Program will sometimes insert
type casts that can complicate theorem-proving.

Eval compute in pred strong6 two gt0.
= [1]
: {m : nat | 2 = S m}

3.2 Decidable Proposition Types

There is another type in the standard library which captures the idea of program
values that indicate which of two propositions is true.

Print sumbool.
Inductive sumbool (A : Prop) (B : Prop) : Set :=

left : A → {A} + {B} | right : B → {A} + {B}
For left: Argument A is implicit
For right: Argument B is implicit

We can define some notations to make working with sumbool more convenient.

Notation ”’Yes’” := (left ).
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Notation ”’No’” := (right ).
Notation ”’Reduce’ x” := (if x then Yes else No) (at level 50).

The Reduce notation is notable because it demonstrates how if is overloaded in
Coq. The if form actually works when the test expression has any two-constructor
inductive type. Moreover, in the then and else branches, the appropriate construc-
tor arguments are bound. This is important when working with sumbools, when
we want to have the proof stored in the test expression available when proving the
proof obligations generated in the appropriate branch.

Now we can write eq nat dec, which compares two natural numbers, returning
either a proof of their equality or a proof of their inequality. The code we pass
to refine uses an anonymous recursive function built with a fix expression. Our
proof script removes the recursive function f from the context before finding the
proofs, so that we do not accidentally mention a non-structurally-recursive call to
f in a proof rule.

Definition eq nat dec (n m : nat) : {n = m} + {n 6= m}.
refine (fix f (n m : nat) : {n = m} + {n 6= m} :=
match n, m with
| O, O ⇒ Yes
| S n’, S m’ ⇒ Reduce (f n’ m’ )
| , ⇒ No

end); clear f ; crush.
Defined.

Our definition extracts to reasonable OCaml code.

Extraction eq nat dec.

(** val eq_nat_dec : nat -> nat -> sumbool **)

let rec eq_nat_dec n m =
match n with
| O -> (match m with

| O -> Left
| S n0 -> Right)

| S n’ -> (match m with
| O -> Right
| S m’ -> eq_nat_dec n’ m’)

Proving this kind of decidable equality result is so common that Coq comes with
a tactic for automating it.

Definition eq nat dec’ (n m : nat) : {n = m} + {n 6= m}.
decide equality.

Defined.

Curious readers can verify that the decide equality version extracts to the same
OCaml code as our more manual version does. That OCaml code had one un-
desirable property, which is that it uses Left and Right constructors instead of
the boolean values built into OCaml. We can fix this, by using Coq’s facility for
mapping Coq inductive types to OCaml variant types.
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Extract Inductive sumbool ⇒ ”bool” [”true” ”false”].
Extraction eq nat dec’.

(** val eq_nat_dec’ : nat -> nat -> bool **)

let rec eq_nat_dec’ n m0 =
match n with
| O -> (match m0 with

| O -> true
| S n0 -> false)

| S n0 -> (match m0 with
| O -> false
| S n1 -> eq_nat_dec’ n0 n1)

We can build “smart” versions of the usual boolean operators and put them
to good use in certified programming. For instance, here is a sumbool version of
boolean “or.”

Notation ”x || y” := (if x then Yes else Reduce y).

Let us use it for building a function that decides list membership, in terms of the
standard library list membership function In.

Print In.

In =
fun A : Type ⇒
fix In (a : A) (l : list A) {struct l} : Prop :=
match l with
| nil ⇒ False
| b :: m ⇒ b = a ∨ In a m
end

: ∀ A : Type, A → list A → Prop

We need to assume the existence of an equality decision procedure for the type
of list elements. The Coq section mechanism lets us scope local assumptions over
particular definitions.

Section In dec.
Variable A : Set.
Variable A eq dec : ∀ x y : A, {x = y} + {x 6= y}.
The final function is easy to write using the techniques we have developed so

far.

Definition In dec : ∀ (x : A) (ls : list A), {In x ls} + {¬ In x ls}.
refine (fix f (x : A) (ls : list A) : {In x ls} + {¬ In x ls} :=
match ls with
| nil ⇒ No
| x’ :: ls’ ⇒ A eq dec x x’ || f x ls’

end); crush.
Qed.
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End In dec.

In dec has a reasonable extraction to OCaml.

Extraction In dec.

(** val in_dec : (’a1 -> ’a1 -> bool) -> ’a1 -> ’a1 list -> bool **)

let rec in_dec a_eq_dec x = function
| Nil -> false
| Cons (x’, ls’) ->

(match a_eq_dec x x’ with
| true -> true
| false -> in_dec a_eq_dec x ls’)

3.3 Partial Subset Types

Our final implementation of dependent predecessor used a very specific argument
type to ensure that execution could always complete normally. Sometimes we want
to allow execution to fail, and we want a more principled way of signaling that than
returning a default value, as pred does for 0. One approach is to define this type
family maybe, which is a version of sig that allows obligation-free failure.

Inductive maybe (A : Set) (P : A → Prop) : Set :=
| Unknown : maybe P
| Found : ∀ x : A, P x → maybe P.

We can define some new notations, analogous to those we defined for subset
types.

Notation ”{{ x | P }}” := (maybe (fun x ⇒ P)).
Notation ”??” := (Unknown ).
Notation ”[[ x ]]” := (Found x ).

Now our next version of pred is trivial to write.

Definition pred strong7 (n : nat) : {{m | n = S m}}.
refine (fun n ⇒
match n with
| O ⇒ ??
| S n’ ⇒ [[n’ ]]

end); trivial.
Defined.

Because we used maybe, one valid implementation of the type we gave pred strong7
would return ?? in every case. We can strengthen the type to rule out such vacuous
implementations, and the type family sumor from the standard library provides the
easiest starting point. For type A and proposition B , A + {B} desugars to sumor
A B , whose values are either values of A or proofs of B .

Print sumor.
Inductive sumor (A : Type) (B : Prop) : Type :=

inleft : A → A + {B} | inright : B → A + {B}
For inleft: Argument A is implicit
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For inright: Argument B is implicit

We add notations for easy use of the sumor constructors. The second notation
is specialized to sumors whose A parameters are instantiated with regular subset
types, since this is how we will use sumor below.

Notation ”!!” := (inright ).
Notation ”[[[ x ]]]” := (inleft [x ]).

Now we are ready to give the final version of possibly-failing predecessor. The
sumor -based type that we use is maximally expressive; any implementation of the
type has the same input-output behavior.

Definition pred strong8 (n : nat) : {m : nat | n = S m} + {n = 0}.
refine (fun n ⇒
match n with
| O ⇒ !!
| S n’ ⇒ [[[n’ ]]]

end); trivial.
Defined.

3.4 Monadic Notations

We can treat maybe like a monad, in the same way that the Haskell Maybe type
is interpreted as a failure monad. Our maybe has the wrong type to be a literal
monad, but a “bind”-like notation will still be helpful.

Notation ”x ← e1 ; e2” := (match e1 with
| Unknown ⇒ ??
| Found x ⇒ e2

end)
(right associativity, at level 60).

The meaning of x ← e1 ; e2 is: First run e1. If it fails to find an answer, then
announce failure for our derived computation, too. If e1 does find an answer, pass
that answer on to e2 to find the final result. The variable x can be considered
bound in e2.

This notation is very helpful for composing richly-typed procedures. For instance,
here is a very simple implementation of a function to take the predecessors of two
naturals at once.

Definition doublePred (n1 n2 : nat) : {{p | n1 = S (fst p) ∧ n2 = S (snd p)}}.
refine (fun n1 n2 ⇒

m1 ← pred strong7 n1 ;
m2 ← pred strong7 n2 ;
[[(m1, m2 )]]); tauto.

Defined.

We can build a sumor version of the “bind” notation and use it to write a similarly
straightforward version of this function.

Notation ”x ←− e1 ; e2” := (match e1 with
| inright ⇒ !!

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.



34 · Adam Chlipala

| inleft (exist x ) ⇒ e2
end)

(right associativity, at level 60).

Definition doublePred’ (n1 n2 : nat)
: {p : nat × nat | n1 = S (fst p) ∧ n2 = S (snd p)}
+ {n1 = 0 ∨ n2 = 0}.
refine (fun n1 n2 ⇒

m1 ←− pred strong8 n1 ;
m2 ←− pred strong8 n2 ;
[[[(m1, m2 )]]]); tauto.

Defined.

3.5 A Type-Checking Example

We can apply these specification types to build a certified type-checker for a simple
expression language.

Inductive exp : Set :=
| Nat : nat → exp
| Plus : exp → exp → exp
| Bool : bool → exp
| And : exp → exp → exp.

We define a simple language of types and its typing rules. The same inductive
type definition mechanism that we have seen several times so far may also be used
to define inductive predicates by giving their inference rules. That is the technique
we use to specify the typing judgment.

Inductive type : Set := TNat | TBool.

Inductive hasType : exp → type → Prop :=
| HtNat : ∀ n,

hasType (Nat n) TNat
| HtPlus : ∀ e1 e2,

hasType e1 TNat
→ hasType e2 TNat
→ hasType (Plus e1 e2 ) TNat

| HtBool : ∀ b,
hasType (Bool b) TBool

| HtAnd : ∀ e1 e2,
hasType e1 TBool
→ hasType e2 TBool
→ hasType (And e1 e2 ) TBool.

It will be helpful to have a function for comparing two types. We build one using
decide equality.

Definition eq type dec : ∀ t1 t2 : type, {t1 = t2} + {t1 6= t2}.
decide equality.

Defined.
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Another notation complements the monadic notation for maybe that we defined
earlier. Sometimes we want to include “assertions” in our procedures. That is, we
want to run a decision procedure and fail if it fails; otherwise, we want to continue,
with the proof that it produced made available to us. This infix notation captures
that idea, for a procedure that returns an arbitrary two-constructor type.

Notation ”e1 ;; e2” := (if e1 then e2 else ??)
(right associativity, at level 60).

With that notation defined, we can implement a typeCheck function, whose code
is only more complex than what we would write in ML because it needs to include
some extra type annotations. Every [[e]] expression adds a hasType proof obliga-
tion, and crush makes short work of them when we add hasType’s constructors as
hints.

Definition typeCheck (e : exp) : {{t | hasType e t}}.
Hint Constructors hasType.

refine (fix F (e : exp) : {{t | hasType e t}} :=
match e with
| Nat ⇒ [[TNat]]
| Plus e1 e2 ⇒

t1 ← F e1 ;
t2 ← F e2 ;
eq type dec t1 TNat;;
eq type dec t2 TNat;;
[[TNat]]

| Bool ⇒ [[TBool]]
| And e1 e2 ⇒

t1 ← F e1 ;
t2 ← F e2 ;
eq type dec t1 TBool;;
eq type dec t2 TBool;;
[[TBool]]

end); crush.
Defined.

Despite manipulating proofs, our type checker is easy to run.

Eval simpl in typeCheck (Nat 0).
= [[TNat]]
: {{t | hasType (Nat 0) t}}

Eval simpl in typeCheck (Plus (Nat 1) (Nat 2)).
= [[TNat]]
: {{t | hasType (Plus (Nat 1) (Nat 2)) t}}

Eval simpl in typeCheck (Plus (Nat 1) (Bool false)).
= ??
: {{t | hasType (Plus (Nat 1) (Bool false)) t}}

The type-checker also extracts to some reasonable OCaml code.

Extraction typeCheck.
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(** val typeCheck : exp -> type0 maybe **)

let rec typeCheck = function
| Nat n -> Found TNat
| Plus (e1, e2) ->

(match typeCheck e1 with
| Unknown -> Unknown
| Found t1 ->

(match typeCheck e2 with
| Unknown -> Unknown
| Found t2 ->

(match eq_type_dec t1 TNat with
| true ->

(match eq_type_dec t2 TNat with
| true -> Found TNat
| false -> Unknown)

| false -> Unknown)))
| Bool b -> Found TBool
| And (e1, e2) ->

(match typeCheck e1 with
| Unknown -> Unknown
| Found t1 ->

(match typeCheck e2 with
| Unknown -> Unknown
| Found t2 ->

(match eq_type_dec t1 TBool with
| true ->

(match eq_type_dec t2 TBool with
| true -> Found TBool
| false -> Unknown)

| false -> Unknown)))

We can adapt this implementation to use sumor, so that we know our type-
checker only fails on ill-typed inputs. First, we define an analogue to the “assertion”
notation.

Notation ”e1 ;;; e2” := (if e1 then e2 else !!)
(right associativity, at level 60).

Next, we prove a helpful lemma, which states that a given expression can have
at most one type.

Lemma hasType det : ∀ e t1,
hasType e t1
→ ∀ t2, hasType e t2
→ t1 = t2.

induction 1; inversion 1; crush.
Qed.
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Now we can define the type-checker. Its type expresses that it only fails on
untypable expressions.

Definition typeCheck’ (e : exp)
: {t : type | hasType e t} + {∀ t, ¬ hasType e t}.
Hint Constructors hasType.
We register all of the typing rules as hints.

Hint Resolve hasType det.
hasType det will also be useful for proving proof obligations with contradictory

contexts. Since its statement includes ∀-bound variables that do not appear in its
conclusion, normal crush will not apply this hint. Instead, we use the more expen-
sive eauto, which does Prolog-style backtracking search with unification variables.

Finally, the implementation of typeCheck can be transcribed literally, simply
switching notations as needed.

refine (fix F (e : exp) : {t : type | hasType e t} + {∀ t, ¬ hasType e t} :=
match e with
| Nat ⇒ [[[TNat]]]
| Plus e1 e2 ⇒

t1 ←− F e1 ;
t2 ←− F e2 ;
eq type dec t1 TNat;;;
eq type dec t2 TNat;;;
[[[TNat]]]

| Bool ⇒ [[[TBool]]]
| And e1 e2 ⇒

t1 ←− F e1 ;
t2 ←− F e2 ;
eq type dec t1 TBool;;;
eq type dec t2 TBool;;;
[[[TBool]]]

end); clear F ; crush’ tt hasType; eauto.

We clear F, the local name for the recursive function, to avoid strange proofs
that refer to recursive calls that we never make. The crush variant crush’ helps
us by performing automatic inversion on instances of the predicates specified in its
second argument. Once we throw in eauto to apply hasType det for us, we have
discharged all the subgoals.

Defined.

The short implementation here hides just how time-saving automation is. Every
use of one of the notations adds a proof obligation, giving us 12 in total. Most
of these obligations require multiple inversions and either uses of hasType det or
applications of hasType rules.

The results of simplifying calls to typeCheck’ look deceptively similar to the results
for typeCheck, but now the types of the results provide more information.

Eval simpl in typeCheck’ (Nat 0).
= [[[TNat]]]
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: {t : type | hasType (Nat 0) t} +
{(∀ t : type, ¬ hasType (Nat 0) t)}

Eval simpl in typeCheck’ (Plus (Nat 1) (Nat 2)).
= [[[TNat]]]
: {t : type | hasType (Plus (Nat 1) (Nat 2)) t} +
{(∀ t : type, ¬ hasType (Plus (Nat 1) (Nat 2)) t)}

Eval simpl in typeCheck’ (Plus (Nat 1) (Bool false)).
= !!
: {t : type | hasType (Plus (Nat 1) (Bool false)) t} +
{(∀ t : type, ¬ hasType (Plus (Nat 1) (Bool false)) t)}

4. MORE DEPENDENT TYPES

Subset types and their relatives help us integrate verification with programming.
Though they reorganize the certified programmer’s workflow, they tend not to have
deep effects on proofs. We write largely the same proofs as we would for classi-
cal verification, with some of the structure moved into the programs themselves.
It turns out that, when we use dependent types to their full potential, we warp
the development and proving process even more than that, picking up “free theo-
rems” to the extent that often a certified program is hardly more complex than its
uncertified counterpart in Haskell or ML.

In particular, outside of the teaser from the first section of examples, we have
only scratched the tip of the iceberg that is Coq’s inductive definition mechanism.
The inductive types we have seen so far have their counterparts in the other popular
proof assistants. This section explores the strange new world of dependent inductive
datatypes (that is, dependent inductive types outside Prop), a possibility which sets
Coq apart from all of the competition not based on type theory.

4.1 Length-Indexed Lists

Many introductions to dependent types start out by showing how to use them to
eliminate array bounds checks. When the type of an array tells you how many
elements it has, your compiler can detect out-of-bounds dereferences statically.
Since we are working in a pure functional language, the next best thing is length-
indexed lists, which the following code defines.

Section ilist.
Variable A : Set.

Inductive ilist : nat → Set :=
| Nil : ilist O
| Cons : ∀ n, A → ilist n → ilist (S n).

We see that, within its section, ilist is given type nat → Set. Previously, every
inductive type we have seen has either had plain Set as its type or has been a predi-
cate with some type ending in Prop. The full generality of inductive definitions lets
us integrate the expressivity of predicates directly into our normal programming.

The nat argument to ilist tells us the length of the list. The types of ilist’s
constructors tell us that a Nil list has length O and that a Cons list has length one
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greater than the length of its sublist. We may apply ilist to any natural number,
even natural numbers that are only known at runtime. It is this breaking of the
phase distinction that characterizes ilist as dependently typed.

In expositions of list types, we usually see the length function defined first, but
here that would not be a very productive function to code. Instead, let us implement
list concatenation.

Fixpoint app n1 (ls1 : ilist n1 ) n2 (ls2 : ilist n2 ) : ilist (n1 + n2 ) :=
match ls1 with
| Nil ⇒ ls2
| Cons x ls1’ ⇒ Cons x (app ls1’ ls2 )

end.

In Coq version 8.1 and earlier, this definition leads to an error message:

The term "ls2" has type "ilist n2" while it is expected to have type
"ilist (?14 + n2)"

In Coq’s core language, without explicit annotations, Coq does not enrich our
typing assumptions in the branches of a match expression. It is clear that the
unification variable ?14 should be resolved to 0 in this context, so that we have 0 +
n2 reducing to n2, but Coq does not realize that. We cannot fix the problem using
just the simple return clauses we applied in the last section. We need to combine
a return clause with an in clause, as we saw in Section 2. This is exactly what
the inference heuristics do in Coq 8.2 and later.

Specifically, Coq infers the following definition from the simpler one.

Fixpoint app’ n1 (ls1 : ilist n1 ) n2 (ls2 : ilist n2 ) : ilist (n1 + n2 ) :=
match ls1 in (ilist n1 ) return (ilist (n1 + n2 )) with
| Nil ⇒ ls2
| Cons x ls1’ ⇒ Cons x (app’ ls1’ ls2 )

end.

Our app function could be typed in so-called stratified type systems, which avoid
true dependency. We could consider the length indices to lists to live in a separate,
compile-time-only universe from the lists themselves. Our next example would be
harder to implement in a stratified system. We write an injection function from
regular lists to length-indexed lists. A stratified implementation would need to
duplicate the definition of lists across compile-time and run-time versions, and the
run-time versions would need to be indexed by the compile-time versions.

Fixpoint inject (ls : list A) : ilist (length ls) :=
match ls with
| nil ⇒ Nil
| h :: t ⇒ Cons h (inject t)

end.

We can define an inverse conversion and prove that it really is an inverse.

Fixpoint unject n (ls : ilist n) : list A :=
match ls with
| Nil ⇒ nil

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.



40 · Adam Chlipala

| Cons h t ⇒ h :: unject t
end.

Theorem inject inverse : ∀ ls, unject (inject ls) = ls.
induction ls; crush.

Qed.

Now let us attempt a function that is surprisingly tricky to write. In ML, the list
head function raises an exception when passed an empty list. With length-indexed
lists, we can rule out such invalid calls statically, and here is a first attempt at doing
so.

Definition hd n (ls : ilist (S n)) : A :=
match ls with
| Nil ⇒ whatGoesHere?
| Cons h ⇒ h

end.

It is not clear what to write for the Nil case, so we are stuck before we even turn
our function over to the type checker. We could try omitting the Nil case:

Definition hd n (ls : ilist (S n)) : A :=
match ls with
| Cons h ⇒ h

end.
Error: Non exhaustive pattern-matching: no clause found for pattern Nil

Unlike in ML, we cannot use inexhaustive pattern matching, because there is no
conception of a Match exception to be thrown. We might try using an in clause
somehow.

Definition hd n (ls : ilist (S n)) : A :=
match ls in (ilist (S n)) with
| Cons h ⇒ h

end.
Error: The reference n was not found in the current environment

In this and other cases, we feel like we want in clauses with type family argu-
ments that are not variables. Unfortunately, Coq only supports variables in those
positions. A completely general mechanism could only be supported with a solution
to the problem of higher-order unification, which is undecidable. There are useful
heuristics for handling non-variable indices which are gradually making their way
into Coq, but we will spend some time on effective pattern matching on dependent
types using only the primitive match annotations.

Our final, working attempt at hd uses an auxiliary function and a surprising
return annotation.

Definition hd’ n (ls : ilist n) :=
match ls in (ilist n) return (match n with O ⇒ unit | S ⇒ A end) with
| Nil ⇒ tt
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| Cons h ⇒ h
end.

Definition hd n (ls : ilist (S n)) : A := hd’ ls.

We annotate our main match with a type that is itself a match. We write that
the function hd’ returns unit when the list is empty and returns the carried type A
in all other cases. In the definition of hd, we just call hd’. Because the index of ls
is known to be nonzero, the type checker reduces the match in the type of hd’ to
A.

End ilist.

4.2 A Tagless Interpreter

A favorite example for motivating the power of functional programming is imple-
mentation of a simple expression language interpreter. In ML and Haskell, such
interpreters are often implemented using an algebraic datatype of values, where at
many points it is checked that a value was built with the right constructor of the
value type. With dependent types, we can implement a tagless interpreter that
both removes this source of runtime inefficiency and gives us more confidence that
our implementation is correct.

Inductive type : Set :=
| Nat : type
| Bool : type
| Prod : type → type → type.

Inductive exp : type → Set :=
| NConst : nat → exp Nat
| Plus : exp Nat → exp Nat → exp Nat
| Eq : exp Nat → exp Nat → exp Bool

| BConst : bool → exp Bool
| And : exp Bool → exp Bool → exp Bool
| If : ∀ t, exp Bool → exp t → exp t → exp t

| Pair : ∀ t1 t2, exp t1 → exp t2 → exp (Prod t1 t2 )
| Fst : ∀ t1 t2, exp (Prod t1 t2 ) → exp t1
| Snd : ∀ t1 t2, exp (Prod t1 t2 ) → exp t2.

We have a standard algebraic datatype type, defining a type language of naturals,
booleans, and product (pair) types. Then we have the indexed inductive type exp,
where the argument to exp tells us the encoded type of an expression. In effect, we
are defining the typing rules for expressions simultaneously with the syntax.

We can give types and expressions semantics in a new style, based critically on
the chance for type-level computation.

Fixpoint typeDenote (t : type) : Set :=
match t with
| Nat ⇒ nat
| Bool ⇒ bool
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| Prod t1 t2 ⇒ typeDenote t1 × typeDenote t2
end%type.

typeDenote compiles types of our object language into “native” Coq types. It is
deceptively easy to implement. We can define a function expDenote that is typed
in terms of typeDenote.

Fixpoint expDenote t (e : exp t) : typeDenote t :=
match e with
| NConst n ⇒ n
| Plus e1 e2 ⇒ expDenote e1 + expDenote e2
| Eq e1 e2 ⇒ if eq nat dec (expDenote e1 ) (expDenote e2 )
then true else false

| BConst b ⇒ b
| And e1 e2 ⇒ expDenote e1 && expDenote e2
| If e’ e1 e2 ⇒ if expDenote e’ then expDenote e1 else expDenote e2

| Pair e1 e2 ⇒ (expDenote e1, expDenote e2 )
| Fst e’ ⇒ fst (expDenote e’ )
| Snd e’ ⇒ snd (expDenote e’ )

end.

Despite the fancy type, the function definition is routine. In fact, it is less
complicated than what we would write in ML or Haskell 98, since we do not need
to worry about pushing final values in and out of an algebraic datatype. The only
unusual thing is the use of an expression of the form if E then true else false in
the Eq case. Remember that eq nat dec has a rich dependent type, rather than
a simple boolean type. Coq’s native if is overloaded to work on a test of any
two-constructor type, so we can use if to build a simple boolean from the sumbool
that eq nat dec returns.

We can implement a constant folding function and prove it correct. It will be
useful to write a function pairOut that checks if an exp of Prod type is a pair,
returning its two components if so. Unsurprisingly, a first attempt leads to a type
error.

Definition pairOut t1 t2 (e : exp (Prod t1 t2 )) : option (exp t1 × exp t2 ) :=
match e in (exp (Prod t1 t2 )) return option (exp t1 × exp t2 ) with
| Pair e1 e2 ⇒ Some (e1, e2 )
| ⇒ None

end.
Error: The reference t2 was not found in the current environment

We run again into the problem of not being able to specify non-variable arguments
in in clauses. The problem would just be hopeless without a use of an in clause,
though, since the result type of the match depends on an argument to exp. Our
solution will be to use a more general type, as we did for hd. First, we define a
type-valued function to use in assigning a type to pairOut.

Definition pairOutType (t : type) :=
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match t with
| Prod t1 t2 ⇒ option (exp t1 × exp t2 )
| ⇒ unit

end.

When passed a type that is a product, pairOutType returns our final desired type.
On any other input type, pairOutType returns unit, since we do not care about
extracting components of non-pairs. Now we can write another helper function to
provide the default behavior of pairOut, which we will apply for inputs that are not
literal pairs.

Definition pairOutDefault (t : type) :=
match t return (pairOutType t) with
| Prod ⇒ None
| ⇒ tt

end.

Now pairOut is deceptively easy to write.

Definition pairOut t (e : exp t) :=
match e in (exp t) return (pairOutType t) with
| Pair e1 e2 ⇒ Some (e1, e2 )
| ⇒ pairOutDefault

end.

There is one important subtlety in this definition. Coq allows us to use convenient
ML-style pattern matching notation, but, internally and in proofs, we see that
patterns are expanded out completely, matching one level of inductive structure at
a time. Thus, the default case in the match above expands out to one case for each
constructor of exp besides Pair, and the underscore in pairOutDefault is resolved
differently in each case. From an ML or Haskell programmer’s perspective, what
we have here is type inference determining which code is run (returning either None
or tt), which goes beyond what is possible with type inference guiding parametric
polymorphism in Hindley-Milner languages, but is similar to what goes on with
Haskell type classes.

With pairOut available, we can write cfold in a straightforward way. There are
really no surprises beyond that Coq verifies that this code has such an expres-
sive type, given the small annotation burden. In some places, we see that Coq’s
match annotation inference is too smart for its own good, and we have to turn that
inference off by writing return .

Fixpoint cfold t (e : exp t) : exp t :=
match e with
| NConst n ⇒ NConst n
| Plus e1 e2 ⇒
let e1’ := cfold e1 in
let e2’ := cfold e2 in
match e1’, e2’ return with
| NConst n1, NConst n2 ⇒ NConst (n1 + n2 )
| , ⇒ Plus e1’ e2’

end
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| Eq e1 e2 ⇒
let e1’ := cfold e1 in
let e2’ := cfold e2 in
match e1’, e2’ return with
| NConst n1, NConst n2 ⇒ BConst (if eq nat dec n1 n2
then true else false)
| , ⇒ Eq e1’ e2’

end

| BConst b ⇒ BConst b
| And e1 e2 ⇒
let e1’ := cfold e1 in
let e2’ := cfold e2 in
match e1’, e2’ return with
| BConst b1, BConst b2 ⇒ BConst (b1 && b2 )
| , ⇒ And e1’ e2’

end
| If e e1 e2 ⇒
let e’ := cfold e in
match e’ with
| BConst true ⇒ cfold e1
| BConst false ⇒ cfold e2
| ⇒ If e’ (cfold e1 ) (cfold e2 )

end

| Pair e1 e2 ⇒ Pair (cfold e1 ) (cfold e2 )
| Fst e ⇒
let e’ := cfold e in
match pairOut e’ with
| Some p ⇒ fst p
| None ⇒ Fst e’

end
| Snd e ⇒
let e’ := cfold e in
match pairOut e’ with
| Some p ⇒ snd p
| None ⇒ Snd e’

end
end.

The correctness theorem for cfold turns out to be easy to prove, once we get over
one serious hurdle.

Theorem cfold correct : ∀ t (e : exp t), expDenote e = expDenote (cfold e).
induction e; crush.

The first remaining subgoal is:

expDenote (cfold e1 ) + expDenote (cfold e2 ) =
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expDenote
match cfold e1 with
| NConst n1 ⇒

match cfold e2 with
| NConst n2 ⇒ NConst (n1 + n2 )
| Plus ⇒ Plus (cfold e1 ) (cfold e2 )
| Eq ⇒ Plus (cfold e1 ) (cfold e2 )
| BConst ⇒ Plus (cfold e1 ) (cfold e2 )
| And ⇒ Plus (cfold e1 ) (cfold e2 )
| If ⇒ Plus (cfold e1 ) (cfold e2 )
| Pair ⇒ Plus (cfold e1 ) (cfold e2 )
| Fst ⇒ Plus (cfold e1 ) (cfold e2 )
| Snd ⇒ Plus (cfold e1 ) (cfold e2 )
end

| Plus ⇒ Plus (cfold e1 ) (cfold e2 )
| Eq ⇒ Plus (cfold e1 ) (cfold e2 )
| BConst ⇒ Plus (cfold e1 ) (cfold e2 )
| And ⇒ Plus (cfold e1 ) (cfold e2 )
| If ⇒ Plus (cfold e1 ) (cfold e2 )
| Pair ⇒ Plus (cfold e1 ) (cfold e2 )
| Fst ⇒ Plus (cfold e1 ) (cfold e2 )
| Snd ⇒ Plus (cfold e1 ) (cfold e2 )
end

We would like to do a case analysis on cfold e1, and we attempt that in the way
that has worked so far.

destruct (cfold e1 ).
User error: e1 is used in hypothesis e

Coq gives us another cryptic error message. Like so many others, this one ba-
sically means that Coq is not able to build some proof about dependent types. It
is hard to generate helpful and specific error messages for problems like this, since
that would require some kind of understanding of the dependency structure of a
piece of code. We will encounter many examples of case-specific tricks for recovering
from errors like this one.

For our current proof, we can use a tactic dep destruct defined in the book
Tactics module. General elimination/inversion of dependently-typed hypotheses is
undecidable, since it must be implemented with match expressions that have the
restriction on in clauses that we have already discussed. dep destruct makes a best
effort to handle some common cases, relying upon the more primitive dependent
destruction tactic that comes with Coq. In a later section, we will learn about
the explicit manipulation of equality proofs that is behind dep destruct ’s imple-
mentation in Ltac, but for now, we treat it as a useful black box.

dep destruct (cfold e1 ).

This successfully breaks the subgoal into 5 new subgoals, one for each constructor
of exp that could produce an exp Nat. Note that dep destruct is successful in ruling
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out the other cases automatically, in effect automating some of the work that we
have done manually in implementing functions like hd and pairOut.

Now we can back up and give a short, automated proof, taking advantage of some
of Ltac’s programming features. We can use the tactic form repeat t to implement
a loop, executing the tactic t repeatedly until it fails. We can also use match
tactics to perform pattern-matching on proof goals, much as we perform pattern-
matching on algebraic datatypes in ML or Haskell. Some convenient pattern forms
are available, including context [p], which matches a term that has a subterm which
matches pattern p.

For a more thorough introduction to Ltac programming, see the book that this
article is excerpted from. For now, we only mean to give a taste of what Ltac makes
possible. The only non-trivial inconvenience in this particular automated proof is
that we cannot write a pattern that matches a Gallina match without including a
case for every constructor of the inductive type we match over.

Restart.

induction e; crush;
repeat (match goal with

| [ ` context [match cfold ?E with NConst ⇒ | Plus ⇒
| Eq ⇒ | BConst ⇒ | And ⇒
| If ⇒ | Pair ⇒
| Fst ⇒ | Snd ⇒ end] ] ⇒

dep destruct (cfold E )
| [ ` context [match pairOut (cfold ?E) with Some ⇒

| None ⇒ end] ] ⇒
dep destruct (cfold E )
| [ ` (if ?E then else ) = ] ⇒ destruct E

end; crush).
Qed.

4.3 Dependently-Typed Red-Black Trees

Red-black trees are a favorite purely-functional data structure with an interesting
invariant. We can use dependent types to enforce that operations on red-black trees
preserve the invariant. For simplicity, we specialize our red-black trees to represent
sets of nats.

Inductive color : Set := Red | Black.

Inductive rbtree : color → nat → Set :=
| Leaf : rbtree Black 0
| RedNode : ∀ n, rbtree Black n → nat → rbtree Black n → rbtree Red n
| BlackNode : ∀ c1 c2 n, rbtree c1 n → nat → rbtree c2 n → rbtree Black (S n).

A value of type rbtree c d is a red-black tree node whose root has color c and
that has black depth d. The latter property means that there are no more than d
black-colored nodes on any path from the root to a leaf.

At first, it can be unclear that this choice of type indices tracks any useful
property. To convince ourselves, we will prove that every red-black tree is balanced.
We will phrase our theorem in terms of a depth calculating function that ignores
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the extra information in the types. It will be useful to parameterize this function
over a combining operation, so that we can re-use the same code to calculate the
minimum or maximum height among all paths from root to leaf.

Require Import Max Min.

Section depth.
Variable f : nat → nat → nat.

Fixpoint depth c n (t : rbtree c n) : nat :=
match t with
| Leaf ⇒ 0
| RedNode t1 t2 ⇒ S (f (depth t1 ) (depth t2 ))
| BlackNode t1 t2 ⇒ S (f (depth t1 ) (depth t2 ))

end.
End depth.

Our proof of balanced-ness decomposes naturally into a lower bound and an
upper bound. We prove the lower bound first. Unsurprisingly, a tree’s black depth
provides such a bound on the minimum path length. We use the richly-typed
procedure min dec to do case analysis on whether min X Y equals X or Y.

Theorem depth min : ∀ c n (t : rbtree c n), depth min t ≥ n.
induction t ; crush;
match goal with
| [ ` context [min ?X ?Y] ] ⇒ destruct (min dec X Y )

end; crush.
Qed.

There is an analogous upper-bound theorem based on black depth. Unfortu-
nately, a symmetric proof script does not suffice to establish it.

Theorem depth max : ∀ c n (t : rbtree c n), depth max t ≤ 2 × n + 1.
induction t ; crush;
match goal with
| [ ` context [max ?X ?Y] ] ⇒ destruct (max dec X Y )

end; crush.

Two subgoals remain. One of them is:
n : nat
t1 : rbtree Black n
n0 : nat
t2 : rbtree Black n
IHt1 : depth max t1 ≤ n + (n + 0) + 1
IHt2 : depth max t2 ≤ n + (n + 0) + 1
e : max (depth max t1 ) (depth max t2 ) = depth max t1
============================

S (depth max t1 ) ≤ n + (n + 0) + 1

We see that IHt1 is almost the fact we need, but it is not quite strong enough.
We will need to strengthen our induction hypothesis to get the proof to go through.

Abort.
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In particular, we prove a lemma that provides a stronger upper bound for trees
with black root nodes. We got stuck above in a case about a red root node. Since
red nodes have only black children, our IH strengthening will enable us to finish
the proof.

Lemma depth max’ : ∀ c n (t : rbtree c n),
match c with
| Red ⇒ depth max t ≤ 2 × n + 1
| Black ⇒ depth max t ≤ 2 × n

end.
induction t ; crush;
match goal with
| [ ` context [max ?X ?Y] ] ⇒ destruct (max dec X Y )

end; crush;
repeat (match goal with

| [ H : context [match ?C with Red ⇒ | Black ⇒ end] ` ] ⇒
destruct C

end; crush).
Qed.

The original theorem follows easily from the lemma. We use the tactic generalize
pf, which, when pf proves the proposition P , changes the goal from Q to P → Q. It
is useful to do this because it makes the truth of P manifest syntactically, so that
automation machinery can rely on P , even if that machinery is not smart enough
to establish P on its own.

Theorem depth max : ∀ c n (t : rbtree c n), depth max t ≤ 2 × n + 1.
intros; generalize (depth max’ t); destruct c; crush.

Qed.

The final balance theorem establishes that the minimum and maximum path
lengths of any tree are within a factor of two of each other.

Theorem balanced : ∀ c n (t : rbtree c n), 2 × depth min t + 1 ≥ depth max t.
intros; generalize (depth min t); generalize (depth max t); crush.

Qed.

Now we are ready to implement an example operation on our trees, insertion.
Insertion can be thought of as breaking the tree invariants locally but then rebal-
ancing. In particular, in intermediate states we find red nodes that may have red
children. The type rtree captures the idea of such a node, continuing to track black
depth as a type index.

Inductive rtree : nat → Set :=
| RedNode’ : ∀ c1 c2 n, rbtree c1 n → nat → rbtree c2 n → rtree n.

Before starting to define insert, we define predicates capturing when a data value
is in the set represented by a normal or possibly-invalid tree.

Section present.
Variable x : nat.

Fixpoint present c n (t : rbtree c n) : Prop :=
match t with
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| Leaf ⇒ False
| RedNode a y b ⇒ present a ∨ x = y ∨ present b
| BlackNode a y b ⇒ present a ∨ x = y ∨ present b

end.

Definition rpresent n (t : rtree n) : Prop :=
match t with
| RedNode’ a y b ⇒ present a ∨ x = y ∨ present b

end.
End present.

Insertion relies on two balancing operations. It will be useful to give types to
these operations using a relative of the subset types from last section. While subset
types let us pair a value with a proof about that value, here we want to pair a value
with another non-proof dependently-typed value. The sigT type fills this role.

Locate ”{ : & }”.

Notation Scope
”{ x : A & P }” := sigT (fun x : A ⇒ P)

Print sigT.

Inductive sigT (A : Type) (P : A → Type) : Type :=
existT : ∀ x : A, P x → sigT P

It will be helpful to define a concise notation for the constructor of sigT.

Notation ”{< x >}” := (existT x ).

Each balance function is used to construct a new tree whose keys include the keys
of two input trees, as well as a new key. One of the two input trees may violate the
red-black alternation invariant (that is, it has an rtree type), while the other tree
is known to be valid. Crucially, the two input trees have the same black depth.

A balance operation may return a tree whose root is of either color. Thus, we
use a sigT type to package the result tree with the color of its root. Here is the
definition of the first balance operation, which applies when the possibly-invalid
rtree belongs to the left of the valid rbtree.

Definition balance1 n (a : rtree n) (data : nat) c2 :=
match a in rtree n return rbtree c2 n
→ { c : color & rbtree c (S n) } with
| RedNode’ t1 y t2 ⇒
match t1 in rbtree c n return rbtree n → rbtree c2 n
→ { c : color & rbtree c (S n) } with
| RedNode a x b ⇒ fun c d ⇒
{< RedNode (BlackNode a x b) y (BlackNode c data d) >}
| t1’ ⇒ fun t2 ⇒
match t2 in rbtree c n return rbtree n → rbtree c2 n
→ { c : color & rbtree c (S n) } with
| RedNode b x c ⇒ fun a d ⇒
{< RedNode (BlackNode a y b) x (BlackNode c data d) >}
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| b ⇒ fun a t ⇒ {< BlackNode (RedNode a y b) data t >}
end t1’

end t2
end.

We apply a trick that I call the convoy pattern. Recall that match annotations
only make it possible to describe a dependence of a match result type on the dis-
criminee. There is no automatic refinement of the types of free variables. However,
it is possible to effect such a refinement by finding a way to encode free variable
type dependencies in the match result type, so that a return clause can express
the connection.

In particular, we can extend the match to return functions over the free variables
whose types we want to refine. In the case of balance1, we only find ourselves
wanting to refine the type of one tree variable at a time. We match on one subtree
of a node, and we want the type of the other subtree to be refined based on what we
learn. We indicate this with a return clause starting like rbtree n → ..., where
n is bound in an in pattern. Such a match expression is applied immediately to
the “old version” of the variable to be refined, and the type checker is happy.

After writing this code, even I do not understand the precise details of how bal-
ancing works. I consulted Chris Okasaki’s paper “Red-Black Trees in a Functional
Setting” and transcribed the code to use dependent types. Luckily, the details are
not so important here; types alone will tell us that insertion preserves balanced-ness,
and we will prove that insertion produces trees containing the right keys.

Here is the symmetric function balance2, for cases where the possibly-invalid tree
appears on the right rather than on the left.

Definition balance2 n (a : rtree n) (data : nat) c2 :=
match a in rtree n return rbtree c2 n → { c : color & rbtree c (S n) } with
| RedNode’ t1 z t2 ⇒
match t1 in rbtree c n return rbtree n → rbtree c2 n
→ { c : color & rbtree c (S n) } with
| RedNode b y c ⇒ fun d a ⇒
{< RedNode (BlackNode a data b) y (BlackNode c z d) >}
| t1’ ⇒ fun t2 ⇒
match t2 in rbtree c n return rbtree n → rbtree c2 n
→ { c : color & rbtree c (S n) } with
| RedNode c z’ d ⇒ fun b a ⇒
{< RedNode (BlackNode a data b) z (BlackNode c z’ d) >}

| b ⇒ fun a t ⇒ {< BlackNode t data (RedNode a z b) >}
end t1’

end t2
end.

Now we are almost ready to get down to the business of writing an insert function.
First, we enter a section that declares a variable x , for the key we want to insert.

Section insert.
Variable x : nat.
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Most of the work of insertion is done by a helper function ins, whose return types
are expressed using a type-level function insResult.

Definition insResult c n :=
match c with
| Red ⇒ rtree n
| Black ⇒ { c’ : color & rbtree c’ n }

end.

That is, inserting into a tree with root color c and black depth n, the variety
of tree we get out depends on c. If we started with a red root, then we get back
a possibly-invalid tree of depth n. If we started with a black root, we get back a
valid tree of depth n with a root node of an arbitrary color.

Here is the definition of ins. Again, we do not want to dwell on the functional
details.

Fixpoint ins c n (t : rbtree c n) : insResult c n :=
match t with
| Leaf ⇒ {< RedNode Leaf x Leaf >}
| RedNode a y b ⇒
if le lt dec x y
then RedNode’ (projT2 (ins a)) y b
else RedNode’ a y (projT2 (ins b))

| BlackNode c1 c2 a y b ⇒
if le lt dec x y
then
match c1 return insResult c1 → with
| Red ⇒ fun ins a ⇒ balance1 ins a y b
| ⇒ fun ins a ⇒ {< BlackNode (projT2 ins a) y b >}

end (ins a)
else
match c2 return insResult c2 → with
| Red ⇒ fun ins b ⇒ balance2 ins b y a
| ⇒ fun ins b ⇒ {< BlackNode a y (projT2 ins b) >}

end (ins b)
end.

The one new trick is a variation of the convoy pattern. In each of the last two
pattern matches, we want to take advantage of the typing connection between the
trees a and b. We might naively apply the convoy pattern directly on a in the
first match and on b in the second. This satisfies the type checker per se, but it
does not satisfy the termination checker. Inside each match, we would be calling
ins recursively on a locally-bound variable. The termination checker is not smart
enough to trace the dataflow into that variable, so the checker does not know that
this recursive argument is smaller than the original argument. We make this fact
clearer by applying the convoy pattern on the result of a recursive call, rather than
just on that call’s argument.

Finally, we are in the home stretch of our effort to define insert. We just need
a few more definitions of non-recursive functions. First, we need to give the final
characterization of insert’s return type. Inserting into a red-rooted tree gives a
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black-rooted tree where black depth has increased, and inserting into a black-rooted
tree gives a tree where black depth has stayed the same and where the root is an
arbitrary color.

Definition insertResult c n :=
match c with
| Red ⇒ rbtree Black (S n)
| Black ⇒ { c’ : color & rbtree c’ n }

end.

A simple clean-up procedure translates insResults into insertResults.

Definition makeRbtree c n : insResult c n → insertResult c n :=
match c with
| Red ⇒ fun r ⇒
match r with
| RedNode’ a x b ⇒ BlackNode a x b

end
| Black ⇒ fun r ⇒ r

end.

We modify Coq’s default choice of implicit arguments for makeRbtree, so that we
do not need to specify the c and n arguments explicitly in later calls.

Implicit Arguments makeRbtree [c n].

Finally, we define insert as a simple composition of ins and makeRbtree.

Definition insert c n (t : rbtree c n) : insertResult c n :=
makeRbtree (ins t).

As we noted earlier, the type of insert guarantees that it outputs balanced trees
whose depths have not increased too much. We also want to know that insert
operates correctly on trees interpreted as finite sets, so we finish this section with
a proof of that fact.

Section present.
Variable z : nat.

The variable z stands for an arbitrary key. We will reason about z ’s presence in
particular trees. As usual, outside the section the theorems we prove will quantify
over all possible keys, giving us the facts we wanted.

We start by proving the correctness of the balance operations. It is useful to
define a custom tactic present balance that encapsulates the reasoning common to
the two proofs. We use the keyword Ltac to assign a name to a proof script. This
particular script just iterates between crush and identification of a tree that is being
pattern-matched on and should be destructed.

Ltac present balance :=
crush;
repeat (match goal with

| [ H : context [match ?T with
| Leaf ⇒
| RedNode ⇒
| BlackNode ⇒
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end] ` ] ⇒ dep destruct T
| [ ` context [match ?T with

| Leaf ⇒
| RedNode ⇒
| BlackNode ⇒
end] ] ⇒ dep destruct T

end; crush).

The balance correctness theorems are simple first-order logic equivalences, where
we use the function projT2 to project the payload of a sigT value.

Lemma present balance1 : ∀ n (a : rtree n) (y : nat) c2 (b : rbtree c2 n),
present z (projT2 (balance1 a y b))
↔ rpresent z a ∨ z = y ∨ present z b.
destruct a; present balance.

Qed.

Lemma present balance2 : ∀ n (a : rtree n) (y : nat) c2 (b : rbtree c2 n),
present z (projT2 (balance2 a y b))
↔ rpresent z a ∨ z = y ∨ present z b.
destruct a; present balance.

Qed.

To state the theorem for ins, it is useful to define a new type-level function, since
ins returns different result types based on the type indices passed to it. Recall that
x is the section variable standing for the key we are inserting.

Definition present insResult c n :=
match c return (rbtree c n → insResult c n → Prop) with
| Red ⇒ fun t r ⇒ rpresent z r ↔ z = x ∨ present z t
| Black ⇒ fun t r ⇒ present z (projT2 r) ↔ z = x ∨ present z t

end.

Now the statement and proof of the ins correctness theorem are straightforward,
if verbose. We proceed by induction on the structure of a tree, followed by finding
case analysis opportunities on expressions we see being analyzed in if or match
expressions. After that, we pattern-match to find opportunities to use the theorems
we proved about balancing. Finally, we identify two variables that are asserted by
some hypothesis to be equal, and we use that hypothesis to replace one variable
with the other everywhere.

Theorem present ins : ∀ c n (t : rbtree c n),
present insResult t (ins t).
induction t ; crush;
repeat (match goal with

| [ H : context [if ?E then else ] ` ] ⇒ destruct E
| [ ` context [if ?E then else ] ] ⇒ destruct E
| [ H : context [match ?C with Red ⇒ | Black ⇒ end]

` ] ⇒ destruct C
end; crush);

try match goal with
| [ H : context [balance1 ?A ?B ?C] ` ] ⇒
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generalize (present balance1 A B C )
end;

try match goal with
| [ H : context [balance2 ?A ?B ?C] ` ] ⇒
generalize (present balance2 A B C )

end;
try match goal with

| [ ` context [balance1 ?A ?B ?C] ] ⇒
generalize (present balance1 A B C )

end;
try match goal with

| [ ` context [balance2 ?A ?B ?C] ] ⇒
generalize (present balance2 A B C )

end;
crush;
match goal with
| [ z : nat, x : nat ` ] ⇒
match goal with
| [ H : z = x ` ] ⇒ rewrite H in ∗; clear H

end
end;
tauto.

Qed.

The hard work is done. The most readable way to state correctness of insert
involves splitting the property into two color-specific theorems. We write a tactic
to encapsulate the reasoning steps that work to establish both facts.

Ltac present insert :=
unfold insert ; intros n t ; inversion t ;
generalize (present ins t); simpl;

dep destruct (ins t); tauto.

Theorem present insert Red : ∀ n (t : rbtree Red n),
present z (insert t)
↔ (z = x ∨ present z t).
present insert.

Qed.

Theorem present insert Black : ∀ n (t : rbtree Black n),
present z (projT2 (insert t))
↔ (z = x ∨ present z t).
present insert.

Qed.
End present.

End insert.
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4.4 A Certified Regular Expression Matcher

Another interesting example is regular expressions with dependent types that ex-
press which predicates over strings particular regexps implement. We can then
assign a dependent type to a regular expression matching function, guaranteeing
that it always decides the string property that we expect it to decide.

Before defining the syntax of expressions, it is helpful to define an inductive type
capturing the meaning of the Kleene star. We use Coq’s string support, which
comes through a combination of the Strings library and some parsing notations
built into Coq. Operators like ++ and functions like length that we know from
lists are defined again for strings. Notation scopes help us control which versions
we want to use in particular contexts.

Require Import Ascii String.
Open Scope string scope.

Section star.
Variable P : string → Prop.

Inductive star : string → Prop :=
| Empty : star ””
| Iter : ∀ s1 s2,

P s1
→ star s2
→ star (s1 ++ s2 ).

End star.

Now we can make our first attempt at defining a regexp type that is indexed
by predicates on strings. Here is a reasonable-looking definition that is restricted
to constant characters and concatenation. We use Coq’s string type, which is
essentially a specialized list type with “nil” constructor ”” and “cons” constructor
String.

Inductive regexp : (string → Prop) → Set :=
| Char : ∀ ch : ascii,

regexp (fun s ⇒ s = String ch ””)
| Concat : ∀ (P1 P2 : string → Prop) (r1 : regexp P1 ) (r2 : regexp P2 ),

regexp (fun s ⇒ ∃ s1, ∃ s2, s = s1 ++ s2 ∧ P1 s1 ∧ P2 s2 ).

User error: Large non-propositional inductive types must be in Type

What is a large inductive type? In Coq, it is an inductive type that has a
constructor which quantifies over some type of type Type. We have not worked
with Type very much to this point. Every term of CIC has a type, including Set
and Prop, which are assigned type Type. The type string → Prop from the failed
definition also has type Type.

It turns out that allowing large inductive types in Set leads to contradictions
when combined with certain kinds of classical logic reasoning. Thus, by default,
such types are ruled out. There is a simple fix for our regexp definition, which is
to place our new type in Type. While fixing the problem, we also expand the list
of constructors to cover the remaining regular expression operators.
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Inductive regexp : (string → Prop) → Type :=
| Char : ∀ ch : ascii,

regexp (fun s ⇒ s = String ch ””)
| Concat : ∀ P1 P2 (r1 : regexp P1 ) (r2 : regexp P2 ),

regexp (fun s ⇒ ∃ s1, ∃ s2, s = s1 ++ s2 ∧ P1 s1 ∧ P2 s2 )
| Or : ∀ P1 P2 (r1 : regexp P1 ) (r2 : regexp P2 ),

regexp (fun s ⇒ P1 s ∨ P2 s)
| Star : ∀ P (r : regexp P),

regexp (star P).

Many theorems about strings are useful for implementing a certified regexp
matcher, and few of them are in the Strings library. The source to this section
includes statements, proofs, and hint commands for a handful of such omitted the-
orems. Since they are orthogonal to our use of dependent types, we hide them in
the rendered version.

A few auxiliary functions help us in our final matcher definition. The function
split will be used to implement the regexp concatenation case.

Section split.
Variables P1 P2 : string → Prop.
Variable P1 dec : ∀ s, {P1 s} + {¬ P1 s}.
Variable P2 dec : ∀ s, {P2 s} + {¬ P2 s}.
We require a choice of two arbitrary string predicates and functions for deciding

them.

Variable s : string.
Our computation will take place relative to a single fixed string, so it is easiest

to make it a Variable, rather than an explicit argument to our functions.

split’ is the workhorse behind split. It searches through the possible ways of
splitting s into two pieces, checking the two predicates against each such pair. split’
progresses right-to-left, from splitting all of s into the first piece to splitting all of s
into the second piece. It takes an extra argument, n, which specifies how far along
we are in this search process.

Definition split’ (n : nat) : n ≤ length s
→ {∃ s1, ∃ s2, length s1 ≤ n ∧ s1 ++ s2 = s ∧ P1 s1 ∧ P2 s2}
+ {∀ s1 s2, length s1 ≤ n → s1 ++ s2 = s → ¬ P1 s1 ∨ ¬ P2 s2}.
refine (fix F (n : nat) : n ≤ length s
→ {∃ s1, ∃ s2, length s1 ≤ n ∧ s1 ++ s2 = s ∧ P1 s1 ∧ P2 s2}
+ {∀ s1 s2, length s1 ≤ n → s1 ++ s2 = s → ¬ P1 s1 ∨ ¬ P2 s2} :=
match n with
| O ⇒ fun ⇒ Reduce (P1 dec ”” && P2 dec s)
| S n’ ⇒ fun ⇒ (P1 dec (substring 0 (S n’ ) s)

&& P2 dec (substring (S n’ ) (length s - S n’ ) s))
|| F n’

end); clear F ; crush; eauto 7;
match goal with
| [ : length ?S ≤ 0 ` ] ⇒ destruct S
| [ : length ?S’ ≤ S ?N ` ] ⇒
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generalize (eq nat dec (length S’ ) (S N )); destruct 1
end; crush.

Defined.

There is one subtle point in the split’ code that is worth mentioning. The main
body of the function is a match on n. In the case where n is known to be S n’,
we write S n’ in several places where we might be tempted to write n. However,
without further work to craft proper match annotations, the type-checker does not
use the equality between n and S n’. Thus, it is common to see patterns repeated
in match case bodies in dependently-typed Coq code. We can at least use a let
expression to avoid copying the pattern more than once, replacing the second case
body with:

| S n’ ⇒ fun ⇒ let n := S n’ in
(P1 dec (substring 0 n s)

&& P2 dec (substring n (length s - n) s))
|| F n’

split itself is trivial to implement in terms of split’. We just ask split’ to begin
its search with n = length s.

Definition split : {∃ s1, ∃ s2, s = s1 ++ s2 ∧ P1 s1 ∧ P2 s2}
+ {∀ s1 s2, s = s1 ++ s2 → ¬ P1 s1 ∨ ¬ P2 s2}.
refine (Reduce (split’ (n := length s) )); crush; eauto.

Defined.
End split.

Implicit Arguments split [P1 P2 ].

One more helper function will come in handy: dec star, for implementing another
linear search through ways of splitting a string, this time for implementing the
Kleene star.

Section dec star.
Variable P : string → Prop.
Variable P dec : ∀ s, {P s} + {¬ P s}.
Some new lemmas and hints about the star type family are useful here. We omit

them here; they are included in the source at this point.

The function dec star” implements a single iteration of the star. That is, it
tries to find a string prefix matching P , and it calls a parameter function on the
remainder of the string.

Section dec star”.
Variable n : nat.

n is the length of the prefix of s that we have already processed.

Variable P’ : string → Prop.
Variable P’ dec : ∀ n’ : nat, n’ > n
→ {P’ (substring n’ (length s - n’ ) s)}
+ {¬ P’ (substring n’ (length s - n’ ) s)}.
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When we use dec star”, we will instantiate P’ dec with a function for continuing
the search for more instances of P in s.

Now we come to dec star” itself. It takes as an input a natural l that records how
much of the string has been searched so far, as we did for split’. The return type
expresses that dec star” is looking for an index into s that splits s into a nonempty
prefix and a suffix, such that the prefix satisfies P and the suffix satisfies P’ .

Definition dec star” (l : nat)
: {∃ l’, S l’ ≤ l
∧ P (substring n (S l’ ) s)
∧ P’ (substring (n + S l’ ) (length s - (n + S l’ )) s)}

+ {∀ l’, S l’ ≤ l
→ ¬ P (substring n (S l’ ) s)
∨ ¬ P’ (substring (n + S l’ ) (length s - (n + S l’ )) s)}.

refine (fix F (l : nat) : {∃ l’, S l’ ≤ l
∧ P (substring n (S l’ ) s)
∧ P’ (substring (n + S l’ ) (length s - (n + S l’ )) s)}

+ {∀ l’, S l’ ≤ l
→ ¬ P (substring n (S l’ ) s)
∨ ¬ P’ (substring (n + S l’ ) (length s - (n + S l’ )) s)} :=

match l with
| O ⇒
| S l’ ⇒

(P dec (substring n (S l’ ) s) && P’ dec (n’ := n + S l’ ) )
|| F l’

end); clear F ; crush; eauto 7;
match goal with
| [ H : ?X ≤ S ?Y ` ] ⇒ destruct (eq nat dec X (S Y )); crush

end.
Defined.

End dec star”.

The work of dec star” is nested inside another linear search by dec star’, which
provides the final functionality we need, but for arbitrary suffixes of s, rather than
just for s overall.

Definition dec star’ (n n’ : nat) : length s - n’ ≤ n
→ {star P (substring n’ (length s - n’ ) s)}
+ {¬ star P (substring n’ (length s - n’ ) s)}.
refine (fix F (n n’ : nat) : length s - n’ ≤ n
→ {star P (substring n’ (length s - n’ ) s)}
+ {¬ star P (substring n’ (length s - n’ ) s)} :=
match n with
| O ⇒ fun ⇒ Yes
| S n” ⇒ fun ⇒

le gt dec (length s) n’
|| dec star” (n := n’ ) (star P)

(fun n0 ⇒ Reduce (F n” n0 )) (length s - n’ )
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end); clear F ; crush; eauto;
match goal with
| [ H : star ` ] ⇒ apply star substring inv in H ; crush; eauto

end;
match goal with
| [ H1 : < - , H2 : ∀ l’ : nat, ≤ - → ` ] ⇒
generalize (H2 (lt le S H1 )); tauto

end.
Defined.

Finally, we have dec star, with a straightforward implementation.

Definition dec star : {star P s} + {¬ star P s}.
refine (Reduce (dec star’ (n := length s) 0 )); crush.

Defined.
End dec star.

With these helper functions completed, the implementation of our matches func-
tion is refreshingly straightforward. We only need one small piece of specific tactic
work beyond what crush does for us.

Definition matches P (r : regexp P) s : {P s} + {¬ P s}.
refine (fix F P (r : regexp P) s : {P s} + {¬ P s} :=
match r with
| Char ch ⇒ string dec s (String ch ””)
| Concat r1 r2 ⇒ Reduce (split (F r1 ) (F r2 ) s)
| Or r1 r2 ⇒ F r1 s || F r2 s
| Star r ⇒ dec star

end); crush;
match goal with
| [ H : ` ] ⇒ generalize (H (refl equal ))

end; tauto.
Defined.

5. DEPENDENT DATA STRUCTURES

Our red-black tree example from the last section illustrated how dependent types
enable static enforcement of data structure invariants. To find interesting uses of
dependent data structures, however, we need not look to the favorite examples of
data structures and algorithms textbooks. More basic examples like length-indexed
and heterogeneous lists come up again and again as the building blocks of dependent
programs. There is a surprisingly large design space for this class of data structure,
and we will spend this section exploring it.

5.1 More Length-Indexed Lists

We begin with a deeper look at the length-indexed lists that began the last section.

Section ilist.
Variable A : Set.

Inductive ilist : nat → Set :=
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| Nil : ilist O
| Cons : ∀ n, A → ilist n → ilist (S n).

We might like to have a certified function for selecting an element of an ilist by
position. We could do this using subset types and explicit manipulation of proofs,
but dependent types let us do it more directly. It is helpful to define a type family
fin, where fin n is isomorphic to {m : nat | m < n}. The type family name stands
for “finite.”

Inductive fin : nat → Set :=
| First : ∀ n, fin (S n)
| Next : ∀ n, fin n → fin (S n).

fin essentially makes a more richly-typed copy of the natural numbers. Every
element is a First iterated through applying Next a number of times that indicates
which number is being selected.

Now it is easy to pick a Prop-free type for a selection function. As usual, our
first implementation attempt will not convince the type checker, and we will attack
the deficiencies one at a time.

Fixpoint get n (ls : ilist n) : fin n → A :=
match ls with
| Nil ⇒ fun idx ⇒ whatGoesHere?
| Cons x ls’ ⇒ fun idx ⇒
match idx with
| First ⇒ x
| Next idx’ ⇒ get ls’ idx’

end
end.

We apply the usual wisdom of delaying arguments in Fixpoints so that they may
be included in return clauses. This still leaves us with a quandary in each of the
match cases. First, we need to figure out how to take advantage of the contradiction
in the Nil case. Every fin has a type of the form S n, which cannot unify with the
O value that we learn for n in the Nil case. The solution we adopt is another case
of match-within-return.

Fixpoint get n (ls : ilist n) : fin n → A :=
match ls with
| Nil ⇒ fun idx ⇒
match idx in fin n’ return (match n’ with

| O ⇒ A
| S ⇒ unit

end) with
| First ⇒ tt
| Next ⇒ tt

end
| Cons x ls’ ⇒ fun idx ⇒
match idx with
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| First ⇒ x
| Next idx’ ⇒ get ls’ idx’

end
end.

Now the first match case type-checks, and we see that the problem with the
Cons case is that the pattern-bound variable idx’ does not have an apparent type
compatible with ls’. We need to use match annotations to make the relationship
explicit. Unfortunately, the usual trick of postponing argument binding will not
help us here. We need to match on both ls and idx ; one or the other must be
matched first. To get around this, we apply the convoy pattern that we met last
section. This application is a little more clever than those we saw before; we use
the natural number predecessor function pred to express the relationship between
the types of these variables.

Fixpoint get n (ls : ilist n) : fin n → A :=
match ls with
| Nil ⇒ fun idx ⇒
match idx in fin n’ return (match n’ with

| O ⇒ A
| S ⇒ unit

end) with
| First ⇒ tt
| Next ⇒ tt

end
| Cons x ls’ ⇒ fun idx ⇒
match idx in fin n’ return ilist (pred n’ ) → A with
| First ⇒ fun ⇒ x
| Next idx’ ⇒ fun ls’ ⇒ get ls’ idx’

end ls’
end.

There is just one problem left with this implementation. Though we know that
the local ls’ in the Next case is equal to the original ls’, the type-checker is not
satisfied that the recursive call to get does not introduce non-termination. We solve
the problem by convoy-binding the partial application of get to ls’, rather than ls’
by itself.

Fixpoint get n (ls : ilist n) : fin n → A :=
match ls with
| Nil ⇒ fun idx ⇒
match idx in fin n’ return (match n’ with

| O ⇒ A
| S ⇒ unit

end) with
| First ⇒ tt
| Next ⇒ tt
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end
| Cons x ls’ ⇒ fun idx ⇒
match idx in fin n’ return (fin (pred n’ ) → A) → A with
| First ⇒ fun ⇒ x
| Next idx’ ⇒ fun get ls’ ⇒ get ls’ idx’

end (get ls’ )
end.

End ilist.
Implicit Arguments Nil [A].
Implicit Arguments First [n].

A few examples show how to make use of these definitions.
Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
: ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.
= 0
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).
= 1
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).
= 2
: nat

Of course, it is critical that invalid programs fail to type-check at all. For instance,
here is an “out-of-bounds dereference” error caught statically.

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next (Next First))).

Error: The term "Next (Next (Next First))" has type
"fin (S (S (S (S ?69))))" while it is expected to have type
"fin 3".

Our get function is also quite easy to reason about. We show how with a short
example about an analogue to the list map function.
Section ilist map.
Variables A B : Set.
Variable f : A → B.
Fixpoint imap n (ls : ilist A n) : ilist B n :=
match ls with
| Nil ⇒ Nil
| Cons x ls’ ⇒ Cons (f x ) (imap ls’ )

end.
It is easy to prove that get “distributes over” imap calls. The only tricky bit is

remembering to use the dep destruct tactic in place of plain destruct when faced
with a baffling tactic error message.
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Theorem get imap : ∀ n (idx : fin n) (ls : ilist A n),
get (imap ls) idx = f (get ls idx ).
induction ls; dep destruct idx ; crush.

Qed.
End ilist map.

With a few basic functions defined over ilists, we can write further useful dependently-
typed functions with minimal hassle. For instance, we might want to mix in Section
3’s subset type functionality, in building a richly-typed equality test for ilists.

Section ilist eq dec.
Variable A : Set.
Variable A eq dec : ∀ a b : A, {a = b} + {a 6= b}.
We parameterize over the carried type A and a decidable equality function for

it.

The function itself is easy to write, using the hd function we wrote in the last
section, plus the dual tl function, whose implementation we leave as an exercise
for the reader. Coding ilist eq dec involves little more than repeating the function
type inside a refine and applying the convenient notations from Section 3. An
automated proof destructs ilists of known or partially-known size and leaves the
rest to crush.

Definition ilist eq dec : ∀ (n : nat) (l1 l2 : ilist A n), {l1 = l2} + {l1 6= l2}.
refine (fix F (n : nat) : ∀ l1 l2 : ilist A n, {l1 = l2} + {l1 6= l2} :=
match n with
| O ⇒ fun ⇒ Yes
| S n’ ⇒ fun l1 l2 ⇒
Reduce (A eq dec (hd l1 ) (hd l2 ) && F n’ (tl l1 ) (tl l2 ))

end);
repeat (match goal with

| [ l : ilist O ` ] ⇒ dep destruct l
| [ l : ilist (S ) ` ] ⇒ dep destruct l

end; crush).
Defined.

End ilist eq dec.

5.2 Heterogeneous Lists

Programmers who move to statically-typed functional languages from “scripting
languages” often complain about the requirement that every element of a list have
the same type. With fancy type systems, we can partially lift this requirement. We
can index a list type with a “type-level” list that explains what type each element
of the list should have. This has been done in a variety of ways in Haskell using
type classes, and we can do it much more cleanly and directly in Coq.

Section hlist.
Variable A : Type.
Variable B : A → Type.

We parameterize our heterogeneous lists by a type A and an A-indexed type B .
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Inductive hlist : list A → Type :=
| MNil : hlist nil
| MCons : ∀ (x : A) (ls : list A), B x → hlist ls → hlist (x :: ls).

We can implement a variant of the last section’s get function for hlists. To get
the dependent typing to work out, we will need to index our element selectors by
the types of data that they point to.

Variable elm : A.

Inductive member : list A → Type :=
| MFirst : ∀ ls, member (elm :: ls)
| MNext : ∀ x ls, member ls → member (x :: ls).

Because the element elm that we are “searching for” in a list does not change
across the constructors of member, we simplify our definitions by making elm a
local variable. In the definition of member, we say that elm is found in any list that
begins with elm, and, if removing the first element of a list leaves elm present, then
elm is present in the original list, too. The form looks much like a predicate for list
membership, but we purposely define member in Type so that we may decompose
its values to guide computations.

We can use member to adapt our definition of get to hlists. The same basic
match tricks apply. In the MCons case, we form a two-element convoy, passing both
the data element x and the recursor for the sublist mls’ to the result of the inner
match. We did not need to do that in get’s definition because the types of list
elements were not dependent there.

Fixpoint hget ls (mls : hlist ls) : member ls → B elm :=
match mls with
| MNil ⇒ fun mem ⇒
match mem in member ls’ return (match ls’ with

| nil ⇒ B elm
| :: ⇒ unit

end) with
| MFirst ⇒ tt
| MNext ⇒ tt

end
| MCons x mls’ ⇒ fun mem ⇒
match mem in member ls’
return (match ls’ with

| nil ⇒ Empty set
| x’ :: ls” ⇒ B x’ → (member ls” → B elm) → B elm

end) with
| MFirst ⇒ fun x ⇒ x
| MNext mem’ ⇒ fun get mls’ ⇒ get mls’ mem’

end x (hget mls’ )
end.

End hlist.

Implicit Arguments MNil [A B ].
Implicit Arguments MCons [A B x ls].
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Implicit Arguments MFirst [A elm ls].
Implicit Arguments MNext [A elm x ls].

By putting the parameters A and B in Type, we allow some very higher-order
uses. For instance, one use of hlist is for the simple heterogeneous lists that we
referred to earlier.

Definition someTypes : list Set := nat :: bool :: nil.

Example someValues : hlist (fun T : Set ⇒ T ) someTypes :=
MCons 5 (MCons true MNil).

Eval simpl in hget someValues MFirst.
= 5
: (fun T : Set ⇒ T ) nat

Eval simpl in hget someValues (MNext MFirst).
= true
: (fun T : Set ⇒ T ) bool

We can also build indexed lists of pairs in this way.

Example somePairs : hlist (fun T : Set ⇒ T × T )%type someTypes :=
MCons (1, 2) (MCons (true, false) MNil).

5.2.1 A Lambda Calculus Interpreter. Heterogeneous lists are very useful in
implementing interpreters for functional programming languages. Using the types
and operations we have already defined, it is trivial to write an interpreter for
simply-typed lambda calculus. Our interpreter can alternatively be thought of as
a denotational semantics.

We start with an algebraic datatype for types.

Inductive type : Set :=
| Unit : type
| Arrow : type → type → type.

Now we can define a type family for expressions. An exp ts t will stand for
an expression that has type t and whose free variables have types in the list ts.
We effectively use the de Bruijn variable representation. Variables are represented
as member values; that is, a variable is more or less a constructive proof that a
particular type is found in the type environment.

Inductive exp : list type → type → Set :=
| Const : ∀ ts, exp ts Unit
| Var : ∀ ts t, member t ts → exp ts t
| App : ∀ ts dom ran, exp ts (Arrow dom ran) → exp ts dom → exp ts ran
| Abs : ∀ ts dom ran, exp (dom :: ts) ran → exp ts (Arrow dom ran).

Implicit Arguments Const [ts].

We write a simple recursive function to translate types into Sets.

Fixpoint typeDenote (t : type) : Set :=
match t with
| Unit ⇒ unit
| Arrow t1 t2 ⇒ typeDenote t1 → typeDenote t2
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end.

Now it is straightforward to write an expression interpreter. The type of the func-
tion, expDenote, tells us that we translate expressions into functions from properly-
typed environments to final values. An environment for a free variable list ts is
simply a hlist typeDenote ts. That is, for each free variable, the heterogeneous list
that is the environment must have a value of the variable’s associated type. We
use hget to implement the Var case, and we use MCons to extend the environment
in the Abs case.

Fixpoint expDenote ts t (e : exp ts t) : hlist typeDenote ts → typeDenote t :=
match e with
| Const ⇒ fun ⇒ tt

| Var mem ⇒ fun s ⇒ hget s mem
| App e1 e2 ⇒ fun s ⇒ (expDenote e1 s) (expDenote e2 s)
| Abs e’ ⇒ fun s ⇒ fun x ⇒ expDenote e’ (MCons x s)

end.

Like for previous examples, our interpreter is easy to run with simpl.

Eval simpl in expDenote Const MNil.
= tt
: typeDenote Unit

Eval simpl in expDenote (Abs (dom := Unit) (Var MFirst)) MNil.
= fun x : unit ⇒ x
: typeDenote (Arrow Unit Unit)

Eval simpl in expDenote (Abs (dom := Unit)
(Abs (dom := Unit) (Var (MNext MFirst)))) MNil.

= fun x : unit ⇒ x
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in
expDenote (Abs (dom := Unit) (Abs (dom := Unit) (Var MFirst))) MNil.

= fun x0 : unit ⇒ x0
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (App (Abs (Var MFirst)) Const) MNil.
= tt
: typeDenote Unit

We are starting to develop the tools behind dependent typing’s amazing advan-
tage over alternative approaches in several important areas. Here, we have imple-
mented complete syntax, typing rules, and evaluation semantics for simply-typed
lambda calculus without even needing to define a syntactic substitution operation.
We did it all without a single line of proof, and our implementation is manifestly
executable. More common approaches to language formalization often state and
prove explicit theorems about type safety of languages. In the above example, we
got type safety, termination, and other meta-theorems for free, by reduction to
CIC, which we know has those properties.
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5.3 Recursive Type Definitions

There is another style of datatype definition that leads to much simpler definitions of
the get and hget definitions above. Because Coq supports “type-level computation,”
we can redo our inductive definitions as recursive definitions.

Section filist.
Variable A : Set.

Fixpoint filist (n : nat) : Set :=
match n with
| O ⇒ unit
| S n’ ⇒ A × filist n’

end%type.

We say that a list of length 0 has no contents, and a list of length S n’ is a pair
of a data value and a list of length n’.

Fixpoint ffin (n : nat) : Set :=
match n with
| O ⇒ Empty set
| S n’ ⇒ option (ffin n’ )

end.

We express that there are no index values when n = O, by defining such indices
as type Empty set; and we express that, at n = S n’, there is a choice between
picking the first element of the list (represented as None) or choosing a later element
(represented by Some idx, where idx is an index into the list tail).

Fixpoint fget (n : nat) : filist n → ffin n → A :=
match n with
| O ⇒ fun idx ⇒ match idx with end
| S n’ ⇒ fun ls idx ⇒
match idx with
| None ⇒ fst ls
| Some idx’ ⇒ fget n’ (snd ls) idx’

end
end.

Our new get implementation needs only one dependent match, and its annotation
is inferred for us. Our choices of data structure implementations lead to just the
right typing behavior for this new definition to work out.

End filist.

Heterogeneous lists are a little trickier to define with recursion, but we then reap
similar benefits in simplicity of use.

Section fhlist.
Variable A : Type.
Variable B : A → Type.

Fixpoint fhlist (ls : list A) : Type :=
match ls with
| nil ⇒ unit
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| x :: ls’ ⇒ B x × fhlist ls’
end%type.

The definition of fhlist follows the definition of filist, with the added wrinkle of
dependently-typed data elements.

Variable elm : A.

Fixpoint fmember (ls : list A) : Type :=
match ls with
| nil ⇒ Empty set
| x :: ls’ ⇒ (x = elm) + fmember ls’

end%type.

The definition of fmember follows the definition of ffin. Empty lists have no mem-
bers, and member types for nonempty lists are built by adding one new option to
the type of members of the list tail. While for index we needed no new information
associated with the option that we add, here we need to know that the head of
the list equals the element we are searching for. We express that with a sum type
whose left branch is the appropriate equality proposition. Since we define fmember
to live in Type, we can insert Prop types as needed, because Prop is a subtype of
Type.

We know all of the tricks needed to write a first attempt at a get function for
fhlists.

Fixpoint fhget (ls : list A) : fhlist ls → fmember ls → B elm :=
match ls with
| nil ⇒ fun idx ⇒ match idx with end
| :: ls’ ⇒ fun mls idx ⇒
match idx with
| inl ⇒ fst mls
| inr idx’ ⇒ fhget ls’ (snd mls) idx’

end
end.

Only one problem remains. The expression fst mls is not known to have the
proper type. To demonstrate that it does, we need to use the proof available in the
inl case of the inner match.

Fixpoint fhget (ls : list A) : fhlist ls → fmember ls → B elm :=
match ls with
| nil ⇒ fun idx ⇒ match idx with end
| :: ls’ ⇒ fun mls idx ⇒
match idx with
| inl pf ⇒ match pf with

| refl equal ⇒ fst mls
end

| inr idx’ ⇒ fhget ls’ (snd mls) idx’
end

end.
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By pattern-matching on the equality proof pf, we make that equality known to
the type-checker. Exactly why this works can be seen by studying the definition of
equality.

Print eq.
Inductive eq (A : Type) (x : A) : A → Prop := refl equal : x = x

In a proposition x = y, we see that x is a parameter and y is a regular argument.
The type of the constructor refl equal shows that y can only ever be instantiated to
x . Thus, within a pattern-match with refl equal, occurrences of y can be replaced
with occurrences of x for typing purposes.

End fhlist.

Implicit Arguments fhget [A B elm ls].

5.4 Data Structures as Index Functions

Indexed lists can be useful in defining other inductive types with constructors that
take variable numbers of arguments. In this section, we consider parameterized
trees with arbitrary branching factor.

Section tree.
Variable A : Set.

Inductive tree : Set :=
| Leaf : A → tree
| Node : ∀ n, ilist tree n → tree.

End tree.

Every Node of a tree has a natural number argument, which gives the number of
child trees in the second argument, typed with ilist. We can define two operations
on trees of naturals: summing their elements and incrementing their elements. It
is useful to define a generic fold function on ilists first.

Section ifoldr.
Variables A B : Set.
Variable f : A → B → B.
Variable i : B.

Fixpoint ifoldr n (ls : ilist A n) : B :=
match ls with
| Nil ⇒ i
| Cons x ls’ ⇒ f x (ifoldr ls’ )

end.
End ifoldr.

Fixpoint sum (t : tree nat) : nat :=
match t with
| Leaf n ⇒ n
| Node ls ⇒ ifoldr (fun t’ n ⇒ sum t’ + n) O ls

end.

Fixpoint inc (t : tree nat) : tree nat :=
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match t with
| Leaf n ⇒ Leaf (S n)
| Node ls ⇒ Node (imap inc ls)

end.

Now we might like to prove that inc does not decrease a tree’s sum.

Theorem sum inc : ∀ t, sum (inc t) ≥ sum t.
induction t ; crush.

n : nat
i : ilist (tree nat) n
============================

ifoldr (fun (t’ : tree nat) (n0 : nat) ⇒ sum t’ + n0 ) 0 (imap inc i) ≥
ifoldr (fun (t’ : tree nat) (n0 : nat) ⇒ sum t’ + n0 ) 0 i

We are left with a single subgoal which does not seem provable directly. The
problem is that Coq generates induction principles using a best-effort heuristic;
sometimes more permissive principles are possible, and the principle we are getting
here for tree is very weak.

Check tree ind.
tree ind

: ∀ (A : Set) (P : tree A → Prop),
(∀ a : A, P (Leaf a)) →
(∀ (n : nat) (i : ilist (tree A) n), P (Node i)) →
∀ t : tree A, P t

For the Node case, we get no inductive hypothesis. We could prove and apply
our own induction principle, which is an informative exercise, but there is an easier
way, if we are willing to alter the definition of tree.

Abort.

Reset tree.

First, let us try using our recursive definition of ilists instead of the inductive
version.

Section tree.
Variable A : Set.

Inductive tree : Set :=
| Leaf : A → tree
| Node : ∀ n, filist tree n → tree.

Error: Non strictly positive occurrence of "tree" in
"forall n : nat, filist tree n -> tree"

Coq inductive definitions support a special-case rule for nested datatypes, where
one datatype is defined in terms of an instantiation of another. Unfortunately, this
only works with nested uses of other inductive types, which could be replaced with
uses of new mutually-inductive types. We defined filist recursively, so it may not
be used for nested recursion.
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Our final solution uses a technique called reflexive types, where an inductive
type is defined in terms of functions returning values in that same type. Instead of
merely using fin to get elements out of ilist, we can define ilist in terms of fin. For
the reasons outlined above, it turns out to be easier to work with ffin in place of
fin.

Inductive tree : Set :=
| Leaf : A → tree
| Node : ∀ n, (ffin n → tree) → tree.

A Node is indexed by a natural number n, and the node’s n children are rep-
resented as a function from ffin n to trees, which is isomorphic to the ilist-based
representation that we used above.

End tree.

Implicit Arguments Node [A n].

We can redefine sum and inc for our new tree type. Again, it is useful to define
a generic fold function first. This time, it takes in a function whose range is some
ffin type, and it folds another function over the results of calling the first function
at every possible ffin value.

Section rifoldr.
Variables A B : Set.
Variable f : A → B → B.
Variable i : B.

Fixpoint rifoldr (n : nat) : (ffin n → A) → B :=
match n with
| O ⇒ fun ⇒ i
| S n’ ⇒ fun get ⇒ f (get None) (rifoldr n’ (fun idx ⇒ get (Some idx )))

end.
End rifoldr.

Implicit Arguments rifoldr [A B n].

Fixpoint sum (t : tree nat) : nat :=
match t with
| Leaf n ⇒ n
| Node f ⇒ rifoldr plus O (fun idx ⇒ sum (f idx ))

end.

Fixpoint inc (t : tree nat) : tree nat :=
match t with
| Leaf n ⇒ Leaf (S n)
| Node f ⇒ Node (fun idx ⇒ inc (f idx ))

end.

Now we are ready to prove the theorem where we got stuck before. We will not
need to define any new induction principle, but it will be helpful to prove some
lemmas.

Lemma plus ge : ∀ x1 y1 x2 y2,
x1 ≥ x2
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→ y1 ≥ y2
→ x1 + y1 ≥ x2 + y2.
crush.

Qed.

Lemma sum inc’ : ∀ n (f1 f2 : ffin n → nat),
(∀ idx, f1 idx ≥ f2 idx )
→ rifoldr plus 0 f1 ≥ rifoldr plus 0 f2.
Hint Resolve plus ge.

induction n; crush.
Qed.

Theorem sum inc : ∀ t, sum (inc t) ≥ sum t.
Hint Resolve sum inc’.

induction t ; crush.
Qed.

Even if Coq would generate complete induction principles automatically for
nested inductive definitions like the one we started with, there would still be ad-
vantages to using this style of reflexive encoding. We see one of those advantages in
the definition of inc, where we did not need to use any kind of auxiliary function. In
general, reflexive encodings often admit direct implementations of operations that
would require recursion if performed with more traditional inductive data struc-
tures.

5.4.1 Another Interpreter Example. We develop another example of variable-
arity constructors, in the form of optimization of a small expression language with
a construct like Scheme’s cond. Each of our conditional expressions takes a list
of pairs of boolean tests and bodies. The value of the conditional comes from the
body of the first test in the list to evaluate to true. To simplify the interpreter we
will write, we force each conditional to include a final, default case.

Inductive type’ : Type := Nat | Bool.

Inductive exp’ : type’ → Type :=
| NConst : nat → exp’ Nat
| Plus : exp’ Nat → exp’ Nat → exp’ Nat
| Eq : exp’ Nat → exp’ Nat → exp’ Bool

| BConst : bool → exp’ Bool
| Cond : ∀ n t, (ffin n → exp’ Bool)
→ (ffin n → exp’ t) → exp’ t → exp’ t.

A Cond is parameterized by a natural n, which tells us how many cases this
conditional has. The test expressions are represented with a function of type ffin n
→ exp’ Bool, and the bodies are represented with a function of type ffin n → exp’
t , where t is the overall type. The final exp’ t argument is the default case.

We start implementing our interpreter with a standard type denotation function.

Definition type’Denote (t : type’) : Set :=
match t with
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| Nat ⇒ nat
| Bool ⇒ bool

end.

To implement the expression interpreter, it is useful to have the following function
that implements the functionality of Cond without involving any syntax.

Section cond.
Variable A : Set.
Variable default : A.

Fixpoint cond (n : nat) : (ffin n → bool) → (ffin n → A) → A :=
match n with
| O ⇒ fun ⇒ default
| S n’ ⇒ fun tests bodies ⇒
if tests None
then bodies None
else cond n’

(fun idx ⇒ tests (Some idx ))
(fun idx ⇒ bodies (Some idx ))

end.
End cond.

Implicit Arguments cond [A n].

Now the expression interpreter is straightforward to write.

Fixpoint exp’Denote t (e : exp’ t) : type’Denote t :=
match e with
| NConst n ⇒ n
| Plus e1 e2 ⇒ exp’Denote e1 + exp’Denote e2
| Eq e1 e2 ⇒
if eq nat dec (exp’Denote e1 ) (exp’Denote e2 ) then true else false

| BConst b ⇒ b
| Cond tests bodies default ⇒

cond
(exp’Denote default)
(fun idx ⇒ exp’Denote (tests idx ))
(fun idx ⇒ exp’Denote (bodies idx ))

end.

We will implement a constant-folding function that optimizes conditionals, re-
moving cases with known-false tests and cases that come after known-true tests. A
function cfoldCond implements the heart of this logic. The convoy pattern is used
again near the end of the implementation.

Section cfoldCond.
Variable t : type’.
Variable default : exp’ t.

Fixpoint cfoldCond (n : nat)
: (ffin n → exp’ Bool) → (ffin n → exp’ t) → exp’ t :=
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match n with
| O ⇒ fun ⇒ default
| S n’ ⇒ fun tests bodies ⇒
match tests None return with
| BConst true ⇒ bodies None
| BConst false ⇒ cfoldCond n’

(fun idx ⇒ tests (Some idx ))
(fun idx ⇒ bodies (Some idx ))

| ⇒
let e := cfoldCond n’

(fun idx ⇒ tests (Some idx ))
(fun idx ⇒ bodies (Some idx )) in

match e in exp’ t return exp’ t → exp’ t with
| Cond n tests’ bodies’ default’ ⇒ fun body ⇒

Cond
(S n)
(fun idx ⇒ match idx with

| None ⇒ tests None
| Some idx ⇒ tests’ idx

end)
(fun idx ⇒ match idx with

| None ⇒ body
| Some idx ⇒ bodies’ idx

end)
default’
| e ⇒ fun body ⇒

Cond
1
(fun ⇒ tests None)
(fun ⇒ body)
e

end (bodies None)
end

end.
End cfoldCond.

Implicit Arguments cfoldCond [t n].

Like for the interpreters, most of the action was in this helper function, and cfold
itself is easy to write.

Fixpoint cfold t (e : exp’ t) : exp’ t :=
match e with
| NConst n ⇒ NConst n
| Plus e1 e2 ⇒
let e1’ := cfold e1 in
let e2’ := cfold e2 in
match e1’, e2’ return with
| NConst n1, NConst n2 ⇒ NConst (n1 + n2 )
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| , ⇒ Plus e1’ e2’
end

| Eq e1 e2 ⇒
let e1’ := cfold e1 in
let e2’ := cfold e2 in
match e1’, e2’ return with
| NConst n1, NConst n2 ⇒

BConst (if eq nat dec n1 n2 then true else false)
| , ⇒ Eq e1’ e2’

end

| BConst b ⇒ BConst b
| Cond tests bodies default ⇒

cfoldCond
(cfold default)
(fun idx ⇒ cfold (tests idx ))
(fun idx ⇒ cfold (bodies idx ))

end.

To prove our final correctness theorem, it is useful to know that cfoldCond pre-
serves expression meanings. This lemma formalizes that property. The proof is a
standard mostly-automated one, with the only wrinkle being a guided instantiation
of the quantifiers in the induction hypothesis.

Lemma cfoldCond correct : ∀ t (default : exp’ t)
n (tests : ffin n → exp’ Bool) (bodies : ffin n → exp’ t),
exp’Denote (cfoldCond default tests bodies)
= exp’Denote (Cond n tests bodies default).
induction n; crush;
match goal with
| [ IHn : ∀ tests bodies, , tests : → , bodies : → ` ] ⇒

specialize (IHn (fun idx ⇒ tests (Some idx ))
(fun idx ⇒ bodies (Some idx )))

end;
repeat (match goal with

| [ ` context [match ?E with
| NConst ⇒
| Plus ⇒
| Eq ⇒
| BConst ⇒
| Cond ⇒

end] ] ⇒ dep destruct E
| [ ` context [if ?B then else ] ] ⇒ destruct B

end; crush).
Qed.

It is also useful to know that the result of a call to cond is not changed by
substituting new tests and bodies functions, so long as the new functions have
the same input-output behavior as the old. It turns out that, in Coq, it is not
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possible to prove in general that functions related in this way are equal. It suffices
to prove that the particular function cond is extensional ; that is, it is unaffected by
substitution of functions with input-output equivalents.

Lemma cond ext : ∀ (A : Set) (default : A) n (tests tests’ : ffin n → bool)
(bodies bodies’ : ffin n → A),
(∀ idx, tests idx = tests’ idx )
→ (∀ idx, bodies idx = bodies’ idx )
→ cond default tests bodies
= cond default tests’ bodies’.
induction n; crush;
match goal with
| [ ` context [if ?E then else ] ] ⇒ destruct E

end; crush.
Qed.

Now the final theorem is easy to prove. We add our two lemmas as hints and
perform standard automation with pattern-matching of subterms to destruct.

Theorem cfold correct : ∀ t (e : exp’ t),
exp’Denote (cfold e) = exp’Denote e.
Hint Rewrite cfoldCond correct : cpdt.
Hint Resolve cond ext.

induction e; crush;
repeat (match goal with

| [ ` context [cfold ?E] ] ⇒ dep destruct (cfold E )
end; crush).

Qed.

5.5 Choosing Between Representations

It is not always clear which of these representation techniques to apply in a partic-
ular situation, but I will try to summarize the pros and cons of each.

Inductive types are often the most pleasant to work with, after someone has spent
the time implementing some basic library functions for them, using fancy match
annotations. Many aspects of Coq’s logic and tactic support are specialized to deal
with inductive types, and you may miss out if you use alternate encodings.

Recursive types usually involve much less initial effort, but they can be less
convenient to use with proof automation. For instance, the simpl tactic (which is
among the ingredients in crush) will sometimes be overzealous in simplifying uses
of functions over recursive types. Consider a call get l f , where variable l has type
filist A (S n). The type of l would be simplified to an explicit pair type. In a
proof involving many recursive types, this kind of unhelpful “simplification” can
lead to rapid bloat in the sizes of subgoals. Even worse, it can prevent syntactic
pattern-matching, like in cases where filist is expected but a pair type is found in
the “simplified” version.

Another disadvantage of recursive types is that they only apply to type families
whose indices determine their “skeletons.” This is not true for all data structures;
a good counterexample comes from the richly-typed programming language syntax
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types we have used several times so far. The fact that a piece of syntax has type
Nat tells us nothing about the tree structure of that syntax.

Reflexive encodings of data types are seen relatively rarely. As our examples
demonstrated, manipulating index values manually can lead to hard-to-read code.
A normal inductive type is generally easier to work with, once someone has gone
through the trouble of implementing an induction principle manually. For small
developments, avoiding that kind of coding can justify the use of reflexive data
structures. There are also some useful instances of co-inductive definitions with
nested data structures (e.g., lists of values in the co-inductive type) that can only
be deconstructed effectively with reflexive encoding of the nested structures.

6. REASONING ABOUT EQUALITY PROOFS

In traditional mathematics, the concept of equality is usually taken as a given. On
the other hand, in type theory, equality is a very contentious subject. There are
at least three different notions of equality that are important, and researchers are
actively investigating new definitions of what it means for two terms to be equal.
Even once we fix a notion of equality, there are inevitably tricky issues that arise in
proving properties of programs that manipulate equality proofs explicitly. In this
section, I will focus on design patterns for circumventing these tricky issues, and I
will introduce the different notions of equality as they are germane.

6.1 The Definitional Equality

We have seen many examples so far where proof goals follow “by computation.”
That is, we apply computational reduction rules to reduce the goal to a normal
form, at which point it follows trivially. Exactly when this works and when it does
not depends on the details of Coq’s definitional equality. This is an untyped binary
relation appearing in the formal metatheory of CIC. CIC contains a typing rule
allowing the conclusion E : T from the premise E : T ′ and a proof that T and T ′

are definitionally equal.
The cbv tactic will help us illustrate the rules of Coq’s definitional equality. We

redefine the natural number predecessor function in a somewhat convoluted way
and construct a manual proof that it returns 0 when applied to 1.

Definition pred’ (x : nat) :=
match x with
| O ⇒ O
| S n’ ⇒ let y := n’ in y

end.

Theorem reduce me : pred’ 1 = 0.

CIC follows the traditions of lambda calculus in associating reduction rules with
Greek letters. Coq can certainly be said to support the familiar alpha reduction
rule, which allows capture-avoiding renaming of bound variables, but we never need
to apply alpha explicitly, since Coq uses a de Bruijn representation that encodes
terms canonically.

The delta rule is for unfolding global definitions. We can use it here to unfold the
definition of pred’. We do this with the cbv tactic, which takes a list of reduction
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rules and makes as many call-by-value reduction steps as possible, using only those
rules. There is an analogous tactic lazy for call-by-need reduction.

cbv delta.

============================
(fun x : nat ⇒ match x with

| 0 ⇒ 0
| S n’ ⇒ let y := n’ in y
end) 1 = 0

At this point, we want to apply the famous beta reduction of lambda calculus,
to simplify the application of a known function abstraction.

cbv beta.

============================
match 1 with
| 0 ⇒ 0
| S n’ ⇒ let y := n’ in y
end = 0

Next on the list is the iota reduction, which simplifies a single match term by
determining which pattern matches.

cbv iota.

============================
(fun n’ : nat ⇒ let y := n’ in y) 0 = 0

Now we need another beta reduction.

cbv beta.

============================
(let y := 0 in y) = 0

The final reduction rule is zeta, which replaces a let expression by its body with
the appropriate term substituted.

cbv zeta.

============================
0 = 0

reflexivity.
Qed.

The standard eq relation is critically dependent on the definitional equality. eq
is often called a propositional equality, because it reifies definitional equality as a
proposition that may or may not hold. Standard axiomatizations of an equality
Journal of Formalized Reasoning Vol. 3, No. 2, 2010.



An Introduction to Programming and Proving with Dependent Types in Coq · 79

predicate in first-order logic define equality in terms of properties it has, like re-
flexivity, symmetry, and transitivity. In contrast, for eq in Coq, those properties
are implicit in the properties of the definitional equality, which are built into CIC’s
metatheory and the implementation of Gallina. We could add new rules to the
definitional equality, and eq would keep its definition and methods of use.

This all may make it sound like the choice of eq ’s definition is unimportant. To
the contrary, in this section, we will see examples where alternate definitions may
simplify proofs. Before that point, I will introduce proof methods for goals that use
proofs of the standard propositional equality “as data.”

6.2 Heterogeneous Lists Revisited

One of our example dependent data structures from the last section was heteroge-
neous lists and their associated “cursor” type. The recursive version poses some
special challenges related to equality proofs, since it uses such proofs in its definition
of member types.

Section fhlist.
Variable A : Type.
Variable B : A → Type.

Fixpoint fhlist (ls : list A) : Type :=
match ls with
| nil ⇒ unit
| x :: ls’ ⇒ B x × fhlist ls’

end%type.

Variable elm : A.

Fixpoint fmember (ls : list A) : Type :=
match ls with
| nil ⇒ Empty set
| x :: ls’ ⇒ (x = elm) + fmember ls’

end%type.

Fixpoint fhget (ls : list A) : fhlist ls → fmember ls → B elm :=
match ls return fhlist ls → fmember ls → B elm with
| nil ⇒ fun idx ⇒ match idx with end
| :: ls’ ⇒ fun mls idx ⇒
match idx with
| inl pf ⇒ match pf with

| refl equal ⇒ fst mls
end

| inr idx’ ⇒ fhget ls’ (snd mls) idx’
end

end.
End fhlist.

Implicit Arguments fhget [A B elm ls].

We can define a map-like function for fhlists.

Section fhlist map.
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Variables A : Type.
Variables B C : A → Type.
Variable f : ∀ x, B x → C x.

Fixpoint fhmap (ls : list A) : fhlist B ls → fhlist C ls :=
match ls return fhlist B ls → fhlist C ls with
| nil ⇒ fun ⇒ tt
| :: ⇒ fun hls ⇒ (f (fst hls), fhmap (snd hls))

end.

Implicit Arguments fhmap [ls].

For the inductive versions of the ilist definitions, we proved a lemma about the
interaction of get and imap. It was a strategic choice not to attempt such a proof
for the definitions that we just gave, because that sets us on a collision course with
the problems that are the subject of this section.

Variable elm : A.

Theorem get imap : ∀ ls (mem : fmember elm ls) (hls : fhlist B ls),
fhget (fhmap hls) mem = f (fhget hls mem).
induction ls; crush.

Part of our single remaining subgoal is:

a0 : a = elm
============================
match a0 in ( = a2 ) return (C a2 ) with
| refl equal ⇒ f a1
end = f match a0 in ( = a2 ) return (B a2 ) with

| refl equal ⇒ a1
end

This seems like a trivial enough obligation. The equality proof a0 must be
refl equal, since that is the only constructor of eq. Therefore, both the matches
reduce to the point where the conclusion follows by reflexivity.

destruct a0.

User error: Cannot solve a second-order unification problem

This is one of Coq’s standard error messages for informing us that its heuristics
for attempting an instance of an undecidable problem about dependent typing have
failed. We might try to nudge things in the right direction by stating the lemma
that we believe makes the conclusion trivial.

assert (a0 = refl equal ).

The term "refl_equal ?98" has type "?98 = ?98"
while it is expected to have type "a = elm"

In retrospect, the problem is not so hard to see. Reflexivity proofs only show x
= x for particular values of x , whereas here we are thinking in terms of a proof of
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a = elm, where the two sides of the equality are not equal syntactically. Thus, the
essential lemma we need does not even type-check!

Is it time to throw in the towel? Luckily, the answer is “no.” In this section, we
will see several useful patterns for proving obligations like this.

For this particular example, the solution is surprisingly straightforward. destruct
has a simpler sibling case which should behave identically for any inductive type
with one constructor of no arguments.

case a0.

============================
f a1 = f a1

It seems that destruct was trying to be too smart for its own good.

reflexivity.
Qed.

It will be helpful to examine the proof terms generated by this sort of strategy.
A simpler example illustrates what is going on.

Lemma lemma1 : ∀ x (pf : x = elm), O = match pf with refl equal ⇒ O end.
simple destruct pf ; reflexivity.

Qed.

simple destruct pf is a convenient form for applying case. It runs intro to
bring into scope all quantified variables up to its argument.

Print lemma1.
lemma1 =
fun (x : A) (pf : x = elm) ⇒
match pf as e in ( = y) return (0 = match e with

| refl equal ⇒ 0
end) with

| refl equal ⇒ refl equal 0
end

: ∀ (x : A) (pf : x = elm), 0 = match pf with
| refl equal ⇒ 0
end

Using what we know about shorthands for match annotations, we can write this
proof in shorter form manually.

Definition lemma1’ :=
fun (x : A) (pf : x = elm) ⇒
match pf return (0 = match pf with

| refl equal ⇒ 0
end) with

| refl equal ⇒ refl equal 0
end.

Surprisingly, what seems at first like a simpler lemma is harder to prove.
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Lemma lemma2 : ∀ (x : A) (pf : x = x ), O = match pf with refl equal ⇒ O end.

simple destruct pf.

User error: Cannot solve a second-order unification problem

Abort.

Nonetheless, we can adapt the last manual proof to handle this theorem.

Definition lemma2 :=
fun (x : A) (pf : x = x ) ⇒
match pf return (0 = match pf with

| refl equal ⇒ 0
end) with

| refl equal ⇒ refl equal 0
end.

We can try to prove a lemma that would simplify proofs of many facts like
lemma2:

Lemma lemma3 : ∀ (x : A) (pf : x = x ), pf = refl equal x.

simple destruct pf.

User error: Cannot solve a second-order unification problem

Abort.

This time, even our manual attempt fails.

Definition lemma3’ :=
fun (x : A) (pf : x = x ) ⇒
match pf as pf’ in ( = x’ ) return (pf’ = refl equal x’ ) with
| refl equal ⇒ refl equal

end.

The term "refl_equal x’" has type "x’ = x’" while it is expected to have type
"x = x’"

The type error comes from our return annotation. In that annotation, the as-
bound variable pf’ has type x = x’, referring to the in-bound variable x’. To do a
dependent match, we must choose a fresh name for the second argument of eq. We
are just as constrained to use the “real” value x for the first argument. Thus, within
the return clause, the proof we are matching on must equate two non-matching
terms, which makes it impossible to equate that proof with reflexivity.

Nonetheless, it turns out that, with one catch, we can prove this lemma.

Lemma lemma3 : ∀ (x : A) (pf : x = x ), pf = refl equal x.
intros; apply UIP refl.

Qed.

Check UIP refl.
UIP refl

: ∀ (U : Type) (x : U ) (p : x = x ), p = refl equal x
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UIP refl comes from the Eqdep module of the standard library. Do the Coq
authors know of some clever trick for building such proofs that we have not seen
yet? If they do, they did not use it for this proof. Rather, the proof is based on an
axiom.

Print eq rect eq.
eq rect eq =
fun U : Type ⇒ Eq rect eq.eq rect eq U

: ∀ (U : Type) (p : U ) (Q : U → Type) (x : Q p) (h : p = p),
x = eq rect p Q x p h

eq rect eq states a “fact” that seems like common sense, once the notation is de-
ciphered. eq rect is the automatically-generated recursion principle for eq. Calling
eq rect is another way of matching on an equality proof. The proof we match on is
the argument h, and x is the body of the match. eq rect eq just says that matches
on proofs of p = p, for any p, are superfluous and may be removed.

Perhaps surprisingly, we cannot prove eq rect eq from within Coq. This propo-
sition is introduced as an axiom; that is, a proposition asserted as true without
proof. We cannot assert just any statement without proof. Adding False as an
axiom would allow us to prove any proposition, for instance, defeating the point
of using a proof assistant. In general, we need to be sure that we never assert in-
consistent sets of axioms. A set of axioms is inconsistent if its conjunction implies
False. For the case of eq rect eq, consistency has been verified outside of Coq via
“informal” metatheory.

This axiom is equivalent to another that is more commonly known and mentioned
in type theory circles.

Print Streicher K.
Streicher K =
fun U : Type ⇒ UIP refl Streicher K U (UIP refl U )

: ∀ (U : Type) (x : U ) (P : x = x → Prop),
P (refl equal x ) → ∀ p : x = x , P p

This is the unfortunately-named “Streicher’s axiom K,” which says that a pred-
icate on properly-typed equality proofs holds of all such proofs if it holds of reflex-
ivity.

End fhlist map.

6.3 Type-Casts in Theorem Statements

Sometimes we need to use tricks with equality just to state the theorems that we
care about. To illustrate, we start by defining a concatenation function for fhlists.

Section fhapp.
Variable A : Type.
Variable B : A → Type.

Fixpoint fhapp (ls1 ls2 : list A)
: fhlist B ls1 → fhlist B ls2 → fhlist B (ls1 ++ ls2 ) :=
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match ls1 with
| nil ⇒ fun hls2 ⇒ hls2
| :: ⇒ fun hls1 hls2 ⇒ (fst hls1, fhapp (snd hls1 ) hls2 )

end.

Implicit Arguments fhapp [ls1 ls2 ].

We might like to prove that fhapp is associative.

Theorem fhapp ass : ∀ ls1 ls2 ls3
(hls1 : fhlist B ls1 ) (hls2 : fhlist B ls2 ) (hls3 : fhlist B ls3 ),
fhapp hls1 (fhapp hls2 hls3 ) = fhapp (fhapp hls1 hls2 ) hls3.

The term
"fhapp (ls1:=ls1 ++ ls2) (ls2:=ls3) (fhapp (ls1:=ls1) (ls2:=ls2) hls1 hls2)

hls3" has type "fhlist B ((ls1 ++ ls2) ++ ls3)"
while it is expected to have type "fhlist B (ls1 ++ ls2 ++ ls3)"

This first cut at the theorem statement does not even type-check. We know that
the two fhlist types appearing in the error message are always equal, by associativity
of normal list append, but this fact is not apparent to the type checker. This stems
from the fact that Coq’s equality is intensional, in the sense that type equality
theorems can never be applied after the fact to get a term to type-check. Instead,
we need to make use of equality explicitly in the theorem statement.

Theorem fhapp ass : ∀ ls1 ls2 ls3
(pf : (ls1 ++ ls2 ) ++ ls3 = ls1 ++ (ls2 ++ ls3 ))
(hls1 : fhlist B ls1 ) (hls2 : fhlist B ls2 ) (hls3 : fhlist B ls3 ),
fhapp hls1 (fhapp hls2 hls3 )
= match pf in ( = ls) return fhlist ls with

| refl equal ⇒ fhapp (fhapp hls1 hls2 ) hls3
end.

induction ls1 ; crush.

The first remaining subgoal looks trivial enough:

============================
fhapp (ls1 :=ls2) (ls2 :=ls3) hls2 hls3 =
match pf in ( = ls) return (fhlist B ls) with
| refl equal ⇒ fhapp (ls1 :=ls2) (ls2 :=ls3) hls2 hls3
end

We can try what worked in previous examples.

case pf.
User error: Cannot solve a second-order unification problem

It seems we have reached another case where it is unclear how to use a dependent
match to implement case analysis on our proof. The UIP refl theorem can come to
our rescue again.

rewrite (UIP refl pf ).
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============================
fhapp (ls1 :=ls2) (ls2 :=ls3) hls2 hls3 =
fhapp (ls1 :=ls2) (ls2 :=ls3) hls2 hls3

reflexivity.

Our second subgoal is trickier.

pf : a :: (ls1 ++ ls2 ) ++ ls3 = a :: ls1 ++ ls2 ++ ls3
============================
(a0,
fhapp (ls1 :=ls1) (ls2 :=ls2 ++ ls3 ) b

(fhapp (ls1 :=ls2) (ls2 :=ls3) hls2 hls3 )) =
match pf in ( = ls) return (fhlist B ls) with
| refl equal ⇒

(a0,
fhapp (ls1 :=ls1 ++ ls2 ) (ls2 :=ls3)

(fhapp (ls1 :=ls1) (ls2 :=ls2) b hls2 ) hls3 )
end

rewrite (UIP refl pf ).

The term "pf" has type "a :: (ls1 ++ ls2) ++ ls3 = a :: ls1 ++ ls2 ++ ls3"
while it is expected to have type "?556 = ?556"

We can only apply UIP refl on proofs of equality with syntactically equal operands,
which is not the case of pf here. We will need to manipulate the form of this subgoal
to get us to a point where we may use UIP refl. A first step is obtaining a proof
suitable to use in applying the induction hypothesis. Inversion on the structure of
pf is sufficient for that.

injection pf ; intro pf’.

pf : a :: (ls1 ++ ls2 ) ++ ls3 = a :: ls1 ++ ls2 ++ ls3
pf ’ : (ls1 ++ ls2 ) ++ ls3 = ls1 ++ ls2 ++ ls3
============================
(a0,
fhapp (ls1 :=ls1) (ls2 :=ls2 ++ ls3 ) b

(fhapp (ls1 :=ls2) (ls2 :=ls3) hls2 hls3 )) =
match pf in ( = ls) return (fhlist B ls) with
| refl equal ⇒

(a0,
fhapp (ls1 :=ls1 ++ ls2 ) (ls2 :=ls3)

(fhapp (ls1 :=ls1) (ls2 :=ls2) b hls2 ) hls3 )
end

Now we can rewrite using the inductive hypothesis.

rewrite (IHls1 pf’ ).
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============================
(a0,
match pf’ in ( = ls) return (fhlist B ls) with
| refl equal ⇒

fhapp (ls1 :=ls1 ++ ls2 ) (ls2 :=ls3)
(fhapp (ls1 :=ls1) (ls2 :=ls2) b hls2 ) hls3

end) =
match pf in ( = ls) return (fhlist B ls) with
| refl equal ⇒

(a0,
fhapp (ls1 :=ls1 ++ ls2 ) (ls2 :=ls3)

(fhapp (ls1 :=ls1) (ls2 :=ls2) b hls2 ) hls3 )
end

We have made an important bit of progress, as now only a single call to fhapp
appears in the conclusion, repeated twice. Trying case analysis on our proofs still
will not work, but there is a move we can make to enable it. Not only does just
one call to fhapp matter to us now, but it also does not matter what the result of
the call is. In other words, the subgoal should remain true if we replace this fhapp
call with a fresh variable. The generalize tactic helps us do exactly that.

generalize (fhapp (fhapp b hls2 ) hls3 ).

∀ f : fhlist B ((ls1 ++ ls2 ) ++ ls3 ),
(a0,
match pf’ in ( = ls) return (fhlist B ls) with
| refl equal ⇒ f
end) =
match pf in ( = ls) return (fhlist B ls) with
| refl equal ⇒ (a0, f )
end

The conclusion has gotten markedly simpler. It seems counterintuitive that we
can have an easier time of proving a more general theorem, but that is exactly the
case here and for many other proofs that use dependent types heavily. Speaking
informally, the reason why this kind of activity helps is that match annotations
only support variables in certain positions. By reducing more elements of a goal
to variables, built-in tactics can have more success building match terms under the
hood.

In this case, it is helpful to generalize over our two proofs as well.

generalize pf pf ’.

∀ (pf0 : a :: (ls1 ++ ls2 ) ++ ls3 = a :: ls1 ++ ls2 ++ ls3 )
(pf’0 : (ls1 ++ ls2 ) ++ ls3 = ls1 ++ ls2 ++ ls3 )
(f : fhlist B ((ls1 ++ ls2 ) ++ ls3 )),

(a0,
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match pf’0 in ( = ls) return (fhlist B ls) with
| refl equal ⇒ f
end) =
match pf0 in ( = ls) return (fhlist B ls) with
| refl equal ⇒ (a0, f )
end

To an experienced dependent types hacker, the appearance of this goal term
calls for a celebration. The formula has a critical property that indicates that our
problems are over. To get our proofs into the right form to apply UIP refl, we need
to use associativity of list append to rewrite their types. We could not do that
before because other parts of the goal require the proofs to retain their original
types. In particular, the call to fhapp that we generalized must have type (ls1 ++
ls2 ) ++ ls3, for some values of the list variables. If we rewrite the type of the proof
used to type-cast this value to something like ls1 ++ ls2 ++ ls3 = ls1 ++ ls2 ++
ls3, then the lefthand side of the equality would no longer match the type of the
term we are trying to cast.

However, now that we have generalized over the fhapp call, the type of the term
being type-cast appears explicitly in the goal and may be rewritten as well. In par-
ticular, the final masterstroke is rewriting everywhere in our goal using associativity
of list append.

rewrite app ass.

============================
∀ (pf0 : a :: ls1 ++ ls2 ++ ls3 = a :: ls1 ++ ls2 ++ ls3 )

(pf’0 : ls1 ++ ls2 ++ ls3 = ls1 ++ ls2 ++ ls3 )
(f : fhlist B (ls1 ++ ls2 ++ ls3 )),

(a0,
match pf’0 in ( = ls) return (fhlist B ls) with
| refl equal ⇒ f
end) =
match pf0 in ( = ls) return (fhlist B ls) with
| refl equal ⇒ (a0, f )
end

We can see that we have achieved the crucial property: the type of each gener-
alized equality proof has syntactically equal operands. This makes it easy to finish
the proof with UIP refl.

intros.
rewrite (UIP refl pf0 ).
rewrite (UIP refl pf’0 ).
reflexivity.

Qed.
End fhapp.

Implicit Arguments fhapp [A B ls1 ls2 ].
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6.4 Heterogeneous Equality

There is another equality predicate, defined in the JMeq module of the standard
library, implementing heterogeneous equality.

Print JMeq.
Inductive JMeq (A : Type) (x : A) : ∀ B : Type, B → Prop :=

JMeq refl : JMeq x x

JMeq stands for “John Major equality,” a name coined by Conor McBride as a
sort of pun about British politics. JMeq starts out looking a lot like eq. The crucial
difference is that we may use JMeq on arguments of different types. For instance, a
lemma that we failed to establish before is trivial with JMeq. It makes for prettier
theorem statements to define some syntactic shorthand first.

Infix ”==” := JMeq (at level 70, no associativity).

Definition UIP refl’ (A : Type) (x : A) (pf : x = x ) : pf == refl equal x :=
match pf return (pf == refl equal ) with
| refl equal ⇒ JMeq refl

end.

There is no quick way to write such a proof by tactics, but the underlying proof
term that we want is trivial.

Suppose that we want to use UIP refl’ to establish another lemma of the kind we
have run into several times so far.

Lemma lemma4 : ∀ (A : Type) (x : A) (pf : x = x ),
O = match pf with refl equal ⇒ O end.
intros; rewrite (UIP refl’ pf ); reflexivity.

Qed.

All in all, refreshingly straightforward, but there really is no such thing as a free
lunch. The use of rewrite is implemented in terms of an axiom:

Check JMeq eq.
JMeq eq

: ∀ (A : Type) (x y : A), x == y → x = y

It may be surprising that we cannot prove that heterogeneous equality implies
normal equality. The difficulties are the same kind we have seen so far, based on
limitations of match annotations.

We can redo our fhapp associativity proof based around JMeq.

Section fhapp’.
Variable A : Type.
Variable B : A → Type.

This time, the naive theorem statement type-checks, which demonstrates the
main advantage of JMeq over eq.

Theorem fhapp ass’ : ∀ ls1 ls2 ls3
(hls1 : fhlist B ls1 ) (hls2 : fhlist B ls2 ) (hls3 : fhlist B ls3 ),
fhapp hls1 (fhapp hls2 hls3 ) == fhapp (fhapp hls1 hls2 ) hls3.
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induction ls1 ; crush.

Even better, crush discharges the first subgoal automatically. The second subgoal
is:

============================
(a0,
fhapp (B :=B) (ls1 :=ls1) (ls2 :=ls2 ++ ls3 ) b

(fhapp (B :=B) (ls1 :=ls2) (ls2 :=ls3) hls2 hls3 )) ==
(a0,
fhapp (B :=B) (ls1 :=ls1 ++ ls2 ) (ls2 :=ls3)

(fhapp (B :=B) (ls1 :=ls1) (ls2 :=ls2) b hls2 ) hls3 )

It looks like one rewrite with the inductive hypothesis should be enough to make
the goal trivial.

rewrite IHls1.

Error: Impossible to unify "fhlist B ((ls1 ++ ?1572) ++ ?1573)" with
"fhlist B (ls1 ++ ?1572 ++ ?1573)"

We see that JMeq is not a silver bullet. We can use it to simplify the statements
of equality facts, but the Coq type-checker uses non-trivial heterogeneous equality
facts no more readily than it uses standard equality facts. Here, the problem is
that the form (e1, e2 ) is syntactic sugar for an explicit application of a constructor
of an inductive type. That application mentions the type of each tuple element
explicitly, and our rewrite tries to change one of those elements without updating
the corresponding type argument.

We can get around this problem by another multiple use of generalize. We
want to bring into the goal the proper instance of the inductive hypothesis, and we
also want to generalize the two relevant uses of fhapp.

generalize (fhapp b (fhapp hls2 hls3 ))
(fhapp (fhapp b hls2 ) hls3 )
(IHls1 b hls2 hls3 ).

============================
∀ (f : fhlist B (ls1 ++ ls2 ++ ls3 ))

(f0 : fhlist B ((ls1 ++ ls2 ) ++ ls3 )), f == f0 → (a0, f ) == (a0, f0 )

Now we can rewrite with append associativity, as before.

rewrite app ass.

============================
∀ f f0 : fhlist B (ls1 ++ ls2 ++ ls3 ), f == f0 → (a0, f ) == (a0, f0 )

From this point, the goal is trivial.

intros f f0 H ; rewrite H ; reflexivity.
Qed.
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End fhapp’.

6.5 Equivalence of Equality Axioms

Assuming axioms (like axiom K and JMeq eq) is a hazardous business. The due
diligence associated with it is necessarily global in scope, since two axioms may be
consistent alone but inconsistent together. It turns out that all of the major axioms
proposed for reasoning about equality in Coq are logically equivalent, so that we
only need to pick one to assert without proof. In this subsection, we demonstrate
this by showing how each of the previous two subsections’ approaches reduces to
the other logically.

To show that JMeq and its axiom let us prove UIP refl, we start from the lemma
UIP refl’ from the previous subsection. The rest of the proof is trivial.

Lemma UIP refl” : ∀ (A : Type) (x : A) (pf : x = x ), pf = refl equal x.
intros; rewrite (UIP refl’ pf ); reflexivity.

Qed.

The other direction is perhaps more interesting. Assume that we only have the
axiom of the Eqdep module available. We can define JMeq in a way that satisfies
the same interface as the combination of the JMeq module’s inductive definition
and axiom.

Definition JMeq’ (A : Type) (x : A) (B : Type) (y : B) : Prop :=
∃ pf : B = A, x = match pf with refl equal ⇒ y end.

Infix ”===” := JMeq’ (at level 70, no associativity).

We say that, by definition, x and y are equal if and only if there exists a proof pf
that their types are equal, such that x equals the result of casting y with pf. This
statement can look strange from the standpoint of classical math, where we almost
never mention proofs explicitly with quantifiers in formulas, but it is perfectly legal
Coq code.

We can easily prove a theorem with the same type as that of the JMeq refl
constructor of JMeq.

Theorem JMeq refl’ : ∀ (A : Type) (x : A), x === x.
intros; unfold JMeq’ ; exists (refl equal A); reflexivity.

Qed.

The proof of an analogue to JMeq eq is a little more interesting, but most of the
action is in appealing to UIP refl.

Theorem JMeq eq’ : ∀ (A : Type) (x y : A),
x === y → x = y.
unfold JMeq’ ; intros.

H : ∃ pf : A = A,
x = match pf in ( = T ) return T with

| refl equal ⇒ y
end

============================
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x = y

destruct H.

x0 : A = A
H : x = match x0 in ( = T ) return T with

| refl equal ⇒ y
end

============================
x = y

rewrite H.

x0 : A = A
============================
match x0 in ( = T ) return T with
| refl equal ⇒ y
end = y

rewrite (UIP refl x0 ); reflexivity.
Qed.

We see that, in a very formal sense, we are free to switch back and forth between
the two styles of proofs about equality proofs. One style may be more convenient
than the other for some proofs, but we can always interconvert between our results.
The style that does not use heterogeneous equality may be preferable in cases where
many results do not require the tricks of this section, since then the use of axioms is
avoided altogether for the simple cases, and a wider audience will be able to follow
those “simple” proofs. On the other hand, heterogeneous equality often makes for
shorter and more readable theorem statements.

It is worth remarking that it is possible to avoid axioms altogether for equalities
on types with decidable equality. The Eqdep dec module of the standard library
contains a parametric proof of UIP refl for such cases.

6.6 Equality of Functions

The following seems like a reasonable theorem to want to hold, and it does hold in
set theory.

Theorem S eta : S = (fun n ⇒ S n).

Unfortunately, this theorem is not provable in CIC without additional axioms.
None of the definitional equality rules force function equality to be extensional.
That is, the fact that two functions return equal results on equal inputs does not
imply that the functions are equal. We can assert function extensionality as an
axiom.

Axiom ext eq : ∀ A B (f g : A → B),
(∀ x, f x = g x )
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→ f = g.

This axiom has been verified metatheoretically to be consistent with CIC and
the two equality axioms we considered previously. With it, the proof of S eta is
trivial.

Theorem S eta : S = (fun n ⇒ S n).
apply ext eq; reflexivity.

Qed.

The same axiom can help us prove equality of types, where we need to “reason
under quantifiers.”

Theorem forall eq : (∀ x : nat, match x with
| O ⇒ True
| S ⇒ True

end)
= (∀ : nat, True).

There are no immediate opportunities to apply ext eq, but we can use change to
fix that, by replacing the conclusion with another that is definitionally equal.

change ((∀ x : nat, (fun x ⇒ match x with
| 0 ⇒ True
| S ⇒ True

end) x ) = (nat → True)).
rewrite (ext eq (fun x ⇒ match x with

| 0 ⇒ True
| S ⇒ True

end) (fun ⇒ True)).

2 subgoals

============================
(nat → True) = (nat → True)

subgoal 2 is:
∀ x : nat, match x with

| 0 ⇒ True
| S ⇒ True
end = True

reflexivity.

destruct x ; constructor.
Qed.

7. CONCLUSION

This article has been a brisk introduction to two underappreciated elements of the
Coq proof assistant.

With dependent types, we can often prove important theorems implicitly, with
little additional effort beyond that needed to implement a running program. Coq’s
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minimalist type theory lacks some conveniences that similar dependently-typed
languages offer. However, a few design patterns make it relatively pleasant to use
dependent types to simplify Coq developments. The bulk of this article has been a
presentation of the main design patterns by example.

I have also hinted at the power of Ltac, Coq’s domain-specific language for build-
ing proof procedures. An Ltac program that succeeds at proving a theorem will
always generate a proof term in Coq’s minimal logic, by construction. Ltac contains
both the usual abstraction tools of functional programming and a few new ones tar-
geted especially at proof search. For a more thorough, bottom-up presentation of
Ltac, I point the reader to the full book that this article is excerpted from:

http://adam.chlipala.net/cpdt/
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