
Basic first-order model theory in Mizar

MARCO CAMINATI

Dipartimento di Matematica ”Guido Castelnuovo”,

Sapienza - Università di Roma

caminati@mat.uniroma1.it

http://www.mat.uniroma1.it/~caminati

The author has submitted to Mizar Mathematical Library a series of five articles introducing a

framework for the formalization of classical first-order model theory. In them, Gödel’s complete-

ness and Lowenheim-Skolem theorems have also been formalized for the countable case, to offer a
first application of it and to showcase its utility. This is an overview and commentary on some key

aspects of this setup. It features exposition and discussion of a new encoding of basic definitions

and theoretical gears needed for the task, remarks about the design strategies and approaches
adopted in their implementation, and more general reflections about proof checking induced by

the work done.

1. MOTIVATION: MODEL THEORY IN MIZAR

Inside Mizar Mathematical Library (MML), there are at least three strains hosting
articles of content suitable for the treatment of first-order logic:

(1) A series of articles supplying a language apt to describe set theory according
to Zermelo-Fraenkel axioms, started with [Ban90].

(2) A series of articles supplying a general language for first-order logic, started
with [RT90].

(3) A series of articles supplying terminology and results about universal algebras,
started with [KMK92].

Most of the classical results of first order logic have, during the years, found their
way in strain (2): building on those articles a fairly equipped gear of formalizations
has been created.
There are treatments about the most elementary syntactical properties (those of
variables and free variables in a formula (QC_LANG3), of subformulas (QC_LANG2,
QC_LANG4), of substitution (CQC_LANG,SUBSTUT1,SUBSTUT2), of similarity between
formulas (CQC_SIM1)), which in turn allow for less and less elementary results,
regarding: propositional calculus (PROCAL_1, LUKASI_1), interpretation and satis-
fiability (VALUAT_1), Gentzen-style sequent calculus (CALCUL_1, CALCUL_2), up to
a basic version of Gödel’s completeness theorem (HENMODEL,GOEDELCP).

Unfortunately, the coding of the first order language adopted from the very be-
ginning in [RT90] is somewhat rigid: roughly sketching the situation, strings of
first-order language are represented as tuples of couples of natural numbers, with
special symbols (quantifiers, connectives, truth symbol) represented by couples in
which the first component is a reserved (small) natural.

Journal of Formalized Reasoning Vol. 3, No. 1, 2010 Pages 49–77.

50 · M. B. Caminati

This inherently prevents treating uncountable languages, which, alas, would be
quite the point for developing even the most fundamental results of model theory,
starting with Löwenheim-Skolem and compactness theorems.

Also, the completeness theorem currently present in MML has some limitations
that look hardly removable in the established framework. For example, it is re-
stricted to equality-lacking languages, while it would be of interest to talk about
languages with equality: Mizar first-order language itself is furnished with equality,
and the option of possibly applying results worked out to Mizar itself is desirable.

This paper is an account of how a fairly developed codebase for model theory in
Mizar has been laid down, given the considerations above. They imposed reformu-
lating things from scratch with a hopefully more flexible approach.

This codebase culminates, as a testbed for itself, with formalizations of the fun-
damental Gödel’s completeness and Lowenheim-Skolem theorems, restricted to the
case of a generic countable language, and has been submitted to MML Library
Committee for peer-reviewing; meanwhile it is accessible at the author’s homepage.
More precisely, among the many flavours of Lowenheim-Skolem theorem, the one
checked is the ‘downward’ flavour, like VI.1.1 from [EFT84]. Its Mizar statement
sounds like:

for
U2 being non empty set, S being Language,
X being countable Subset of AllFormulasOf S,
I2 being Element of U2-InterpretersOf S st X is I2-satisfied

ex U1 being countable non empty set,
I1 being Element of U1-InterpretersOf S st

X is I1-satisfied

while the completeness theorem runs thus:

for C being countable Language, phi wff string of C, X being set st
X c= AllFormulasOf C & phi is X-implied

holds
phi is X-provable

Note that this last restriction to countable languages is a mere matter of conve-
nience: the whole work was set up to treat an arbitrary language up to satisfiability
theorem (see section 1.1), which is the cornerstone result; on the other hand, reduc-
ing to the least-cardinality case was desirable in order to have the job done more
quickly (under the urge of demonstrating its usability), without having to handle
complications related to the axiom of choice and the likes. Besides, the role of
Konig’s lemma in countable case might deserve some investigation in which Mizar
could help (see section 7).

Those two theorems are here regarded as a significant goal because of their fun-
damental role in model theory. In particular, the family of Lowenheim-Skolem
theorems have a fruitful interplay with the cardinality of the language, which the
ability to deal with, as said, was a starting, motivating point for the present work.
Moreover, this latter kind of results seem to be underrepresented in the global
repository of mechanically checked mathematics: the only work sharing the aims of
the present which the author is aware of is [Har98]; both the checker and the proof

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 51

techniques used there are entirely different than what we are going to deploy here,
however.

1.1 A birds-eye’s view of the proof

This paper focuses on design choices and encodings adopted in formalization, rather
than on the proofs themselves. However, since indeed the goal all along the way was
ultimately proving a theorem and this proof presents some departing points from
literature standards (e.g. [EFT84]), let us sketch how the proof of completeness
theorem works (Lowenheim-Skolem is then a conceptually easy step). A more
detailed account of the proof techniques deployed in this formalization can be found
in [Cam09].

A Henkin-style proof works its way towards completeness by setting a first in-
termediate result known as satisfiability theorem. The path to this first result is
constructive, passing through the introduction of the so called Henkin’s model. In
turn, here the construction of Henkin’s model is staged (see section 3) into a con-
struction here called free interpretation (-freeInterpreter, see section 4.3) and
into quotienting it by a given equivalence relation, as in the following checklist dis-
playing what needs to be proven (and where (1) corresponds to FOMODEL4:Lm11a
and FOMODEL4:Lm53a, (2) to FOMODEL4:Lm12, and (3) to FOMODEL4:15):

(1) if D is a set of rules including at least rules (2), (3), (4), (5) (see section 2.2),
and X is a D-closed theory, that is containing all formulas provable from X
itself using the rules of D, then the relation ∼ between the terms

t1 ∼ t2 ⇔ X `D≡ t1t2
—is an equivalence relation on the set of all terms
—is compatible with (also ‘is respected by’) (S,X)-freeInterpreter,
that is, called fs the free interpreter for the single symbol s of absolute arity
n ∈ N, the request

∀ (t1, . . . , tn) , (t′1, . . . , t
′
n) being n-tuples of terms holds{

t1 ∼ t′1, . . . , tn ∼ t′n ⇒ fs(t1, . . . , tn) ∼ fs(t′1, . . . , t
′
n) if s is operational

t1 ∼ t′1, . . . , tn ∼ t′n ⇒ fs(t1, . . . , tn) = fs(t′1, . . . , t
′
n) if s is relational

is satisfied. This permits to define unambiguously the quotient of every fs, as
a function on the n-tuples of ∼-equivalence classes of terms in the natural way:

fs

∼
([t1] , . . . , [tn]) := fs (t1, . . . , tn) (1)

(2) if the above happens for every compounder (i.e. relational or functional, see
section 2.1) symbol s, the resulting quotient interpretation HD,X enjoys the
property

HD,X � φ ⇐⇒ φ ∈ X ∀φ atomic formula of S

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

52 · M. B. Caminati

(3) if, moreover, D includes rules (7), (6) (left rule), (8) (left rule) and X is max-
imal and includes witnesses, then one can generalize the previous point to all
formulas, which is the wanted satisfiability theorem.

Afterwards, completeness, that is, provability of any formula entailed by a given
consistent theory Y , can be achieved by expanding Y to a superset X to which
satisfiability theorem is applicable: then said provability is easily granted. Obvi-
ously the delicate part in passing from satisfiability to completeness is to make sure
that the superset X contains the right formulas, so as to supply witnesses and be
maximal as dictated by point (3). This is exactly the passage in which the present
work restricts to countable languages, and where the couple of rules of section 2.2
yet to be used are employed.

1.2 A word about reformulation

Looking back at all the preliminary work that had already been done and included
in MML, and that could not be used led, after initial despair, to sketch somewhat
of a strategy to plan the work.

Effort has been devoted to reducing to a minimum the work, cutting out the
formalization of every result not strictly needed, at the cost of rephrasing the theory
a bit, too (see section 2). Care has been taken in putting forth definitions in the
neatest possible way, with the idea that good definitions should provide the soil to
introduce new results with relatively little effort, just when they are needed; and
save the effort if one finds a way to avoid their introduction.

Perhaps the most distinctive example of this approach is how the point of free
occurrences of a variable in a formula has been faced (rules (6) in section 2.2):
rather than re-inventing all the battery of results to deal with the concept of free
occurrences, attention has been focused on changing the rules of sequent calculus
in a way which permits largely to delay the issue to the days in which its treatment
will be strictly needed.

Instead of the one-way dynamics (from human to machine) one could expect
when starting digging into formalization, this turned into a sort of feedback leading
the human to rethink and rephrase along the way what he is formalizing. Every
time this happened, the final outcome was always tidier and more neat of the
initial idea; sometimes, the process leading to the change was itself instructive and
thought-provoking.

This process was applied all along the formalization work, resulting in the end in
a treatment differing in a bunch of crucial spots from the one taken as a starting
point [EFT84].

2. A MIZAR-FRIENDLY REFORMULATION

For the reasons just exposed, standard definitions of first-order language, syntax,
and derivation rules have been dedicatedly tweaked. Here we informally explain
how.

2.1 Encoding of language

The first design choice is to use polish notation: for example x > y + z becomes
> x+yz. This is a common choice in software and in formalization for its simplicity;
both [RT90] and [Ban90] adopt it as well.
Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 53

Secondly, there is no native distinction between free and bound variables. What’s
more, there is not even a distinction between variables and constants symbols.
There are only symbols of arity zero, which are called literals, and symbols of non
zero arity, called compounders. To be more precise, the distinction is left to the
semantics, in the sense that a constant becomes a variable exactly when it is caught
by quantification inside a formula.

Third, there is no quantification symbol. This does not mean that we will not
be able to quantify, of course: existential quantification is indicated by heading a
formula with a literal symbol, and this creates no confusion.
Of course, universal quantification will be rendered via existential and negation
constructs, as is customarily done; we shall soon an applied instance of this in the
example about group axioms below.

Fourth, arity will yield signed integers, with the convention that negative arity
symbols will be relational (predicate) compounders and positive arity symbols will
be operational compounders. The absolute value of the arity will indicate the actual
arity of the compounder. In [RT90] there are no operational symbols, which can
always semantically be emulated by relational (predicate) symbols, but this makes
the definition of well-formed formulas (wff) lengthy.

Lastly, there is only one logical connector, that is NOR (↓). This suffices since
NOR is universal (as is NAND). So, in this reformulation, we will be able to take
advantage of a language having only two special symbols: equality and NOR (par-
ticularly in treating wff formulas and evaluation (see 4.2.1) this will be a life-saving
simplification). However, they will not be hard-coded as fixed sets, rather will be
brought out via how the Language type will be defined. This way one can choose
any infinite set as the symbol set. More precisely, to us a language is a quadruple
consisting of an infinite set X, two distinct yet arbitrary elements ≡ and ↓ of it, and
a function from X\{↓} into Z, called adicity (the keyword ‘arity’ is already taken
inside MML, which will not prevent us from using it here outside of Mizar code),
with the added constraint that the adicity of ≡ must be −2. This constraint is part
of the type itself, because we want to do all the proofs for first-order languages with
equality, as said in section 1.

To give the simplest illustration, let us rephrase in this language the group ax-
ioms, using N as a symbol set, 1 as ≡, 0 as ↓ and arity f : Z+ → Z given by

f(n) :=


-2 if n=1
2 if n=2
0 otherwise

Direct translation might result bewildering, so first let us list axioms in stan-
dard human-friendly form and in an intermediate jargon made by combining polish
notation with shortcut symbols ∃,∀,=,+ for quantifiers and compounders:

∀a, b, c a(bc) = (ab)c ∀3∀4∀5 = +3 + 45 + +345
∀a ea = a ∀4 = +344
∀a∃b ba = e ∀4∃5 = +543

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

54 · M. B. Caminati

Finally, we pass to the final coding by rendering ∀xφ as ¬∃xφ, ¬φ as ↓ φφ, ∃xφ as
xφ and substituting =, + respectively with 1, 2, obtaining some nasty strings:

03040512324523425512324523425405123245234255123245234253
04051232452342551232452342540512324523425512324523425

0412344412344
045124534512453,

where the first, exceedingly long axiom has been split across two lines.
This shows how the absence of auxiliary boolean connectors and quantifiers makes

even trivial formulas go wildly verbose. Note that none of the three axioms uses
more than seven literals, so we have been able to unambiguously use decimal rep-
resentation for N. Also compare the role of the symbol ’3’ in expressing first and
second axioms: in the first it is quantified and thus used as a variable, in the second
it acts as a constant (the unity of the group) since it is not quantified. Not having
distinguished between constants and variables permits reusing a literal symbol in
both ways, as long as the corresponding constant does not appear in the formula
in which the symbol is used as a variable. Given our goals, we do not care much
about readability of the language: all that matters is that any first-order theory
is expressible in the language, and that a set of sequent derivation rules which are
both correct (that is, yielding correct sequents from correct sequents) and complete
(that is, powerful enough to prove any consequence of a first-order theory) is given.
As long as these constraints are respected, we seek for the design which maximize
simplicity and neatness of formalization.

2.2 Sequent calculus

In this spirit we now face the choice of sequent derivation rules. The ones usually
causing hindrance in formalization are those involving quantifiers, because they
introduce notions like term substitution and free occurrence of variables, requir-
ing a bulk of preparatory work (see QC_LANG3, QC_LANG2, QC_LANG4, CQC_LANG,
SUBSTUT1, SUBSTUT2, CQC_SIM1).

To escape the catch, we reformulate rules so as to eliminate the need to talk
of free occurrences, while for term substitution we resort to constructions already
introduced for other reasons, thus enforcing a sort of code reusing. Let us explain
this concretely: in what follows, ϕ, φ, ψ stand for formulas, Γ,Γ′ for any finite set of
formulas, t, t′ for terms, s for a generic symbol of first-order language, and v for a
literal symbol of it. Possibly, numerical subscripts can be used to indicate different
represented entities.

As said, the rules we fear are the ones dealing with quantification; in our case,
they appear at row (6) below. The first implies only the checking of generic (not
free) occurrence of a single symbol among a finite set of formulas, which is easily
done, and the substitution of a literal with a literal, not dealing with terms at all,
which makes its formalization easy too.

The second rule introduces the operator ψ 7→ ψ t
v substituting a literal with a

term. The idea is that, at least when applied to another term, this operator can be
expressed by plugging together other Mizar constructs we needed in previous work,

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 55

Γ ` ϕ
where {ϕ} ⊆ Γ

Γ ` ϕ

Γ′ ` ϕ
where Γ ⊆ Γ′ (2)

≡ t1t2 ` ≡ t2t1 ` ≡ tt
Γ ` ≡ tt1
Γ ≡ t1t2 ` ≡ tt2

(3)

≡ t1t′1 . . . ≡ tnt′n ` ≡ st1 . . . tnst′1 . . . t′n
where n = arity(s) ∈ N (4)

st1 . . . tn ≡ t1t′1 . . . ≡ tnt′n ` st′1 . . . t
′
n

where n = − arity(s) ∈ Z+ (5)

Γ
v2

v1
φ ` ψ

Γ v1φ ` ψ
where v2 does not occur in Γ, φ, ψ

ψ
t

v
` vψ (6)

Γ ` ↓ φψ
Γ ` ↓ ψφ

Γ ` ↓ φφ
Γ ` ↓ ψψ
Γ ` ↓ φψ

(7)

Γ φ ` φ1

Γ φ ` ↓ φ1φ2

Γ ` ↓ φφ

Γ ` ↓↓ φ
Γ ` φ

(8)

Fig. 1. Gentzen-style derivation rules adopted

by reducing t1 7→ t1
t2
v to (see definition of AtomicSubst in FOMODEL3)(

t2
v
F{}

)
(t1)

where

(1) Operator u
v I transforms an interpretation I into a different interpretation in

which only the assignment of one literal v changes into the element u of the
universe. This is an easy formalization (see section 5) and is anyway needed to
evaluate the truth of a quantified formula.

(2) Given an interpretation I and a term t of a language, I (t) yields the value of
t in that interpretation; this is of course a fundamental construction for even
just talking about a first-order language.

(3) FΦ denotes the free interpretation of a language according to a set of formulas
Φ of that language. Here the adjective “free” is to be meant as in “free object”,
not as in “free occurrence” (of a literal). As already said, this is a fundamental
player in a Henkin-style proof. See section 4.3.

The leap to term substitution inside a formula is elementary and not discussed
here.

Having given some motivation for them, the full set of rules can be seen in
Figure 1. (4) and (5) are a bit clumsy to write down, but their proof-theoretical
weakness turned out to be quite helpful in easing formalization.
Anyway, writing derivation rules in the manner above is like drawing diagrams,
in that their goal is to communicate to another human how the rule works; what
matters is the formalizability, and maybe the computability (which is likely to be
good if the former is), so we should not worry about the appearance of (4) and (5).

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

56 · M. B. Caminati

3. ORGANIZATION OF THE CODEBASE

With a total of about 700k bytes and 19k lines of Mizar code, this turned out to
be a fairly complex project, so care has been constantly taken to orderly arrange
the various results according to their scope into five separate Mizar articles, each
depending on the previous ones and hosting affine themes:

—FOMODEL0.MIZ is the receptacle of all results of broader scope stemmed during
the various formalizations, with results and registrations about objects already
in MML and quite few dependencies.

—FOMODEL1.MIZ introduces the type Language, the classification of symbols ac-
cording to their arity and of terms according to their depth, and the functor to
extract subterms from a term or an atomic formula. The bulk of syntax is done
here and in next article.

—FOMODEL2.MIZ deals with syntax of non atomic formulas and all the semantics by
giving the following constructions: the definition of an interpreter I relative to a
non empty set U (universe), the constructions saying how to evaluate a term in
U , how to evaluate an atomic formula in {0, 1}, what can be regarded as a generic
wff formula, how to evaluate it in {0, 1} according to I, and how to evaluate its
depth. Also, the functor to obtain another interpreter in the same universe U
from I by changing the evaluation of a single literal symbol of the language, and
the definitions of satisfaction and of entailment are given.

—FOMODEL3.MIZ supplies a toolkit of constructions to work with languages and
interpretations, and results relating them: the free interpretation of a language,
having as a universe the set of terms of the language itself, is defined; the quotient
of an interpretation with respect to an equivalence relation is built, and shown
to remain an interpretation when the relation respects it. Both the concepts of
quotient and of respecting relation are defined in broadest terms, with respect to
objects as general as possible. This is arguably the most ‘technical’ article in the
tier.

—FOMODEL4.MIZ introduces the proof-theoretical notions and binds all together. As
a first more general task, it defines what a sequent and a rule are, and what means
for a rule to be correct. Then, using these definitions, it builds the particular set of
derivation rules we chose in section 2.2. Among many other results, satisfiability
theorem is proven. Finally, restricting to countable languages, completeness and
downward Lowenheim-Skolem are proved.

Having sketched the themes dealt with in each article, now the idea is that each
formalized result should be placed in the lowest article in which the entities to
enunciate it are available, so to give a precise criterion for the arraying of Mizar
code among the five articles.

About one sixth of the code dwells in FOMODEL0.MIZ, thus applying to already-
defined Mizar entities; also, the results located there tend to be shorter and more
numerous than the lemmas showing up in subsequent articles. This is a clue of
a general separation and modularization design policy pursued across the whole
work, aiming at

—stating results in terms of the most general possible Mizar entities.

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 57

—breaking specific statements into smaller lemmas, especially if the latter as a
result get applicable to a broader class of objects and/or if the smaller lemmas
can be put together in more than a way to get significant theorems. The same
applies to definitions.

As an example, take the construction of the already discussed Henkin model. In
[EFT84], it is introduced just before the proof of the satisfiability theorem, and so,
given the rather instrumental nature of its role, its definition is quite condensed.
Here, on the other hand, it has been split into the pair of definitions of free inter-
pretation and of quotient interpretation, with a twofold benefit. First, the former
object gets reused to construct one of the deduction rules (section 2.2). On the
other hand, the latter applies not only to the former, but to any interpretation.
What’s more, the quotient functor is defined more generally as quotient of a rela-
tion by a pair of equivalence relations. Relations are more general than equivalence
relations, which are in turn more general than functions, which finally are more
general than interpretations, if one call an entity more general than another when
the latter is defined in terms of the former.

Accordingly, the various results needed for the Henkin interpretation break into
smaller and more general statements, sometimes of interest themselves, or occurring
more than once in building further theorems, or maybe just hopefully useful to a
possible coder in the future: having stated them in less restrictive terms increases
the probability that this will be the case.

This process of separation and modularization may provide a further benefit: in
breaking a statement into smaller steps, a fine-grained analysis of which assump-
tions are needed for each step is encouraged. This blatantly occurs in chopping
down satisfiability theorem: in section 1.1 each step specifies which derivation rules
are needed for it to hold. Indeed, keeping track of which result traces back to which
rules did provide the main guidance in enouncing ruleset given in section 2.2. In the
sequel, other, more specific occurrences of this attitude will be given: see especially
sections 4.4 and 5.

Here, another aspect of this policy is discussed: closely related to the just dis-
cussed tendency to predicate about as less specialized entities as possible is the
choice of encoding formulas in simple strings of symbols. Another method could
have been the use of parse trees, which directly model the semantics and thus inher-
ently dispense one from specifying the syntax rules for well-formedness and give an
elementary way to attach a meaning to each formula. This is surely a strong plus
for them. We maintain that using ‘plain text’, as done here, has advantages, too. A
first advantage is readability: as strings require little assumed knowledge to be un-
derstood and have simple notations, the results worked out here are themselves very
readable. This is of importance especially for a project like Mizar which, besides
verifying, also aims at building a library of mathematical knowledge accessible to
humans. Secondly, in the same vein of what has just been discussed, all the results
worked out here are likely to produce sublemmas of interest to more Mizar coders
than if we assume we chose parse trees: indeed, there is a series of Mizar articles
supplying the machinery of parse trees in the context of formal languages ([]), and
in this assumption, many of the general results in FOMODEL0 would have been in a
form available only to the users of that machinery. This is a two-way phenomenon,

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

58 · M. B. Caminati

of course: the author, using plain sequences instead of parse trees, has been able
to take advantage of the massive amount of pre-existing results about the mode
FinSequence. As an example of a ‘by-product’ of the present formalization which
could be of more general interest, and which has been brought out because of the
choice of using strings instead of parse trees, we pick a result regarding monoid and
prefixes (see (9) in section 3.1); it is one of the numerous results got by treating
subterms.

3.1 Dealing with subterms

As exposed in 2.2, some standard elementary definitions regarding the language
have been diverted or reformulated into fewer entities. We missed the same goal
for subterms: a way to avoid an explicit definition could not be devised; since
their role is fundamental in evaluating both terms and formulas, we have to build
a functor SubTerms yielding the subterms of a term. It is used crucially in the
definition of TermEval and TruthEval functors, see section 4.2.1. Its coding will
not be explicitly shown here for space reasons.

Here, we want to discuss how its construction slightly departs from standard
treatments. The task at hand is plain dull: one usually does it recursively starting
from literals and iterating through operational symbols, and there is not much room
from alternative approaches. However, since the language is presently constructed
in terms of strings and concatenation, we tried to do the job at the more general
level of monoids and associative operations. We discuss briefly the idea, without
displaying Mizar code.

Take a monoid (M, ◦). One can easily extend the operation ◦ to any finite number
of arguments iteratively, for example setting

◦ (a, b, c) := (a ◦ b) ◦ c, ◦ (a, b, c, d) := (◦ (a, b, c)) ◦ d,

and so on. To do this in Mizar we introduced the functor MultPlace, which actually
takes any binary operation (associativity is not needed yet). Consider any X ⊆M ,
and call it unambiguous (similarly to [Lot02], 1.2.1) if the restriction of ◦ to X×M
is injective:

◦ (x1,m1) = ◦ (x2,m2)⇒ x1 = x2,m1 = m2 x1, x2 ∈ X,m1,m2 ∈M

Now associativity comes into play for the fundamental result:

◦ associative and X unambiguous ⇒ ◦|Xn is injective ∀n ∈ N, (9)

that is, unambiguity is sort-of preserved for n-tuples. Now, let us indicate with Tm

the terms of depth not greater than m ∈ N, with T the set of the terms altogether,
T =

⋃
m∈N T

m, and with O the set of operation symbols. It is easy to show that
T 0 ∪ M is unambiguous, now identifying ◦ with string concatentation, which is
obviously associative (indeed, any one-letter strings subset of a language is trivially
unambiguous with respect to concatenation). Starting from that, and using (9), it
is easily shown by induction that any Tm is unambiguous, too; and finally:

Theorem 3.1. TS is unambiguous.

Proof. Suppose t, t′ ∈ T and y, y′ ∈ M are such that ty = t′y′. Call m the
greater among the depths of t and t′. Since t, t′ ∈ Tm and Tm is unambiguous, it
must be t = t′ and y = y′.
Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 59

This permits defining subterms of a term t as the n-tuple of terms t1, . . . , tn such
that:

t = ◦(o, t1, . . . , tn),

where o is the first operation symbol, of arity n, of the string t. Since we know that
t1, . . . , tn all belong to T , which is unambiguous, we can again apply (9) to decree
their uniqueness, which is the point. We have discussed the general idea, the exact
formulation is contained inside Mizar articles.

4. ENCODING IN MIZAR

In reporting here Mizar formalizations, some minor typographic changes to the
original code have been made to accommodate and make it more readable; thus
the snippets reported here should not be expected to compile correctly. For the
real code, please refer to Mizar articles.
For an overview of Mizar, refer to appendix A. For a concise reminder of the Mizar
notations used below, refer to table I.

4.1 The Language type

Here the ground mode Language we will be talking about all the time is defined, to
circumvent limitations cited in section 1. There is good support in MML for finite
sequences (articles FINSEQ_1 through FINSEQ_8), so it is natural to identify the
strings of the language we are defining with the finite sequences over its carrier. The
same was done originally in [RT90]. The difference is that there it has been imposed
to use exclusively sequences of Kuratowski pairs of natural numbers. Moreover, the
encoding of special logical symbols is “hardwired” into that scheme. Then a layer
of functors and modes definitions is added to be able to refer to these pairs with
more suggestive names instead of using directly the encoding. However, there’s no
apparent need to impose preemptively how a first-order language should be encoded
into sets, rather it seems more sensible to work only at the level of Mizar types,
leaving freedom to choose what actual symbol set to use to the instantiator of the
type. So let us start by introducing a preparatory type named Language-like:

definition
struct (ZeroOneStr) Language-like
(#carrier->set, ZeroF, OneF->Element of the carrier,
adicity->Function of the carrier\{the OneF}, INT#);

end;

In this definition there appears yet another provision of Mizar to cope with
types. struct is a “structured type”, similar in spirit to the ones found in many
programming languages (called something like aggregates, records, structures, as
appropriate). It is a concise way to group a finite number of types into one entity
which becomes a new type. Each entry, or selector, of the new type is denoted by an
arbitrary type name. In our case, we took a pre-defined (see STRUCT_0) structure
type, called ZeroOneStr, inherited all of its fields and added one more. So we
end up with a quadruple consisting of an alphabet (the carrier), two distinguished
symbols of it, and a arity (adicity) function. For brevity, a couple of devices are
introduced here: first, the OneF will serve as our logical connective (Nor), and it

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

60 · M. B. Caminati

will turn out convenient not to have the arity defined on it; secondly, we agree that
a negative arity will denote a relation symbol, a positive arity an operation symbol,
and a zero arity a literal; these two points had been already introduced in section
2. With this in mind, the following definitions are obvious shorthands:

definition
let S be Language-like;
func AllSymbolsOf S equals the carrier of S;
func LettersOf S equals (the adicity of S) " {0};
func OpSymbolsOf S equals (the adicity of S) " (NAT \ {0});
func RelSymbolsOf S equals (the adicity of S) " (INT \ NAT);
func TermSymbolsOf S equals (the adicity of S) " NAT;
func LowerCompoundersOf S equals (the adicity of S) " (INT \ {0});
func TheEqSymbOf S equals the ZeroF of S;
func TheNorSymbOf S equals the OneF of S;
func OwnSymbolsOf S equals
(the carrier of S)\{the ZeroF of S,the OneF of S};

end;
definition
let S be Language-like;
mode Element of S is Element of (AllSymbolsOf S);
func AtomicFormulaSymbolsOf S equals
AllSymbolsOf S\{TheNorSymbOf S};

func AtomicTermsOf S equals 1-tuples_on (LettersOf S);
end;

This almost suffices to encode any first-order language. We only add a couple of
further features we wish to endow our new type with:

definition
let S be Language-like;
attr S is eligible means LettersOf S is infinite &
(the adicity of S).(TheEqSymbOf S)=-2;

end;

These two requests impose to have access to an infinite number of letters (we do
not know the length of the terms and formulas we will need to write down), and
that the arity of the equality symbol is −2, as already discussed in section 2. This
automatically equates equality symbol to any other predicate symbol. However,
this is true only at this stage of syntax. The equality symbol acquires of course
special meaning in evaluation, as discussed in section 4.3. Finally, Language type
is:

definition
mode Language is eligible (non degenerated Language-like);

end;

degenerated is an attribute inherited from the type ZeroOneStr, and means that
the ZeroF and the OneF coincide. So we are requesting that the equality symbol
and the logical connective symbol are distinguishable. For what will be more than
mere convenience, we also translate definitions in 4.1 cluster-wise:
Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 61

definition
let S be Language-like;
let s be Element of S;
attr s is literal means s in LettersOf S;
attr s is low-compounding means s in LowerCompoundersOf S;
attr s is operational means s in OpSymbolsOf S;
attr s is relational means s in RelSymbolsOf S;
attr s is termal means s in TermSymbolsOf S;
attr s is own means s in OwnSymbolsOf S;
attr s is ofAtomicFormula means s in AtomicFormulaSymbolsOf S;

end;

4.2 Syntax and semantics

The main objects introduced in this section are the three functors -termsOfMaxDepth,
-formulasOfMaxDepth, -TruthEval and the type Interpreter. They have the
fundamental roles of describing the sets of terms and formulas of a given (or smaller)
depth, of defining what is an interpretation, and of evaluating a term or a formula
in a given interpretation. For the sake of convenience, let us introduce a dedicated
type for the generic S-string:

definition
let S be Language;
mode string of S is Element of ((AllSymbolsOf S)*\{{}});

end;

The present construction will be split in stages: first atomic terms (already in-
troduced in 4.1), then terms inductively, and finally atomic formulas. Let us start
with an auxiliary function performing the basic construction for polish notation,
that is, appending an n-tuple of strings to a leading symbol according to its arity:

definition
let S be Language,s be ofAtomicFormula Element of S,Strings be set;
func ar(s) -> Element of INT equals (the adicity of S).s;
func Compound(s,Strings) -> Subset of (AllSymbolsOf S)*\{{}}
equals
{<*s*> ^ ((S-multiCat).StringTuple) where
StringTuple is Element of (AllSymbolsOf S)**:
rng StringTuple c= Strings & StringTuple is (abs(ar(s)))-long};

end;

Here, S-multiCat is a dedicated function which concatenates tuples of strings.
Roughly speaking, it is the finite iteration of the functor ^. Now recursive con-
struction of terms is straightforward:

definition
let S be Language;
func S-termsOfMaxDepth ->
Function of NAT,bool((AllSymbolsOf S)*\{{}})
means dom it=NAT & it.0 = (AtomicTermsOf S) & for n being Nat holds
it.(n+1) = (union {Compound(s,it.n)

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

62 · M. B. Caminati

where s is ofAtomicFormula Element of S:s is operational}
) \/ it.n;

func AllTermsOf S equals union rng (S-termsOfMaxDepth);
end;

Again, let us rephrase above definitions in terms of attributes:

definition
let m be Nat, S be Language, w be string of S;
attr w is m-termal means w in S-termsOfMaxDepth.m;
let w be string of S;
attr w is termal means w in AllTermsOf S;
attr w is atomic means
ex s being relational Element of S,
V being abs(ar(s))-long Element of (AllTermsOf S)* st
w=<*s*>^(S-multiCat.V);

end;

4.2.1 Saving work: completing syntax and doing semantics, concurrently.
Definitions in 4.2 are quite standard, and have been reported just for reference,

being used in ones to come. Now, instead of proceeding with the syntax of non-
atomic formulas, we digress to start concurrently putting forth some building blocks
of semantics. We will then be able to define both syntax and semantics of non-
atomic formulas in one shot, taking advantage of the fact that, in contrast to the
building of terms, the compounders to derive higher-level formulas from lower-
level ones are fixed and well-known. The fact of having reduced them to just two
types (that is, one logical connective and one existential quantifier) will ease the
job. This strategy saves a good deal of work for our purpose. First, we start
with defining what is an interpretation of a Language S in a non empty set U
(standing for universe). The definition is similar to the one given in [EFT84],
only since we don’t make distinction between 0-arity compounders (constants) and
variables symbols, the distinction made there between interpretation, structure and
assignment vanishes too. Also, we separate the universe from the interpretation
(the corresponding type is called Interpreter; in informal talking we will use both
words), more precisely, we make the latter a type dependent on the former. Here,
too, we proceed gradually:

definition
let S be Language, U be non empty set,
s be ofAtomicFormula Element of S;
mode Interpreter of s, U ->
Function of (abs(ar(s)))-tuples_on U, U\/BOOLEAN means
it is Function of (abs(ar(s)))-tuples_on U, BOOLEAN

if s is relational otherwise
it is Function of (abs(ar(s)))-tuples_on U, U;

end;

It is worth noting that in case of a literal (0-arity) symbol s, the interpreter of s,U
reduces to a function from {{}} into an element of U . So, the assignment of a literal,
instead of being directly a constant of u of U , is rendered as a function {{}} --> u.
Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 63

This is convenient for reducing the cases in subsequent proofs and definitions from
three (positive, negative and zero arity) to two (negative and non negative arity).
Now the definition of an interpreter of the whole alphabet is straightforward:

definition
let S be Language, U be non empty set;
mode Interpreter of S, U -> Function means
for s being own Element of S holds it.s is Interpreter of s, U;

end;
definition
let S be Language, U be non empty set, f be Function;
attr f is (S,U)-interpreter-like means
f is Interpreter of S,U & f is Function-yielding;

:: Function-yielding not fundamental; added for technical convenience
end;
definition
let S be Language, U be non empty set;
func U-InterpretersOf S equals {f where f is
Element of Funcs(OwnSymbolsOf S, PFuncs(U*,U\/BOOLEAN)):
f is (S,U)-interpreter-like};

end;

Before going on we quickly introduce two constructs: the first is the standard
Mizar functor (FUNCT_4:def 1) +* which ‘pastes’ two function f and g into a
function f +* g defined on the union of their domains, with g (the right term)
prevailing in case of conflicts.

The second is the functor ReassignIn which implements the operator changing
the assignment of a single literal in a given interpretation, already needed in (1) of
section 2.2 and examined thoroughly in section 5.

Now, building a functor I-AtomicEval phi yielding the truth value of the atomic
formula phi in the interpretation I is standard practice, and the corresponding code
is omitted here. As anticipated, we rather want to indulge on the interpretation of
non atomic formulas. Usually, one has to do first a recursive definition of the set of
wffs, then another recursive definition to evaluate a wff in a given interpretation.
The idea here is to do both in one single recursive definition. This technically can
be done by having, as an object of the recursive definition, a partial function, here
called F provisionally for brevity, such that, for any natural mm, F.mm

—has as a domain exactly the cartesian product of U-InterpretersOf S with the
set of wff of depth not exceeding mm.

—on that domain maps a pair (interpretation, string) into the right truth value.

So we are working on a higher level, where also the interpreter I is a variable
which gets evaluated together with a wff to return a truth value; only L and U are
fixed parameters. For this reason, we first need a tedious but necessary step to
transform I-AtomicEval phi from a functor into a function of I and phi, named
S-TruthEval U (its name is regretfully not too descriptive):

definition

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

64 · M. B. Caminati

let S,U;
func S-TruthEval(U) ->
Function of [: U-InterpretersOf S, AtomicFormulasOf S :],BOOLEAN
means :DefTruth6: for I being Element of U-InterpretersOf S,
phi being Element of AtomicFormulasOf S holds
it.(I,phi)=I-AtomicEval(phi);

end;

For the same reason, in Mizar code the name of the functor F contains only S
and U, and is (S,U)-TruthEval; so we can get the expected behaviour for it via
the fundamental definition:

definition
let S be Language, U be non empty set;
func (S,U)-TruthEval -> Function of NAT,
PFuncs([:U-InterpretersOf S, (AllSymbolsOf S)*\{{}}:], BOOLEAN)
means it.0=S-TruthEval(U) & for mm being Element of NAT holds
it.(mm+1)=G(it.mm) +* it.mm;

end;

At each step the partial function (S,U)-TruthEval.mm, which applied to the
generic pair [:I, phi:] yields a defined, and correct, truth value if and only if phi
is of depth not exceeding mm, is extended by the operator G, which of course must
yield a partial function of domain extended to the wffs of depth mm+1. So the task
is now the construction of G. We divide the problem in two simpler parts, taking
care respectively of the existential symbol and of the NOR simbol separately, so
that G(it.mm) in the actual Mizar definition is written as

ExIterator(it.mm) +* NorIterator(it.mm)

Let us illustrate only the construction of ExIterator g alone: the idea behind
the other half is the same. Here g is a generic, appropriate PartFunc. We said
that ExIterator has to take care simultaneously that the PartFunc it returns has
both the right domain and the right output on it, based on g. This does not
mean that we cannot further divide the problem into simpler parts: the defini-
tion of ExIterator g will actually specify only the correct domain, delegating the
evaluation to yet another functor -ExFunctor:

definition
let S be Language, U be non empty set;
let g be Element of
PFuncs([:U-InterpretersOf S, (AllSymbolsOf S)*\{{}}:], BOOLEAN);
func ExIterator(g) -> PartFunc of
[:U-InterpretersOf S, (AllSymbolsOf S)*\{{}}:],BOOLEAN means
(for x being Element of U-InterpretersOf S,
y being Element of (AllSymbolsOf S)*\{{}} holds
([x,y] in dom it iff (
ex v being literal Element of S, w being string of S st
[x,w] in dom g & y=<*v*>^w
))) &

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 65

(for x being Element of U-InterpretersOf S,
y being Element of (AllSymbolsOf S)*\{{}} st [x,y] in dom it holds
it.(x,y)=g-ExFunctor(x,y));

end;

We have indented the part of definition which actually does something (i.e. the
specification of the domain, as we were just saying); it does that something quite
trivially, too. Also trivial is the action of the functor -ExFunctor(x,y) to which
we delegated the semantical part:

definition
let S be Language, U be non empty set, f be PartFunc of
[:U-InterpretersOf S, (AllSymbolsOf S)*\{{}}:], BOOLEAN;
let I be Element of U-InterpretersOf S;
let phi be Element of(AllSymbolsOf S)*\{{}};
func f-ExFunctor(I,phi) -> Element of BOOLEAN equals
TRUE if ex u being Element of U, v being literal Element of S st
(phi.1=v & f.((v,u) ReassignIn I, phi/^1)=TRUE)

otherwise FALSE;
end;

Just notice that this functor is expected to be accurate only when yielding TRUE,
since otherwise it could yield FALSE when actually it is supposed to be undefined.
This is not a problem anymore, since the previous definition already took care of
that matter.

Now the significant part of the work is done: all the syntactical and semantical
knowledge is thus stored in (S,U)-TruthEval, we just may want to rearrange it in
a more accessible way, a task with which we end this section. First, we can go back
to the lower level and get a function of just the string we want to evaluate:

definition
let S be Language, U be non empty set, m be Nat;
let I be Element of U-InterpretersOf S;
func (I,m)-TruthEval ->
Element of PFuncs((AllSymbolsOf S)*\{{}},BOOLEAN)
equals (curry ((S,U)-TruthEval.m)).I;

end;

Information about both syntax and semantics is now carried by (I,m)-TruthEval
in respectively its domain and its return value, so:

definition
let S be Language, m be Nat, w be string of S;
func S-formulasOfMaxDepth m -> Subset of ((AllSymbolsOf S)*\{{}})
means for U being non empty set,
I being Element of U-InterpretersOf S holds
it=dom (I,m)-TruthEval;

attr w is m-wff means w in S-formulasOfMaxDepth m;
attr w is wff means ex m st w is m-wff;
func AllFormulasOf S equals

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

66 · M. B. Caminati

{x where x is string of S: ex m st x is m-wff};
end;

definition
let S be Language, U be non empty set;
let I be Element of U-InterpretersOf S, w be wff string of S;
func I-TruthEval w -> Element of BOOLEAN means
for m being Nat st w is m-wff holds it=((I,m)-TruthEval).w;

end;

Here only the independence of dom (I,m)-TruthEval on I and U needs to be shown
to finally be able to evaluate the truth value of a wff formula, which is omitted here.
Let us end this part with stating the remaining semantical definitions implied in
the statement of Lowenheim-Skolem and completeness theorems, both traditionally
indicated by the double turnstile �; the satisfaction relation (cmp. [EFT84], III.3.1):

definition
let U be non empty set, S be Language;
let I be Element of U-InterpretersOf S; let X be set;
attr X is I-satisfied means
for phi being wff string of S st phi in X holds I-TruthEval phi=1;

end;

and the logical implication (entailment):

definition
let X be set, S be Language, phi be wff string of S;
attr phi is X-implied means
for U being non empty set, I being Element of U-InterpretersOf S st
X is I-satisfied holds I-TruthEval phi=1;

end;

4.3 Free interpretation

The free interpreter of a given operational symbol s of arity n of a Language S is
the operation on the set of n-tuples of terms of S obtained by concatenating the
tuple and appending it to the symbol s. Obviously the result is again an element
of the set of all terms of S, which now acts as a universe and makes this operation
an interpreter as of 4.2.1.

If we add to the picture an arbitrary set X of formulas of S we can talk also of
the free interpreter of a relational symbols r of S, of arity −n ∈ Z−. In this case
an n-tuple of terms is evaluated TRUE if and only if the atomic formula obtained
by concatenating and appending to r (the same job done in previous case) belongs
to X.

definition
let S be Language, s be ofAtomicFormula Element of S, X be set;
func X-freeInterpreter(s) -> Interpreter of s,(AllTermsOf S) equals
s-compound |(abs(ar(s))-tuples_on(AllTermsOf S))

if not s is relational otherwise
chi(X,AtomicFormulasOf S) *

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 67

(s-compound | (abs(ar(s))-tuples_on (AllTermsOf S)));
end;

It is worth noting that this definition is also applicable to the equality symbol.
This does not matter since, for any interpreter, the evaluation of any ≡ atomic
formula is overridden at the level of the definition of -TruthEval to give the correct
value. This is indeed what is meant when talking about a language with equality.
The functor -compound appearing above is introduced to aid the typing and has a
trivial definition (see 4.2 for -multiCat):

definition
let S be Language, s be Element of S;
func s-compound -> Function of ((AllSymbolsOf S)*\{{}})*,
(AllSymbolsOf S)*\{{}} means for V being Element of
((AllSymbolsOf S)*\{{}})* holds it.V = <*s*>^(S-multiCat.V);

end;

And finally here is the free interpretation over all the symbols of S, with
AllTermsOf S as universe.

definition
let S be Language, X be set;
func (S,X)-freeInterpreter ->
Element of (AllTermsOf S)-InterpretersOf S means
dom it=OwnSymbolsOf S & for s being own Element of S holds
it.s=X-freeInterpreter(s);

end;

4.4 Encoding of sequents and of sequent calculus

We end our review by discussing the encoding of sequent calculus. We define what
sequents are in just a plain way:

definition
let S be Language; func S-sequents equals
{[premises,conclusion] where premises is Subset of AllFormulasOf S,
conclusion is wff string of S: premises is finite};

end;

Only notice that premises is an (unsorted) finite set, not a n-tuple or a bag.
Since the common way of representing Gentzen-style derivation rules, as already

noticed, has more the nature of a diagram rather than that of a precise formula-
tion, encoding them has presented a number of fundamental design choices. When
starting from scratch, as in this case, one should put an effort in laying down a
structure with enough flexibility and generality to last in time and possibly be
reused for other purposes.

The first decision regarded modularization: the framework specifying what a rule
is and its general properties has been separated from the description itself of the
single rule. This brings some benefits:

—Definitions are terse and readable, compared with other approaches (cmp. e.g.
CALCUL_1, definition of is_a_correct_step).

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

68 · M. B. Caminati

—The effect of allowing or forbidding the use of a rule can be studied. Indeed, here
for each result proved the single rules needed are resolved.

—Possible expansion upon this schemes would be feasible; eg for applying logic
flavours other than classical one.

So we first define a framework in which to deal with rules by specifying an abstract
Rule type:

definition
let S be Language;
mode Rule of S is
Element of Funcs (bool (S-sequents), bool (S-sequents));

mode RuleSet of S is
Subset of Funcs (bool (S-sequents), bool (S-sequents));

end;

One should think of a Rule as the function mapping a set X of sequents into
the set of all sequents obtainable by applying the Gentzen derivation rule to all the
sequents in X).

Having to do generally with deductions using several rules in succession, we intro-
duce the functor OneStep to specify all the sequents derivable from some starting
sequents using only one rule of a given RuleSet D.

definition
let D be RuleSet of S;
func OneStep(D) -> Rule of S means
dom it = bool (S-sequents) &
for Seqs being set st Seqs in dom it holds
it.Seqs = union ((union D) .: {Seqs});

end;

With that, we have started specifying how to pass from rules to deductions, and
the next definition will complete the job. Sequent calculus separates the concepts
of formal deducibility and of correct proof, so we have two attributes as well; the
first is applied to a sequent and certifies it to be derivable from an initial set of
sequents, while the second applies to a formula and witnesses it is the tail of a
sequent derivable from no assumptions and whose premises are given:

definition
let S be Language, D be RuleSet of S, Seqs1, Seqs2 be set;
attr Seqs2 is (Seqs1,D)-derivable means
Seqs2 c= union (((OneStep D) [*]) .: {Seqs1});

let X,phi be set;
attr phi is (X,D)-provable means
ex seqt being set st
(seqt‘1 c= X & seqt‘2 = phi & {seqt} is ({},D)-derivable)

end;

Now we want to code the rules given in section 2 in this framework. We try
to separate the jobs of typing from that of actually specifying how a rule works,

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 69

by proceeding in stages. Let us take as an example the encoding of the last rule
appearing at row (7) in section 2.2 (note that inside the code it is referred to as
Rule6). First we specify the core of the rule as a Mizar predicate:

definition
let S be Language, x be set;
attr x is S-null means not contradiction;

end;
definition
let Seqts be set, S be Language, seqt be S-null set;
pred seqt Rule6 Seqts means
ex y1,y2 being set,phi1, phi2 being wff string of S st
y1 in Seqts & y2 in Seqts & y1‘1 = y2‘1 & y2‘1=seqt‘1 &
y1‘2= <*TheNorSymbOf S*> ^ phi1 ^ phi1 &
y2‘2= <*TheNorSymbOf S*> ^ phi2 ^ phi2 &
seqt‘2 = <*TheNorSymbOf S*> ^ phi1 ^ phi2;

end;

We want at this stage to reduce at a minimum the role of types, to concentrate on
the mechanics of the rule, so we declare the starting sequents, represented by Seqts,
as an untyped variable (a set); at the same time, to do the correct typing later,
we need to preserve a link to the type of the specific language S we are referring
to, so we introduce a fake attribute -null, and save it in the variable seqt, which
represents the derived sequent (the “denominator”) of the rule.

Now we pass from the predicate Rule6 to a rule as specified by Rule type:

definition
let S be Language, R be Relation of bool (S-sequents), S-sequents;
func FuncRule(R) -> Rule of S means
for inseqs being set st inseqs in bool (S-sequents) holds
it.inseqs={x where x is Element of S-sequents:[inseqs,x] in R};

end;

registration
let S be Language;
cluster -> S-null Element of S-sequents;

end;
definition
let S be Language;
func P6(S) -> Relation of bool (S-sequents), S-sequents means
for Seqts being Element of bool (S-sequents), seqt being
Element of (S-sequents) holds
[Seqts, seqt] in it iff seqt Rule6 Seqts;

end;

definition
let S be Language;
func R6(S) -> Rule of S equals FuncRule(P6(S));
end;

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

70 · M. B. Caminati

When having to code many rules this scheme is convenient because one needs
only to define a Mizar predicate without much worrying about typing; afterwards,
the rule is easily, and standardly, converted into a Relation and finally applied
FuncRule.

A very last addition has to be made to this encoding scheme for sequent calculus,
though. The definition of type Rule is arguably very liberal; as a matter of fact, it
is indeed a bit too liberal, since it misses prescribing a very reasonable property a
rule should have:

definition
let S be Language, R be Rule of S;
attr R is monotonic means
Seqts1 c= Seqts2 implies R.Seqts1 c= R.Seqts2;

end;

Dealing with one or two sequents in the “higher part of a rule”, one usually overlooks
this property. We gave a much looser definition of rule, so we have to worry about
this property, which turns out to be needed in order to establish very natural
passages usually silently agreed on, like ones based on the following result:

for D1, D2 being RuleSet of S st
D1 c= D2 & (D2 is monotonic or D1 is monotonic)
& Y is (X,D1)-derivable holds

Y is (X,D2)-derivable,

where a RuleSet could be called monotonic if every rule in it is such; actually, it
suffices an even weaker definition to prove the result above:

definition
let S be Language, D be RuleSet of S;
attr D is monotonic means
for Seqts1,Seqts2 being Subset of S-sequents, f being Function st
Seqts1 c= Seqts2 & f in D

ex g being Function st g in D & f.Seqts1 c= g.Seqts2;
end;

As a side note, it might be interesting to study rulesets which are monotonic in the
above weak sense, but not all rules of which are themselves monotonic.

We end this section stating that monotonicity, as such a humble request, is readily
proven true for all the rules of section 2.2.

5. CONSIDERATIONS ON SOME PROOF DESIGN ISSUES

Awareness that thoroughly calibrating types when enouncing definition is a key
factor for a well-structured proof grew steadily during the work. If one goes too
strong, by being too fussy in specifying what type of arguments a functor takes,
and at some point faces the need, for example, to apply the same functor to two
arguments which differ little, but do not have the same type, in this case he is
forced to do double work; also, sometimes a job can be made lighter by adapting
an existing type to an affine situation, and base on ready-made formalizations,
instead of creating a brand new world of types and having to re-invent the wheel.
Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 71

On the other hand, being too light with typing one loses the advantages of a tidy
formalization given by Mizar. As an example, compare the definitions of atomic
wff in [RT90] and in the present work:

definition
let F be Element of QC-WFF;
attr F is atomic means

...

definition
let S be Language;
let phi be string of S;
attr phi is atomic means

...

The latter definition applies to any string, and not to anything less only be-
cause inside the body of the definition there are functors requiring a string (a
FinSequence) as arguments; on the other hand the first definition restricts the
objects to which atomic attribute can be applied. This is likely to complicate
forthcoming treatments. One could object that the first solution has the strength
of ensuring that ‘atomic’ implies ‘wff’. But this can be attained also in the second
case by clustering (see appendix A), which is indeed done in the formalization:

registration
let S be Language;
cluster 0-wff -> atomic string of S;
cluster atomic -> 0-wff string of S;
let m be Nat;
cluster m-wff -> wff string of S;
let n be Nat;
cluster (m+0*n)-wff -> (m+n)-wff (string of S);
end;

The heavy adoption of attributes and clusters is a trait of the present formal-
ization. Their use has a few advantages: first, a technical one, for they permit
to automatically and implicitly reach conclusions which otherwise should be made
explicit with a by statement; this also brings an advantage in terms of terseness
and legibility; finally, they make type-trimming easier, allowing rich typing with
relative ease.

In the present case, this is especially true for the classification of the various
types of alphabet symbols: literal, compounder, relational, etc..., see 4.1.

A further character of this formalization is the effort to find definitions based
on equals and is rather than those based on means when possible. It seems
that the former encourage the reusing of pre-existent objects (functors, modes or
attributes), at the price of doing the preparatory work of translating the definition
to be expressed in terms of those other objects. Definitions thus obtained are
arguably more neat and readable, although sometimes less immediate. For sure
“equals” definitions have a technical advantage resembling that of attributes: they
are grasped automatically by Mizar if included in the definitions directive, again
making life easier and code terser. See [Kor09], section 3. Good examples of this
method could be the definitions of the functors === (not reviewed here, needed

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

72 · M. B. Caminati

in construction of -TruthEval), X-freeInterpreter (see 4.3), (I,m)-TruthEval
(see 4.2.1), and ReassignIn (see sections 4.2.1 and 2.2).

The last example is interesting because it also honors the ideas introduced in sec-
tion 3: indeed, besides having a clean, equals-based definition, it is first introduced
for arguments of more general types than we need for our particular case:

definition
let x,y be set, f be Function;
func (x,y) ReassignIn f -> Function equals
f +* (x .--> ({} .--> y));
end;

Recalling the action of +* functor and how we encoded the interpretation of a
literal symbol (section 4.2.1), its way of working should be clear. We are leaning
of course on a definition (+*) given elsewhere, but this permits to use more general
tools, avoid restating things, reduce the length of the definition, and, above all, reuse
possible results already proven about +*. Even if these results were not already
available in MML, proving them for a more general, pre-defined object is always
better than providing a specialized result framed in a narrower context: somebody
else could take advantage of them for developing possibly different areas of MML.
Again, as in the first example of this section, we adapt this general definition to
our needs by showing this functor returns the expected type when applied to the
types we will feed it, using the powerful tool of functorial clustering (see appendix
A):

registration
let S be Language,U be non empty set,
I be (S,U)-interpreter-like Function;
let x be literal Element of S, u be Element of U;
cluster (x,u) ReassignIn I -> (S,U)-interpreter-like;

end;

Indeed, as noted in section 3, some developments needed in the present work
produced results regarding only pre-existing, more general objects: as examples, one
could consider the introduction of the -unambiguous attribute for generic binary
operations, and the related results for the generic monoids, sketched in section
3.1. Here, two more examples, taken again from FOMODEL0 and which were missing
from MML, are exhibited in view of their concise and general statement; they both
derived from investigations on how to formalize sequent calculus.

The first regards the transitive closure R[*] of a relation R and states that it is
both transitive and reflexive:

registration
let R be Relation;
cluster R[*] -> transitive Relation;
cluster R[*] -> reflexive Relation;

end;

The second binds the transitive closure and the iteration of a function:

rng f c= dom f implies

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 73

f[*]=union {iter(f,mm) where mm is Element of NAT: not contradiction}

6. NUMERICALLY CHARACTERIZING THE FORMALIZATION

We want to estimate formalization cost and de Bruijn factor ([Wie00, ASC10,
Nau06]).
There are huge spaces of discretionality, which will be discussed below, in both cal-
culations, so we will make some arbitrary choices, hoping they will result sensible
and acceptable.

There are two figures to estimate to trigger calculations: the amount of man
hours devoted to formalization and a number measuring the size of a non-formal,
human-targeted mathematical text carrying information grossly equivalent to the
one formalized.

6.1 Estimating formalizing time

A significant amount of work regarded preliminary reformulation ([Cam09]) rather
than Mizar formalization, as discussed in section 2. This portion of work was
carried on largely before Mizar formalization even started, however its results were
revised ‘dynamically’ during the formalization as a result of the ‘feedback’ cited in
section 1.2, and as confirmed by the differences noticeable between Mizar code and
[Cam09]. Thus, formalization time assessment will be affected by some excess due
to this auxiliary work subtracting time to effective coding, and to the fact that the
workflow was rather irregular and interleaved with idle periods due to extraneous
activities; this last point is probably common to any formalization time estimation.

With the foregoing cautionary remarks, evolution of the codebase is as follow, us-
ing Mizar public repository on author’s homepage as a development history record.
The first Mizar file ever written by the author dates back to 24th January 2010,
and, since then, formalization and Mizar learning efforts went on concurrently; the
first codebase including Gödel’s completeness theorem was successfully checked on
12th October 2010.

Lowenheim-Skolem was first successfully compiled on 5th November 2010. As a
conclusion, formalizing time can be estimated in 284 days.

6.2 Establishing a non-formal, equivalent mathematical source text

For the reasons exposed in 6.1, choosing a denominator to compute de Bruijn factor
is not so straightforward in this case. The nearest treatment would obviously be
[Cam09], which, however, merely highlights the points in the proof which are novel
and less trivial, and silently assumes a lot of prerequisites. Instead, the low start-
ing point of this formalization demands we choose a more thorough treatment as a
fairer reference, with an exposition starting from scratch (alphabets, strings, etc...)
as this formalization does, and not omitting the tedious and ‘trivial’ details. Since
[EFT84], being an undergraduate text book, arguably satisfies these requirements
and was the original source of inspiration, it seems a good candidate. Specifically,
we OCRed its scans and selected the excerpt going from section II.1 (‘Alphabets’,
page 10) through section VI.1 (‘The Lowenheim-Skolem Theorem’, ending on page
89), taking the resulting ASCII text as our non-formal source text. It is available
on author’s home page for reference. We have not removed the dispensable bits
occurring in this source (exercises, historical notes, examples); first, they can be

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

74 · M. B. Caminati

considered quantitatively negligible for our purposes, especially if one consider how
arbitrary the whole matter is; secondarily, if one regards de Bruijn factor as a fun-
damental ratio between how much information is needed for a machine to accept
statements and how much information is needed for a human to accept the same
statements, rather than a totally empirical indicator to practically compare formal-
ization verbosities, he could consider those bits as effectively useful for that human
reader to accept (assimilate, he would say) those statements.

6.3 Results

The formalization cost is then calculated to be
284
7

89− 10 + 1
= 0.5 weeks per page

The de Bruijn factor is shown below:

informal (bytes) formal (bytes) de Bruijn factor
uncompressed 132495 710144 5.4 apparent

gzipped 46839 153399 3.3 intrinsic

7. CONCLUSIONS AND FURTHER DEVELOPMENTS

We discussed the reasons to introduce an alternative construction for first-order
languages in MML. We exposed a model for a first-order language oriented toward
simplicity, conceived with Mizar formalization in mind.
Then we listed a set of rules devised in the same spirit.
This set has been shown to be both correct and complete: using these constructions,
both Gödel’s completeness and Lowenheim-Skolem theorems have been Mizar-
verified.
The discussion proceeded with a general, algebraic-oriented treatment, based on
the notion of an unambiguous set with respect to a generic binary operation, per-
mitted an alternative definition of the subterms of a term.
After that, we passed to displaying the main points of the Mizar formalization of
these objects, and the formalization, in this framework, of the basic theoretical
tools for syntax and semantics. At this stage, an alternative design unifying the
formalizations of syntax and evaluation of non-atomic formulas, charted to decrease
the amount of Mizar code needed to introduce them, has been proposed.
Continuing in the illustration of our Mizar formulations, we passed to the definition
of a sequent and of a derivation rule. In doing that, we pointed out that our defini-
tion of rule has been split in stages, allowing to “plug” additional rules if needed,
by separating the definition of a rule from its actual specification, and by defining
derivability and provability for a generic, unspecified set of rules. Also, we noticed
how the specification of a specific rule has been separated in stages as well, with
a first stage describing the very mechanics of the rule, and later stages to easily
accommodate its typing inside the framework introduced for sequent calculus. Fi-
nally, considerations on some design choices faced during the work were given, and
numerical estimations to characterize the formalization were calculated, resulting
in an intrisic de Bruijn factor of 3.3 and in a cost factor of 0.5.

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 75

Basing on what already done, a further step could be the verification of Lowenheim-
Skolem theorem for higher cardinalities and in the ‘upward’ direction, by employing
some form of choice. Usually in the present countable case, its place can be taken
by König’s lemma (see e.g. [Jer96, Avi10]): so it could also be of interest to in-
vestigate, tracing axiom dependency via Mizar, the role of König’s lemma in this
formalization.

ACKNOWLEDGMENTS

I wish to thank Marco Pedicini and Mario Piazza for kind suggestions and useful
discussions.

References

[ASC10] A. Asperti and C. Sacerdoti Coen. Some Considerations on the Usability
of Interactive Provers. In Intelligent Computer Mathematics: 10th In-
ternational Conference, Aisc 2010, 17th Symposium, Calculemus 2010,
and 9th International Conference, Mkm 2010, Paris, France, July 5-10,
2010. Proceedings, page 147, 2010.

[Avi10] J. Avigad. Gödel and the metamathematical tradition. Kurt Gödel:
Essays for His Centennial, page 45, 2010.

[Ban90] G. Bancerek. A model of ZF set theory language. Formalized Mathemat-
ics, 1(1):131–145, 1990.

[BR02] G. Bancerek and P. Rudnicki. A compendium of continuous lattices in
mizar. Journal of Automated Reasoning, 29(3):189–224, 2002.

[Cam09] M.B. Caminati. Yet another proof of Goedel’s completeness theorem for
first-order classical logic. Arxiv preprint arXiv:0910.2059, 2009.

[EFT84] H.D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Under-
graduate Texts in Mathematics. Springer-Verlag, second edition, 1984.
ISBN 0387908951.

[Har98] J. Harrison. Formalizing basic first order model theory. Theorem Proving
in Higher Order Logics, pages 153–170, 1998.

[Jaś34] S. Jaśkowski. On the rules of suppositions in formal logic. Nak ladem Sem-
inarjum Filozoficznego Wydzia lu Matematyczno-Przyrodniczego Uniwer-
sytetu Warszawskiego, 1934.

[Jer96] H.R. Jervell. Thoralf Skolem Pioneer of Computational Logic. Nordic
Journal of Philosophical Logic, 1(2):107–117, 1996.

[KMK92] J. Kotowicz, B. Madras, and M. Korolkiewicz. Basic notation of universal
algebra. Journal of Formalized Mathematics, 4, 1992.

[Kor09] A. Kornilowicz. How to Define Terms in Mizar Effectively. Studies in
Logic, Grammar and Rhetoric, 18(31):67–77, 2009.

[Lot02] M. Lothaire. Algebraic combinatorics on words. Cambridge Univ Pr,
2002.

[Nau06] A. Naumowicz. An example of formalizing recent mathematical results
in Mizar. Journal of Applied Logic, 4(4):396–413, 2006.

[Ono62] K. Ono. On a practical way of describing formal deductions. Nagoya
Mathematical Journal, 21:115–121, 1962.

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

76 · M. B. Caminati

[RSN63] H. Rasiowa, R. Sikorski, and P.A. Nauk. The mathematics of metamath-
ematics. PWN Warszawa, 1963.

[RT90] P. Rudnicki and A. Trybulec. A first order language. Formalized Math-
ematics, 1(2):303–311, 1990.

[RT99] P. Rudnicki and A. Trybulec. On equivalents of well-foundedness. Journal
of Automated Reasoning, 23(3):197–234, 1999.

[Rud92] P. Rudnicki. An overview of the Mizar project. In Proceedings of the 1992
Workshop on Types for Proofs and Programs, pages 311–332. Citeseer,
1992.

[Wie00] F. Wiedijk. The De Bruijn Factor. preprint, 2000.
http://www.cs.ru.nl/˜freek/factor/factor.pdf.

[Wie07] F. Wiedijk. Mizar’s soft type system. In Proceedings of the 20th in-
ternational conference on Theorem proving in higher order logics, pages
383–399. Springer-Verlag, 2007.

A. A QUICK OVERVIEW OF MIZAR

What is nowadays customarily referred to as Mizar (www.mizar.org) [Rud92],
[RT99], is an enduring mathematical knowledge formalization project consisting
of a language to code first-order logic with schemes, a small core of fixed axioms
(Tarski-Grothendieck, see [RT99]) expressed in this language, a checker executable
(PC Mizar) to certify the correctness according to the latter of natural deduction (in
a flavour adhering to those described in [Jaś34] and [Ono62]) proofs, and a library
(MML) of certified results which has grown quite massive and diverse throughout
the decades the project has seen. Currently, MML is the only part of the project
open to external contributions.

Being based on set theory, the Mizar language is an untyped one. Virtually,
every (first-order) Mizar formula corresponds to a string of {, },∈,∀,∃,∧,∨,¬, =⇒
, ⇐⇒ ,= and variables symbols. For users’ convenience, however, there are facili-
ties to overlay those untamed set-theoretic strings with orderly structures. Given
the aspiration of Mizar to be a universal library aiming to be referenced to by any
mathematician, besides a mere proof-certifying entity, these facilities have a fun-
damental role also for the readability of MML, apart from being decisive tools for
the coder of the proofs. Indeed, they make Mizar language very close to mathe-
maticians’ common way of expressing mathematics, e.g. the one instinctively put
down when they face chalk and blackboard. The present paper itself leans on this
marked readability of Mizar language: we extensively exhibited pieces of code as
commentary of themselves, ensured of course by the fact that Mizar checker already
took care of proving the corresponding mathematics correct.

First, one can define a type as a family of sets satisfying a given condition. Given
that, one then can also define functions (called functors in Mizar parlance, though
no link with the notion of category theory exists; as explained in [BR02], the name
is drawn from a passage on [RSN63], V.1, and serves to emphasize that they map
between strings of the Mizar meta-language, and are different from the first-order
function type) operating on a finite list of arguments with specified types, much
like one defines functions in a procedural programming language (check table I
for some occurring in this paper). Along with functors, one can define predicates,

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

Model theory in Mizar · 77

f"X preimage of the set X through f f−1(X)

X/\Y, X\/Y, X\Y basic set-theoretical operations X ∪ Y,X ∩ Y,X\Y
[x,y] Kuratowski ordered pair (x, y)

[:X,Y:] cartesian product of sets X × Y
NAT, INT N,Z
X*, n-tuples_on X sets of finite and n-long X-words X∗, Xn

<*s*> the string made of the lone char s ^s$

p^q concatenation of strings p and q p||q
dom f, rng f domain and range of a relation f

p/^n the string p with the first n chars removed

bool X the power set of X 2X

f.x the value of the function f in x f (x)

f +* g the pasting of the functions f, g

curry currying ((x, y) 7→ f (x, y)) 7→
(x 7→ (y 7→ f (x, y)))

f * g functional composition f ◦ g
f.:X image of the set X through f f [X]

[x,y]‘1=x

[x,y]‘2=y

projectors for Kuratowski pairs

Funcs(X,Y) the set of functions from X to Y Y X

PFuncs(X,Y) the set of partfunctions from X to Y
[

x⊆X

Y x

R[*] finite iterations of a relation R, aka the tran-
sitive closure of R

X --> y the constant y-valued function on X X 7→ {y}
x.-->y = {x}-->y function between two singlets

chi(Y,X) characteristic function of Y ⊆ X 1Y : X 7→ {0, 1}

Table I. Notable Mizar definitions used in the paper, pre-existing in MML

which works the same way, except that the former return a term of first-order
language, while the latter return a truth value. Reasoning in the same manner, a
third very special kind of constructor has been introduced in Mizar, called a mode.
It does not return a term neither a truth value from its arguments: it returns
a new type, a dependent type. Finally, any type can be appended an attribute
to further subdivide it into subtypes. The pair (type, attribute) becomes a new
type and so on. A nice feature of attributes is that Mizar provides a mechanism
to automatically attach an attribute to a given type once proven this type indeed
possessing the corresponding property. This mechanism, called clustering, has a
quite powerful application scheme, and was extensively exploited in this work.

It is important to stress that all these overlays are added at the level of the
meta-language, not at the level of first-order, set theory language (sometimes it is
said that Mizar has a soft type system, [Wie07]). All the same, the difficulty of
formalizing in Mizar without taking advantages of them could be vaguely compared
to the one of coding in machine language without using a higher-level language.

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.

	Motivation: model theory in Mizar
	A birds-eye's view of the proof
	A word about reformulation

	A Mizar-friendly reformulation
	Encoding of language
	Sequent calculus

	Organization of the codebase
	Dealing with subterms

	Encoding in Mizar
	The Language type
	Syntax and semantics
	Saving work: completing syntax and doing semantics, concurrently

	Free interpretation
	Encoding of sequents and of sequent calculus

	Considerations on some proof design issues
	Numerically characterizing the formalization
	Estimating formalizing time
	Establishing a non-formal, equivalent mathematical source text
	Results

	Conclusions and further developments
	A quick overview of Mizar

