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This paper presents a formal proof of the Riesz representation theorem in the PVS theorem prover.

The Riemann Stieltjes integral was defined in PVS, and the theorem relies on this integral. In order

to prove the Riesz representation theorem, it was necessary to prove that continuous functions
on a closed interval are Riemann Stieltjes integrable with respect to any function of bounded

variation. This result follows from the equivalence of the Riemann Stieltjes and Darboux Stieltjes

integrals, which would have been a lengthy result to prove in PVS, so a simpler lemma was proved
that captures the underlying concept of this integral equivalence. In order to prove the Riesz

theorem, the Hahn Banach theorem was proved in the case where the normed linear spaces are

the continuous and bounded functions on a closed interval. The proof of the Riesz theorem follows
the proof in Haaser and Sullivan’s book Real Analysis. The formal proof of this result in PVS

revealed an error in textbook’s proof. Indeed, the proof of the Riesz representation theorem is

constructive, and the function constructed in the textbook does not satisfy a key property. This
error illustrates the ability of formal verification to find logical errors. A specific counterexample is

given to the proof in the textbook. Finally, a corrected proof of the Riesz representation theorem
is presented.

1. INTRODUCTION

Recently, the formal methods research group at NASA Langley has undertaken
the challenge to formalize probabilistic models of aircraft behavior in the airspace.
This has resulted in a project to develop a probability theory library in PVS. The
beginning of such a library was started by David Lester, who has formalized the
theory of Lebesgue integration. One challenging factor is that the formal theories
should be capable of proving both (1) results with actual numbers and (2) theorems
in general probability theory. A measure theory approach to probability lends itself
more to proving general theorems, while the Riemann integral lends itself more to
proving results with actual numbers. Thus, an alternative that is being explored
is the Riemann-Stieljtes integral, which allows for both discrete and continuous
distributions to be defined and makes numerical approximations of probabilities at
least conceivable. Recently, the author has defined and proved basic properties of
the Riemann-Stieltjes integral. This paper presents a result involving the Riemann-
Stieltjes integral, which is not basic, although it is very well-known by any graduate
student in functional analysis.

The Riesz representation theorem is a fundamental theorem in functional anal-
ysis. J.D. Gray’s gripping exposé on the history of the theorem begins with the
following remark:

“Only rarely does the mathematical community pay a theorem the
accolade of transforming it into a tautology. The Riesz representation
theorem has received this accolade.” [Gra84]
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By this, Gray means that the theorem has become so embedded in the minds of
todays mathematicians that they often implicitly assume it and do not bother to
note its application. This theorem is useful in many areas of analysis, including
probability theory, where it is used to prove the existence of solutions to moment
problems. This paper presents a formal proof of the theorem, as originally stated
in 1909 by Riesz [Rie09], in the PVS theorem prover. The PVS development can be
downloaded at http://shemesh.larc.nasa.gov/people/ajn/pvs_development.
The proof uses standard techniques found in many textbooks, but most of the
construction is taken from Haaser and Sullivan’s Real Analysis [HS71].

The Riesz representation theorem (henceforth called the Riesz theorem) classifies
the bounded linear functionals on the space C[a, b], of continuous functions on the
closed, bounded interval [a, b]. A linear functional on C[a, b] is a linear transforma-
tion L : C[a, b]→ R, and it therefore satisfies the following two properties.

(1) For all f, g ∈ C[a, b] : L(f + g) = L(f) + L(g)
(2) For all c ∈ R, f ∈ C[a, b] : L(c · f) = c · L(f)

The linear functional L is bounded if there exists a nonnegative real number M
such that for all f ∈ C[a, b],

|L(f)| ≤M · ‖f‖sup, (1)

where the (supremum) norm ‖g‖sup of an arbitrary bounded function g on [a, b] is
defined by

‖g‖sup ≡ sup
x∈[a,b]

|g(x)|. (2)

This norm is defined for functions f ∈ C[a, b] because any continuous function on
a closed interval is necessarily bounded [HS71]. If L is a bounded linear functional
on C[a, b], then the operator norm ‖L‖C[a,b] of L is the smallest real number M
that satisfies Equation (1). It is easy to see that for any such L and any continuous
function f on [a, b], |L(f)| ≤ ‖L‖C[a,b] · ‖f‖sup.

The Riesz theorem classifies the bounded linear functionals on C[a, b] in terms of
the set BV [a, b] of functions of bounded variation on [a, b]. A function g : [a, b]→ R
is of bounded variation if there exists a real number K such that for every n > 0
and every partition a = x0 ≤ x1 ≤ · · · ≤ xn = b,

∑n
i=1 |g(xi)− g(xi−1)| ≤ K. The

total variation V ba (g) of a function g ∈ BV [a, b] is the minimum of all such real
numbers K. If g ∈ BV [a, b], then there is an associated bounded linear functional
Ig on C[a, b] given by

Ig(f) ≡
∫ b

a

fdg, (3)

which is the Riemann-Stieltjes integral of f with respect to g (Section 2). In the
construction of this integral and the linear functional in PVS, the original intent
was to simply generalize the construction of the Riemann integral in the NASA
PVS libraries that was created by Ricky Butler [But09]. Ideally, it would have
been possible to generalize Butler’s proof that a continuous function is Riemann
integrable to a proof that the functional Ig is indeed well-defined. However, a new
proof had to be developed, because Butler’s proofs were based on step functions,
which are not necessarily Riemann-Stieltjes integrable (Section 2).
Journal of Formalized Reasoning Vol. 4, No. 1, 2011.
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A result needed in Haaser and Sullivan’s proof of the Riesz theorem is the equiv-
alence of the Riemann-Stieltjes and Darboux-Stieltjes integrals. This result is used
to prove the lemma that a continuous function is Riemann-Stieltjes integrable with
respect to any function of bounded variation. In the proof of the Riesz theorem in
PVS, a simpler method was used to prove the integrability of continuous functions.
This method is to prove one theorem that extracts the main idea of this integral
equivalence and can be used to prove the integrability of continuous functions. The
proof of this theorem is somewhat tricky due to its use of refinements of partitions
and inequalities between finite sums.

The Riesz theorem says that every bounded linear functional on C[a, b] is given
by Ig for some g ∈ BV [a, b].

Theorem 1.1. (The Riez Representation Theorem; Theorem 6.1 in [HS71]) If L
is a bounded linear functional on C[a, b], then there exists a function g ∈ BV [a, b]
such that L = Ig and ‖L‖C[a,b] = V ba (g).

The proof of the theorem is constructive. In fact, the function g such that L = Ig
is given by

g(x) =


0 if x = a

L̄(χ[a,x)) if a < x < b

L̄(χ[a,x]) if x = b

(4)

where L̄ is an extension of L to the space B[a, b] of bounded functions on [a, b], and
where, for a given interval Int, χInt denotes the characteristic function of Int.

Typically, constructing a formal proof of a difficult result in a mathematics text-
book will reveal some special cases that were overlooked by the author. In the
case of the Riesz theorem, the distinction between the formal PVS proof and the
informal textbook proof was even greater than this, because the textbook proof in
question [HS71] constructs the function g incorrectly. The definition given there of
the function g is

ginc(x) =

{
0 if x = a

L̄(χ[a,x)) if a < x ≤ b
(5)

While the definitions of the functions g and ginc are almost identical, the key prop-
erty of g that is needed in the proof is not satisfied by the function ginc (Section 5.1).
A person trained in Lebesgue integration theory may look at the functions g and
ginc and assume that they are essentially equivalent, since the only difference occurs
at the single point b. However, the Riemann-Stieltjes integral is different from the
Lebesgue integral in that it is not true that two functions which differ only at one
point have the same Riemann-Stieltjes integral, even if they are both integrable.

One difficult part of the proof of the Riesz theorem is verifying that any bounded
linear functional L on C[a, b] can be extended to a bounded linear functional L̄ on
B[a, b] such that ‖L‖C[a,b] = ‖L̄‖B[a,b]. This statement is an instantiation of the
Hahn-Banach theorem, another fundamental theorem in functional analysis that is
well known to graduate students in analysis. The Hahn-Banach theorem says that
if X and Y are real normed linear spaces such that X ⊂ Y , and if H : X → R is
a bounded linear functional on X, then there exists an extension, H̄ : Y → R, of
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H such that ‖H‖X = ‖H̄‖Y . The following case of the Hahn-Banach theorem has
been formally proved in PVS.

Theorem 1.2. (Special Case of Hahn-Banach) If L is a bounded linear functional
on C[a, b], then there exists an extension, L̄ : B[a, b]→ R, of L such that ‖L‖C[a,b] =
‖L̄‖B[a,b].

Formal proofs of the complete Hahn-Banach theorem have been completed be-
fore [NT93, BW00, Bau01]. As in the case of the Riesz theorem, the proof follows
the informal textbook proof in [HS71] (Theorem 5.6 and Corollary 5.7).

There is a critical step in the proof of the Hahn-Banach theorem in which one
must show that if H is a bounded linear functional on a subspace S of B[a, b],
and if a function f ∈ B[a, b] is not in S, then there exists an extension H̄ of H to
the subspace S̄ = {s + c · f | s ∈ S, c ∈ R} of S. The extension H̄ is defined by
H̄(s+c·f) = H(s)+c·β, where β is a fixed real number satisfying a certain property.
Defining H̄ directly in this way is not possible in PVS, so specific functions had to
be defined that, given an element r = s+ c · f of S̄, compute the function s and the
constant c, and the linearity and uniqueness of these functions had to be verified.

As usual, the formal PVS proofs of the Riesz and Hahn-Banach theorems were
much longer and more detailed than the informal textbook proofs. The only ex-
ception was in the proof that a continuous function is Riemann-Stieltjes integrable
with respect to any function of bounded variation. As mentioned above, Haaser and
Sullivan’s textbook proves this by first constructing the Darboux-Stieltjes integral
and proving its equivalence to the Riemann-Stieltjes integral. The formal proof in
PVS takes a simpler approach by proving one theorem that captures the needed
underlying concept from this integral inequality.

1.1 Acknowledgements

The author would like to thank César A. Muñoz and Ricky Butler for their helpful
comments and corrections to this paper.

2. RIEMANN-STIELTJES INTEGRABILITY OF CONTINUOUS FUNCTIONS

This section presents the formalization of the Riemann-Stieltjes (RS) integral and
the proof that continuous functions on [a, b] are integrable with respect to any
function of bounded variation on [a, b].

2.1 Functions on [a, b]

There are three specific spaces, each consisting of real-valued functions on [a, b],
whose properties are used in the Riesz representation theorem and its proof. The
spaces are C[a, b], which consists of all continuous functions on [a, b], B[a, b], which
consists of all bounded functions on [a, b], and BV [a, b], which consists of all func-
tions of bounded variation on [a, b]. The PVS theories in which the Riemann-
Stieltjes integral is defined and its basic properties are proved all have a parameter
T , which is a subtype of the real numbers. The type T must be connected and
contain more than one element, and it is therefore an interval which can be infinite
in length and may or may not contain either endpoint. In the PVS theories in which
the Hahn-Banach and Riesz-Representation theorems are proved, the real numbers
a and b are parameters of the theories, and a and b are restricted by their types to
Journal of Formalized Reasoning Vol. 4, No. 1, 2011.
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satisfy a < b. In these theories that have a and b as parameters, INTab refers to the
type consisting of all real numbers in the interval [a, b], and Intab (with lower-case
n and t) refers to the set [a, b].

2.2 Partitions on [a, b]

The formalization of the RS integral defines a partition using the finite sequence
theories in the NASA PVS libraries. In these theories, a finite sequence is a
record type with two fields, a natural number length and an infinite sequence
seq of real numbers that evaluates to a default value for all indices greater than
length-1. In PVS, elements of this finite sequence are written using the form (#
length := n, seq := f #), where n is a natural number and f is a function from
natural numbers into real numbers.

The formal definition of a partition in the RS theories is given as follows. It is
defined by a predicate partition_pred? on finite sequences that tests whether a
given finite sequence is a partition of the interval [a, b].

partition_pred?(a:T,b:{x:T|a<x})(fs:fseq): MACRO bool =
(Let N = fs‘length, xx = fs‘seq IN
N > 1 AND xx(0) = a AND xx(N-1) = b AND
increasing?(fs) AND
(FORALL (i:below(N)): a <= xx(i) AND xx(i) <= b))

partition(a:T,b:{x:T|a<x}): TYPE = (partition_pred?(a,b))

In this definition, T is an interval of real numbers with positive length, and the no-
tation b:{x:T|a<x} indicates that b has type {x:T|a<x}. This type declaration is
possible in PVS because PVS allows predicate subtyping. The notation fs‘length
indicates record access. Here, fs is a finite sequence, and either of its fields, length
and seq can be accessed by the notation f‘length and f‘seq, respectively. The
final condition in this definition, which states that every element of a partition is
an element of the interval [a, b], is implied by the other conditions in the definition.
However, this condition was added to the partition type because many of the proofs
required this statement to be verified, and adding it here allowed the type-checker
in PVS to verify this condition automatically in the proofs.

Lemmas in PVS for partitions of the interval [a, b] have been available for some
time in the NASA PVS libraries and were developed by Ricky Butler [But09]. When
formalizing the RS integral, many of the results in those theories could be used with
only slight modifications. However, some new constructions were needed for the
development of the RS integral, most notably the union of two partitions, which
itself is a partition.

partition_union(a,(b|a<b))(P,Q: partition(a,b)):
{PQ: partition(a,b) |
(FORALL (x:T): member(x,PQ)
IFF (member(x,P) OR member(x,Q))) AND
strictly_increasing?(PQ)}

The union of two partitions in PVS is an uninterpreted function, and it was proved
in PVS that this function exists and is unique. Several other key properties of
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these unions were proved, including that the width of the union of two partitions
is bounded above by the widths of the individual partitions.

width(a:T, b:{x:T|a<x}, P: partition(a,b)): posreal =
LET xx = P‘seq, N = P‘length IN
max({ l: real | EXISTS (ii: below(N-1)):
l = xx(ii+1) - xx(ii)})

partition_union_width: LEMMA a<b IMPLIES
FORALL (P,Q:partition(a,b)):
width(a,b,partition_union(a,b)(P,Q)) <=
min(width(a,b,P),width(a,b,Q))

2.3 Summation in PVS

There are multiple places in the construction of the Riemann-Stieltjes integral and
the proof of the Riesz representation theorem where summations are used, includ-
ing the definitions for Riemann-Stieltjes sums and functions of bounded variation.
There is extensive support for manipulating summations in the NASA PVS li-
braries. These PVS theories were developed, in part, for the purpose of defining
the standard Riemann integral [But09]. Summation is defined in the NASA libraries
with the function sigma:

sigma(low, high, F): RECURSIVE real
= IF low > high THEN 0
ELSE F(high) + sigma(low, high-1, F)
ENDIF
MEASURE (LAMBDA low, high, F: abs(high+1-low))

In this definition, F is a real valued function whose domain is a subtype of the
integers. Most of the standard results involving summation are available in the
NASA libraries, such as the triangle inequality.

sigma_abs : THEOREM abs(sigma(low, high, F)) <=
sigma(low, high, LAMBDA (n: T): abs(F(n)))

There are also more advanced lemmas that facilitate manipulations of summations,
such as the fact that summation signs can be swapped.

sigma_swap: LEMMA
sigma(low1,high1,LAMBDA (i:T):

sigma(low2,high2,LAMBDA (j:T): F(i,j)))
= sigma(low2,high2,LAMBDA (j:T):

sigma(low1,high1,LAMBDA (i:T): F(i,j)))

2.4 Definition of the Riemann-Stieltjes integral

The Riemann-Stieltjes integral is a generalization of the Riemann integral, which
has already been formalized in PVS [But09]. If f and g are functions [a, b] → R,
then f is said to be Riemann-Stieltjes integrable with respect to g on [a, b] if there
exists a real number S with the following property. For every ε > 0, there exists
δ > 0 with the property that for any partition P : a = p0 ≤ p1 ≤ · · · ≤ pn = b
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with width less than δ, any choice of points xi ∈ [pi, pi+1] for i < n satisfies

|S −
n∑
i=1

f(xi−1)(g(pi)− g(pi−1))| < ε. (6)

If f is RS integrable with respect to g, then the real number S is denoted
∫ b
a
f dg.

The function f is called the “integrand”, and g the “integrator”. It is easy to see
that if g(x) = x for all x ∈ [a, b] then this is the Riemann integral of f .

A popular alternative way to define the Riemann-Stieltjes integral is to require
that for every ε > 0, there exists a partition P , such that any refinement of P
satisfies the conditions above. The approach taken in the formalization presented
here is also taken by Haaser and Sullivan [HS71]. In fact, the definition chosen
in this paper for the Riemann-Stieltjes integral is less general than this second
definition, and it is easy to construct an example that is RS integrable for the
second definition but not for the first. The author’s main motivation for choosing
this definition is that the NASA PVS libraries contain a complete set of theories
on the Riemann integral. The Riemann integral is a special case of the Riemann-
Stieltjes integral, so many of the definitions and proofs in the PVS theories for
the Riemann integral were altered to give new definitions and proofs in the PVS
theories for the Riemann-Stieltjes integral. However, not all of the results for the
Riemann integral could be generalized to the Riemann-Stieltjes integral. This is
because Butler’s constructions for the Riemann integral [But09] were based on step
functions, which are not necessarily Riemann-Stieltjes integrable. The PVS theories
for these two integrals are separate and independent. The NASA PVS libraries
also contain theories for Lebesgue integration, and the equivalence of Lebesgue and
standard Riemann integration has been proved by David Lester.

A change was made (to Butler’s constructions) in the definition of a set of points
{x0, . . . , xn−1} such that xi ∈ [pi, pi+1], where the points pj are in a partition
P . Such a set {x0, . . . , xn−1} is said to satisfy the partition P . For the Riemann
integral, such sets of points were simply defined as maps from below(length(P)-1)
to closed_interval(a,b). In the definition of the RS integral, this type, denoted
xis?(a,b,P), is also defined in terms of the theories on finite sequences from the
NASA PVS libraries. It is defined using a predicate xis_pred? on finite sequences
that tests whether a sequence satisfies a given partition P.

xis_pred?(a:T,b:{x:T|a<x},P:partition(a,b))(fs:fseq): MACRO bool =
(fs‘length = P‘length-1 AND (FORALL (ii: below(P‘length-1)):
P‘seq(ii) <= fs‘seq(ii) AND fs‘seq(ii) <= P‘seq(ii+1)))

xis?(a:T,b:{x:T|a<x},P:partition(a,b)): TYPE = (xis_pred?(a,b,P))

As in the case of partitions, this change was not difficult to accommodate in the
formal definitions and proofs.

The remainder of the construction of the Riemann-Stieltjes integral is identical
to that for the Riemann integral [But09]. The following functions and predicates
have been defined in PVS, and the return type is indicated in each case.

Rie_sum(a:T,b:{x:T|a<x},g:[T->real],P:partition(a,b),
xis: xis?(a,b,P),f:[T->real]): real
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Riemann_sum?(a:T,b:{x:T|a<x},P:partition(a,b),g,f:[T->real])
(S:real): bool =

(EXISTS (xis: xis?(a,b,P)): LET N = P‘length-1 IN
S = Rie_sum(a,b,g,P,xis,f))

integral?(a:T,b:{x:T|a<x},g,f:[T->real],S:real): bool

integrable?(a:T,b:{x:T|a<x},g,f:[T->real]): bool =
(EXISTS (S:real): integral?(a,b,g,f,S))

integral(a:T,b:{x:T|a<x},
gg:[T->real],ff:{f | integrable?(a,b,gg,f)}):

{S:real | integral?(a,b,gg,ff,S)}

2.5 Functions of Bounded Variation

The Riesz representation theorem classifies the bounded linear functionals on C[a, b]
in terms of the set BV [a, b] of functions of bounded variation on [a, b]. As noted
in the introduction, a function g : [a, b] → R is of bounded variation if there exists
a real number K such that for every partition a = p0 ≤ p1 ≤ · · · ≤ pn = b,∑n
i=1 |g(pi)− g(pi−1)| ≤ K. The total variation V ba (g) of a function g ∈ BV [a, b] is

the minimum of all such real numbers K.
The set of functions on [a, b] of bounded variation is defined using a predicate

bounded_variation? in PVS.

variation_on(a,b:{x:T|a<x},P:partition(a,b))(f) : nnreal =
sigma[below(P‘length-1)](0,P‘length-2,

LAMBDA (n:below(P‘length-1)):
abs(f(P‘seq(n+1))-f(P‘seq(n))))

bounded_variation?(a,b:{x:T|a<x})(f): bool = (EXISTS (M: nnreal):
(FORALL (P:partition(a,b)): variation_on(a,b,P)(f) <= M))

total_variation(a,b:{x:T|a<x},f:(bounded_variation?(a,b)))
(x: (closed_intv(a,b))):

{M: nnreal|(x=a IMPLIES M=0) AND (x>a IMPLIES
FORALL (P:partition(a,x)): variation_on(a,x,P)(f)<=M) AND
(FORALL (M1: nnreal): M1<M IMPLIES EXISTS (P:partition(a,x)):

variation_on(a,x,P)(f) > M1)}

The general strategy used in the PVS development, when proving that a property
holds for functions of bounded variation, is to first prove that the property holds
for functions that are increasing on [a, b], then prove that the property is linear,
and finally apply the following lemma.

Lemma 2.1. A function g : [a, b]→ R is of bounded variation on [a, b] if and only
if there are increasing functions h and r on [a, b] such that g = h− r.
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Proof (Sketch). If h is a function that is increasing on [a, b], it is easy to see
that it is of bounded variation, since for any partition P : a = p0 ≤ p1 ≤ · · · ≤ pn =
b,

∑n
i=1 |(h(pi) − h(pi−1)| =

∑
i(h(pi) − h(pi−1)) = b − a. Thus, the only tricky

part of the proof is the forward implication, the proof of which is constructive.
Indeed, given a function g of bounded variation, the functions h and r are given by
h(x) = V xa (g) and r(x) = V xa (g)− f(x) for x ∈ [a, b].

This lemma has been proved in PVS, and it simplifies many proofs about functions
of bounded variation. It is stated in PVS as follows.

BV_decomposition: LEMMA a<b IMPLIES
(bounded_variation?(a,b)(f) IFF
LET CI = closed_intv(a,b) IN
EXISTS (g,h): f = (LAMBDA (x:T): g(x)-h(x)) AND

increasing?[(CI)](g) AND increasing?[(CI)](h))

2.6 The Darboux-Stieltjes Integral

A result used in Haaser and Sullivan’s proof [HS71] of the Riesz Representation
theorem is the equivalence of the Riemann-Stieltjes and Darboux-Stieltjes integrals.
This result is used to prove the lemma that a continuous function is Riemann-
Stieltjes integrable with respect to any function of bounded variation. In the proof
of the Riesz Representation theorem in PVS, a simpler method was used to prove
this result. This method is to prove one theorem that extracts the main idea of
this integral equivalence and can be used to prove the integrability of continuous
functions. The proof of this theorem is somewhat tricky due to its use of refinements
of partitions and inequalities between finite sums.

The definition of the Darboux-Stieltjes integral of a bounded function f with
respect to a function g requires that g be increasing on [a, b]. The basic quantities
are defined as follows.

mi(f) = inf{f(x) | x ∈ [pi−1, pi]}
Mi(f) = sup{f(x) | x ∈ [pi−1, pi]}

L(f, g, P ) =
n∑
i=1

mi(f)(g(pi)− g(pi−1))

U(f, g, P ) =
n∑
i=1

Mi(f)(g(pi)− g(pi−1))

(7)

The function g must be increasing to ensure that L(f, g, P ) ≤ U(f, g, P ). The
upper and lower integrals, respectively, are defined as follows.∫ b

a

f dg = inf{U(f, g, P ) | P is any partition on [a, b]}∫ b

a

f dg = sup{L(f, g, P ) | P is any partition on [a, b]}
(8)

If the upper and lower integrals are equal, then f is Darboux-Stieltjes integrable
with respect to g.
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The theorem that captures a key idea in the Riemann and Darboux Stieltjes
integral equivalence and simplifies the proof of the Riesz theorem in PVS is stated
below.

Theorem 2.2. If g is increasing on [a, b], then f is integrable with respect to g
if and only if for every ε > 0, there exists δ > 0 with the property that for every
partition P : a = p0 ≤ · · · ≤ pn = b with width less than δ, and for any two
sequences {x0, . . . , xn−1} and {y0, . . . , yn−1} that satisfy P ,

|
n∑
i=1

f(xi−1)(g(pi)− g(pi−1)) −
n∑
i=1

f(yi−1)(g(pi)− g(pi−1))| < ε. (9)

It should be noted that this theorem is not the same as the true statement that f
is integrable if and only if for all ε, there exists δ such that for all pairs of partitions
P and Q with widths less than δ, every RS sum of f on P is less than ε away (in
absolute value) from every RS sum of f on Q. This latter result is trivial since a
sequence of real numbers converges if and only if it is Cauchy. Indeed, Theorem 2.2
is a stronger statement because it implies that the P and Q can be assumed to be
equal. The proof relies on the following lemma, the proof of which contained the
most challenging parts of the formalization of Theorem 2.2.

Lemma 2.3. If g is increasing on [a, b], then for any partitions P : {p0, . . . , pn}
and Q : {q0, . . . , qm} of [a, b] and any sequences {x0, . . . , xn−1} and {y0, . . . , yr−1}
that satisfy the partitions P and P ∪ Q, respectively, there exists a sequence
{z0, . . . , zn−1} that satisfies P such that

|
n∑
i=1

f(xi−1)(g(pi)− g(pi−1)) −
r∑
j=1

f(yj−1)(g(pqj)− g(pqj−1))|

≤ |
n∑
i=1

f(xi−1)(g(pi)− g(pi−1)) −
n∑
i=1

f(zi−1)(g(pi)− g(pi−1))|,
(10)

where P ∪ Q = {pq0, . . . , pqr}. That is, pq0, . . . , pqr are the (increasing) elements
of the partition P ∪Q.

Proof Of Lemma 2.3. The key to the proof is that {zo, . . . , zn−1} is a subset of
{y0, . . . , yr−1}. Suppose that

∑
i f(xi−1)(g(pi) − g(pi−1)) ≤

∑
j f(yj−1)(g(pqj) −

g(pqj−1)). The proof in the case where this inequality does not hold is nearly
identical. It is trivial to see that it therefore suffices to find a sequence {z0, . . . , zn−1}
that satisfies P such that

∑
j f(yj−1)(g(pqj) − g(pqj−1)) ≥

∑
i f(zi−1)(g(pi) −

g(pi−1)). A surjective increasing function σ : {0, . . . , r} → {0, . . . , n} can be defined
such that [pqj , pqj+1] ⊂ [pσ(j), pσ(j)+1] for all j < r. Given i ≤ n−1, define zi to be
any element of the set {yj | σ(j) = i} such that f(zi) ≤ f(yj) for all j ≤ r− 1 such
that σ(j) = i. This is possible because the set in question is finite. Then, because
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g is increasing and hence g(pqj) ≥ g(pqj−1) for all j,
r∑
j=1

f(yj−1)(g(pqj)− g(pqj−1)) ≥
r∑
j=1

f(zσ(j−1))(g(pqj)− g(pqj−1))

=
n∑
i=1

∑
{j|σ(j−1)=i−1}

f(zσ(j−1))(g(pqj)− g(pqj−1))

=
n∑
i=1

f(zi−1)
∑

{j|σ(j−1)=i−1}

(g(pqj)− g(pqj−1))

=
n∑
i=1

f(zi−1)(g(pi)− g(pi−1)).

(11)
The last equality follows from the fact that

[pi−1, pi] =
⋃

{j|σ(j−1)=i−1}

[pqj , pqj−1].

The formalization of this proof is discussed in Section 2.7.

Proof Of Theorem 2.2. If f is integrable with respect to g, then the result is
trivial from definitions, so suppose that f is not integrable and choose any positive
real number ε. Suppose that there exists δ > 0 with the property that for every
partition P : a = p0 ≤ · · · ≤ pn = b with width less than δ, any two sequences
{x0, . . . , xn−1} and {y0, . . . , yn−1} such that xi, yi ∈ [pi, pi+1] satisfy Equation (9)
with ε replaced by ε/2 in that equation. Let P and Q be any two partitions of [a, b],
with n+ 1 and m+ 1 elements, respectively, and suppose that the widths of P and
Q are less than δ, and suppose that the sequences {s0, . . . , sn−1} and {t0, . . . , tm−1}
satisfy P and Q, respectively. It suffices to show that

|
n∑
i=1

f(si−1)(g(pi)− g(pi−1)) −
m∑
j=1

f(tj−1)(g(qj)− g(qj−1))| < ε. (12)

Let {z0, . . . , zr−1} be any sequence that satisfies the partition P∪Q = {pq0, . . . , pqr}.
Then by applying the hypothesis and Lemma 2.3 to both P and Q, it follows that
there exist sequences {x0, . . . , xn−1} and {y0, . . . , ym−1} that satisfy P and Q, re-
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spectively, such that

|
n∑
i=1

f(si−1)(g(pi)− g(pi−1)) −
m∑
j=1

f(tj−1)(g(qj)− g(qj−1))|

≤|
n∑
i=1

f(si−1)(g(pi)− g(pi−1)) −
r∑

k=1

f(zk−1)(g(pqk)− g(pqk−1))|

+ |
m∑
j=1

f(tj−1)(g(qj)− g(qj−1)) −
r∑

k=1

f(zk−1)(g(pqk)− g(pqk−1))|

≤|
n∑
i=1

f(si−1)(g(pi)− g(pi−1)) −
n∑
i=1

f(xi−1)(g(pi)− g(pi−1))|

+ |
m∑
j=1

f(tj−1)(g(qj)− g(qj−1)) −
m∑
j=1

f(yj−1)(g(qj)− g(qj−1))|

<
ε

2
+
ε

2
= ε.

(13)

This completes the mathematical proof of Theorem 2.2.

As discussed in Section 2.7, the formal development of the Riesz representation
theorem in PVS uses Theorem 2.2 directly to prove that any function that is con-
tinuous on [a, b] is integrable with respect to any function of bounded variation on
[a, b]. This is a proof that was developed specifically for the formal verification,
although it is quite simple. A shortened version is given here.

Theorem 2.4. For all functions f ∈ C[a, b] and g ∈ BV [a, b], f is Riemann-
Stieltjes integrable with respect to g.

Proof. By Lemma 2.1, it suffices to assume that g is increasing. Choose ε > 0.
By lemma 2.2, it suffices to show that there exists δ > 0 with the property that
for every partition P with width less than δ, any two sequences {x0, . . . , xn−1} and
{y0, . . . , yn−1} that satisfy P have Riemann-Stieltjes sums less than ε apart. Since
f is uniformly continuous, choose δ > 0 such that for all s, t ∈ [a, b], |s − t| < δ
implies |f(s)−f(t)| < ε/(b−a). Suppose that P is any partition of [a, b] with n+1
elements and width less than δ. Then

|
n∑
i=1

f(xi−1)(g(pi)− g(pi−1)) −
n∑
i=1

f(yi−1)(g(pi)− g(pi−1))|

≤
n∑
i=1

|f(xi−1)− f(yi−1)|(g(pi)− g(pi−1))

<

n∑
i=1

ε

b− a
(g(pi)− g(pi−1)) = ε.

(14)

The last equality follows from the fact that the sum in question is telescoping.

2.7 The PVS Proof of Integrability of Continuous Functions

As noted above, the challenging part in developing formal proofs of Theorems 2.2
and 2.4 was the proof of Lemma 2.3. This lemma is stated in PVS as follows.
Journal of Formalized Reasoning Vol. 4, No. 1, 2011.
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Rie_sum_diff_extend_union : LEMMA a<b IMPLIES
LET CI = closed_intv(a,b) IN

(increasing?[(CI)](g) IMPLIES FORALL (P,Q: partition(a,b)):
LET PQ = partition_union(a,b)(P,Q) IN
FORALL (xispq:xis?(a,b,PQ),xis:xis?(a,b,P)):
EXISTS (xis2:xis?(a,b,P)):
abs(Rie_sum(a,b,g,P,xis,f) - Rie_sum(a,b,g,PQ,xispq,f)) <=
abs(Rie_sum(a,b,g,P,xis,f)-Rie_sum(a,b,g,P,xis2,f)))

In Section 2.6, there were several statements made in the informal proof of this
lemma that are easy to see on paper but somewhat difficult to prove in PVS. Two
of these statements are discussed here.
Statement 1: “Given i ≤ n− 1, define zi to be any element of the set {yj | σ(j) = i}
such that f(zi) ≤ f(yj) for all j ≤ r − 1 such that σ(j) = i.”

This is a perfectly valid, well defined mathematical statement, and it is easy to
see that such a definition is possible. In the PVS development, the function σ is
named partition_union_map_inv, and there is (right) inverse function α, which is
called partition_union_map in PVS. The function α takes an element of {0, . . . , n}
and returns an element of {0, . . . , r} such that pi = pqα(i) for all i. It has been
proved in PVS that the function α is a right inverse to σ. In fact, the following,
stronger property holds: For all i ≤ n and j ≤ r, if α(i) ≤ j and either i = n or
j < α(i + 1), then σ(j) = i. The formal statement of this result in PVS is given
below.

partition_union_map_inv_def: LEMMA a<b IMPLIES
FORALL (P,Q:partition(a,b)):
LET pum = partition_union_map(a,b,P,Q),
puminv = partition_union_map_inv(a,b,P,Q)

IN
FORALL (j:below(partition_union(a,b)(P,Q)‘length),

i:below(P‘length)):
(pum(i) <= j AND (i<P‘length-1 IMPLIES j < pum(i+1)))
IMPLIES puminv(j) = i

Formally, the element zi is defined to be yj , where j < r, α(i) ≤ j, j < α(i + 1),
and for all s < r, α(i) ≤ s and s < α(i + 1) implies f(yt) ≤ f(ys). For any such
j, σ(j) = i. The proof that j exists is elementary but time consuming for such a
trivial result. In the PVS development, it is actually proved that for all w ≤ r, this
property is satisfied by some j if r is replaced by w, and the proof of this statement
is by induction on w. The definition of the sequence {z0, . . . , zn−1} in PVS is given
as follows.

(# length := P‘length-1,
seq := (LAMBDA (ii:nat): IF ii<P‘length-1 THEN
LET jj = choose({jj:below(PQ‘length-1) |
(pum(ii) <= jj AND jj < pum(ii + 1) AND
(FORALL (zz: below(PQ‘length - 1)):
pum(ii) <= zz AND zz < pum(ii + 1)

IMPLIES f(xispq‘seq(zz)) >= f(xispq‘seq(jj))))})
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IN xispq‘seq(jj) ELSE default[T] ENDIF) #)

In this formal definition in PVS, PQ = P ∪Q, xispq = {y0, . . . , yr−1}, and pum =
partition_union_map(a,b,P,Q), which is referred to above by α.
Statement 2:
r∑
j=1

f(zσ(j−1))(g(pqj)− g(pqj−1)) =
n∑
i=1

∑
{j|σ(j−1)=i−1}

f(zσ(j−1))(g(pqj)− g(pqj−1))

This statement is trivial and takes up one line in an informal proof. However, it is
tricky to prove in PVS. In the PVS proofs, the sum

∑
{j|σ(j−1)=i−1} f(zσ(j−1))(g(pqj)−

g(pqj−1)) is written as a sum from one natural number to another. The proof is
based on the fact that

{j | σ(j − 1) = i− 1} = {j | α(i− 1) ≤ j ≤ α(i)− 1},

where α is the function partition_union_map, discussed above. Since this step is
vital to the proof of Lemma 2.3, the formal proof of this lemma in PVS required
that the function partition_union_map be defined and that its basic properties
be verified. Using this function, the sum in question can be rewritten as follows.

∑
{j|σ(j−1)=i−1}

f(zσ(j−1))(g(pqj)−g(pqj−1)) =
α(i)−1∑
j=α(i−1)

f(zσ(j−1))(g(pqj)−g(pqj−1)).

(15)
While this is an informal description of the solution to this problem, the formal
statement is given in PVS below. It is found inside the proof of the Lemma called
Rie_sum_extend_union in the PVS development.

FORALL (yy:below(PQ‘length - 1)):
pum(1+nn)<=yy AND yy<=pum(2+nn)-1
IMPLIES
sigma[below(PQ‘length-1)](pum(1+nn),yy,

(LAMBDA (n:below(PQ‘length-1)):
f(xis‘seq(sig(n))) * g(PQ‘seq(1+n))
- f(xis‘seq(sig(n))) * g(PQ‘seq(n))))

= f(xis‘seq(1+nn))*(g(PQ‘seq(1 + yy))-g(PQ‘seq(pum(1+nn))))

Here, PQ = P ∪Q, xis = {z0, . . . , zn−1}, pum = partition_union_map(a,b,P,Q),
and sig = partition_union_map_inv(a,b,P,Q), which is referred to above by σ.
This case statement is proved in PVS by induction on yy.

3. LINEAR SPACES AND FUNCTIONALS

The Riesz theorem classifies the bounded linear functionals on C[a, b] in terms of
functions of bounded variation on [a, b]. The proof relies on a special case of the
Hahn-Banach theorem (Section 4), which requires a definition of arbitrary linear
subspaces of B[a, b]. Bounded linear subspaces are defined in PVS as subsets of
B[a, b] that contain C[a, b] and are closed under sum and scalar multiplication. Such
sets are defined using the predicate called bounded_linear_subspace? in PVS.
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Fnz: VAR set[[INTab->real]]

funs_sum_closed?(Fnz) : bool= FORALL (f,g:(Fnz)): Fnz(f+g)
funs_const_closed?(Fnz): bool= FORALL (f:(Fnz),c:real): Fnz(c*f)
funs_bounded?(Fnz): bool= FORALL (f:(Fnz)): bounded_on_int?(f)
funs_contain_constants?(Fnz): bool= FORALL (c:real):

Fnz(LAMBDA (y:INTab):c)
funs_contain_continuous?(Fnz): bool= FORALL (f:[INTab->real]):

continuous_on_int?(f) IMPLIES Fnz(f)

bounded_linear_subspace?(Fnz): bool =
funs_sum_closed?(Fnz) AND
funs_const_closed?(Fnz) AND
funs_bounded?(Fnz) AND
funs_contain_constants?(Fnz) AND
funs_contain_continuous?(Fnz)

Using these predicates, linear functionals are defined on any set of functions from
[a, b] to R that satisfy the predicate bounded_linear_subspace?.

Operator: TYPE= [Funs->real]

L: VAR Operator

additive_op?(L): bool= (FORALL (f,g): L(f+g) = L(f)+L(g))
const_inv_op?(L): bool= (FORALL (f:Funs,c:real): L(c*f) = c*L(f))
linear_op?(L): bool= additive_op?(L) AND const_inv_op?(L)

The Hahn-Banach theorem is a statement about normed linear spaces. The space
B[a, b] is a normed linear space with the (supremum) norm

‖g‖sup ≡ sup
x∈[a,b]

|g(x)|. (16)

The linear functional L on a subspace M of B[a, b] is bounded if there exists a
nonnegative real number K such that for all f ∈M ,

|L(f)| ≤ K · ‖f‖sup. (17)

The operator norm ‖L‖M of L is the smallest real number K that satisfies Equa-
tion (17).

Bounded linear functionals are defined in PVS, along with the function that
computes the operator norm of any such functional:

bounded_op?(L): bool= (EXISTS (M:nnreal):
FORALL (f): abs(L(f)) <= M*fun_norm(f))

op_norm(L: (bounded_op?)): {M:nnreal |
(FORALL (f:Funs): abs(L(f))<=M*fun_norm(f))
AND (FORALL (M1:real): M1 < M IMPLIES

EXISTS (f:Funs): abs(L(f)) > M1*fun_norm(f))}
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op_norm_bound: LEMMA FORALL (L:(bounded_op?),f):
abs(L(f)) <= op_norm(L)*fun_norm(f)

bounded_linear_operator?(L): bool=
bounded_op?(L) AND linear_op?(L)

4. THE HAHN BANACH THEOREM

The standard proof of the Riesz representation theorem relies on the Hahn Banach
theorem.

Theorem 4.1. (Complete Hahn-Banach) If M is a normed linear space, N is a
linear subspace of M , and L is a bounded linear functional on N , then there is an
extension L̄ of L to M such that ‖L̄‖M = ‖L‖N .

The following special case of the Hahn-Banach theorem was proved in PVS.

Theorem 4.2. (Special Case of Hahn-Banach) If L is a bounded linear functional
on C[a, b], then there exists an extension, L̄ : B[a, b]→ R, of L such that ‖L‖C[a,b] =
‖L̄‖B[a,b].

As noted in the introduction, there have been several formal proofs of the complete
Hahn-Banach theorem [NT93,BW00,Bau01]. In this development, most of Haaser
and Sullivan’s proof [HS71] of the Hahn-Banach theorem easily translated into PVS,
except Lemma 4.4 in Section 4.2, which required some additional constructions that
are described in that section.

4.1 Zorn’s Lemma and a Partial Ordering on Extensions

The proof of the Hahn-Banach theorem follows from Zorn’s lemma, and this appears
to be the first application of Zorn’s lemma, in the NASA PVS libraries, to a result
from analysis. Recall the type-theoretic version of Zorn’s lemma.

Lemma 4.3. (Zorn’s Lemma) Let T be a type and ≤ a partial ordering on T .
Suppose that for every chain A (a totally ordered subset of T ), there exists an
element T which is an upper bound for A. Then T contains an element that is
maximal.

Zorn’s lemma has been in the NASA libraries for some time, and was proved by
Jerry James.

zorn: THEOREM
(FORALL (ch: chain[T, <=]): bounded_above?[T](ch, <=)) IMPLIES
(EXISTS t: maximal?[T](t, fullset[T], <=))

In the proof of the Hahn-Banach theorem, the partial ordering in question is defined
as follows. Given a linear functional L on C[a, b], consider the set EXTL of all pairs
(E,LE), where E is a linear subspace of B[a, b] containing C[a, b], and LE is an
extension of L to E such that ‖LE‖E = ‖L‖C[a,b]. There is a partial ordering ≤ on
EXTL, where (E,LE) ≤ (W,LW ) means that E ⊂ W , LW is an extension of LE
to W , and ‖LE‖E = ‖LW ‖W .
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4.2 An Important Supporting Lemma

In the formal PVS development, the proof of Theorem 4.2 relies on the following,
simpler lemma, which makes use of the partial ordering defined on EXTL in Sec-
tion 4.1. It is evident in the proof of this lemma that some challenges should arise
when formalizing it in PVS. The proof is extracted from the reasoning found in the
proof of the Hahn-Banach theorem in [HS71].

Lemma 4.4. If (E,LE) is an element of EXTL, and if f is an element of B[a, b]
that is not contained in E, then there is an element (W,LW ) of EXTL such that
(E,LE) ≤ (W,LW ) and f ∈W .

Proof. Let W = {e + c · f | e ∈ E and c ∈ R}. Choose any real number β
such that for all g, h ∈ E,

− ‖LE‖E ‖h+ f‖sup − LE(h) ≤ β ≤ ‖LE‖E ‖g + f‖sup − LE(g). (18)

Define a linear functional LW on W by LW (e + c · f) = LE(e) + cβ. If LW is
bounded, then since E is a subspace of W , it follows that ‖LE‖E ≤ ‖LW ‖W . Thus,
it suffices to show that |LW (e + c · f)| ≤ ‖LE‖E · ‖e + c · f‖sup for all e ∈ E and
c ∈ R. If c = 0, then this is trivial, since e ∈ E.

Suppose first that LW (e + c · f) ≥ 0. If c > 0, then by Equation (18) with
g = e/c, LW (e+ c ·f) = LE(e)+ cβ ≤ LE(e)+ c(‖LE‖E · ‖e/c+f‖sup−LE(e/c)) =
‖LE‖E · ‖s + c · f‖sup. Similarly, if c < 0, then by Equation (18) with h = e/c,
LW (e + c · f) = LE(e) + cβ ≤ LE(e) + c(−‖LE‖E · ‖e/c + f‖sup − LE(e/c)) =
‖LE‖E · ‖s + c · f‖sup. The case where LW (e + c · f) ≤ 0 is nearly identical. The
formalization of this proof is discussed below.

The most difficult part of the formal verification of the Hahn-Banach theorem
in PVS was proving Lemma 4.4. In particular, the following statement from the
proof above highlighted the difference between formal mathematics and standard
mathematics. This is a well-defined, perfectly acceptable statement in an informal
proof, but in PVS, it must be stated differently.
Statement from the Proof: “Define a linear functional LW on W by LW (e+ c · f) =
LE(e) + cβ.”

Some care is needed to state this definition in PVS, since the set W is defined in
PVS not by {e+ c · f | e ∈ E and c ∈ R} but rather by {g | g ∈ B[a, b] and ∃e ∈
E, c ∈ R : g = e+ c · f}. The set W is defined in PVS as follows.

{gg:[INTab->real] | bounded_on_int?[a,b](gg) AND
EXISTS (rr: [INTab->real],ffc:real):

OE‘space(rr) AND gg = rr + ffc*ff}

This definition complicates the definition of the functional LW in PVS. In order to
define LW , it is necessary to have formally defined functions that, given an element
g of W , compute the function e ∈ E and the constant c ∈ R such that g = e+ c · f .
These functions, defined in the formal proof of Lemma 4.4, are called funchoose
and constchoose, respectively. They are defined in PVS as follows.

LAMBDA (gg:(W)): choose({rr:[INTab->real]|
EXISTS (ffc:real):OE‘space(rr) AND gg = rr + ffc * ff})
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LAMBDA (g: (W)): choose({c: real |
EXISTS (e: [INTab->real]): E‘space(e) AND g= e+c*f})

The key properties of these functions are that they (1) compute a function e ∈ E
and a constant c such that g = e+ c · f , (2) are linear, and (3) are unique.

g = funchoose(g)+constchoose(g)*ff

funchoose(g+h) = funchoose(g)+funchoose(h) AND
constchoose(g+h) = constchoose(g)+constchoose(h)

funchoose(c*g) = c*funchoose(g) AND
constchoose(c*g) = c*constchoose(g)

g= e+c*f IMPLIES e= funchoose(g) AND c= constchoose(g)

With these definitions, the functional LW is defined in PVS as follows.

LAMBDA (g:(W)): E‘Lop(funchoose(g)) + constchoose(g)*beta

4.3 Proof of the Hahn-Banach Theorem

The following is an informal textbook-style proof of Theorem 4.2, which is stated
at the beginning of Section 4. It is nearly identical to the proof found in [HS71].
As mentioned above, the most difficult part of the proof of this theorem in PVS
was proving Lemma 4.4 (Section 4.2). The reason for including this informal proof
here is to illustrate the need for Lemma 4.4.

Proof of Theorem 4.2 (The Hahn-Banach Theorem). Given a bounded
linear functional L on C[a, b], let the space EXTL be defined as in Section 4.1.
If there exists an element (E,LE) of EXTL that is maximal, then Lemma 4.4
implies that E = B[a, b]. By the definition of EXTL, (C[a, b], L) ≤ (E,LE), so the
Hahn-Banach theorem holds with L̄ = LE .

It therefore suffices to show that there exists an element of EXTL that is maximal.
By Zorn’s Lemma (Lemma 4.3 in Section 4.1), this problem reduces to showing that
every totally ordered subset of EXTL is bounded above by an element of EXTL.
The proof of this fact follows from basic reasoning.

5. THE FORMAL PROOF OF THE RIESZ REPRESENTATION THEOREM: FIXING
AN INCORRECT TEXTBOOK PROOF

If g : [a, b]→ R is of bounded variation, then there is an associated linear functional
Ig on C[a, b] given by

Ig(f) ≡
∫ b

a

fdg, (19)

which is the Riemann-Stieltjes integral of f with respect to g (Section 2). Theo-
rem 2.4 in Section 2.6 implies that any function f ∈ C[a, b] is RS integrable with
respect to g, so Ig is well defined. The next lemma is an exercise in Haaser and
Sullivan’s book [HS71].
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Lemma 5.1. If g ∈ BV [a, b] and f ∈ C[a, b], then |Ig(f)| ≤ V ba (f)‖f‖sup.

Proof. Given ε > 0, choose a partition P = {p0, . . . , pn} of [a, b] such that
|Ig(f)−

∑n
i=1 f(xi−1)(g(pi)− g(pi−1))| < ε. Then for any sequence {x0, . . . , xn−1}

that satisfies P ,

|Ig(f)| ≤ |
n∑
i=1

f(xi−1)(g(pi)− g(pi−1))|+ |Ig(f)−
n∑
i=1

f(xi−1)(g(pi)− g(pi−1))|

<

n∑
i=1

|f(xi−1)||g(pi)− g(pi−1)|+ ε

≤ V ba (g)‖f‖sup + ε.
(20)

Since ε was arbitrary, this completes the proof.

The Riesz representation theorem says that every bounded linear functional L on
C[a, b] is given by Ig for some g ∈ BV [a, b]. Recall its statement from the intro-
duction:

Theorem 5.2. (The Riez Representation Theorem; Theorem 6.1 in [HS71]) If L
is a bounded linear functional on C[a, b], then there exists a function g ∈ BV [a, b]
such that L = Ig and ‖L‖C[a,b] = V ba (g).

5.1 A Counterexample to the Textbook’s Proof

The formal verification of the Riesz representation theorem in PVS revealed an
error in the proof used in the textbook [HS71]. The error is subtle, and the proof
looks valid at first glance. Only a small change was needed to the textbook proof,
but it is not too hard to construct a counterexample to its proof.

The first step of the proof in the textbook is to extend the bounded linear func-
tional L on C[a, b] to a bounded linear functional L̄ on B[a, b] that has the same
norm, via the Hahn-Banach theorem (Theorem 4.2 in Section 4). The function g
is then defined by

g(a) = 0 and g(x) = L̄(χ[a,x)) for x ∈ (a, b]. (21)

The error in this definition is that g(b) should equal L̄(χ[a,b]) (note the closed
interval [a, b]). A counterexample is given as follows.

Let L : C[a, b]→ R be given by evaluation at b:

L(f) ≡ f(b).

It is easy to see that L is a bounded linear functional on C[a, b] with norm equal
to 1. Then L can be extended to the bounded linear functional L̄ on B[a, b] that is
also given by evaluation at b, which also has norm equal to 1. Then the function
g, defined in Equation (21), is identically zero on [a, b], so the bounded linear
functional Ig : C[a, b]→ R is identically zero as well. However, L is not identically
zero, so L 6= Ig. This shows that the textbook proof has a (minor) error.

Typically, constructing a formal proof of a difficult result in a mathematics text-
book will reveal some special cases that were overlooked by the author. In the case
of the Riesz theorem, the distinction between the formal PVS proof and the infor-
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mal textbook proof was even greater than this due to the error in the definition of
the function g ∈ BV [a, b].

5.2 The Updated Textbook

Haaser and Sullivan’s textbook [HS71] was originally published in 1971 by Van Nos-
trand Rienhold Company, and it was this first version that was used as a reference
in developing the PVS theories for the Riesz representation theorem. There is a
newer version of the textbook that was published in 1991 by Dover Publications,
Inc., New York. When the author learned that the new version existed, he was
quite eager to see whether, in the twenty years since the first publication, the error
in the proof of the Riesz theorem had been fixed. Indeed, the 1991 version says the
following: “This Dover edition, first published in 1991, is a revised and corrected
republication of the work originally published in 1971 by Van Nostrand Rienhold
Company, New York as part of The University Series in Mathematics. Certain
passages have been deleted or replaced with new material. . . ” [HS91].

It seemed certain that an error in the proof of an important theorem such as the
Riesz representation theorem would have been caught in the twenty years between
these two printings. However, the following statement can still be found in the
proof of the theorem in the 1991 printing of Haaser and Sullivan’s book:

“Define a function g on [a, b] by the rule:

g(a) = 0 and g(x) = F (χ[a,x)) for x ∈ [a, b].” [HS91]

In their proof, F denotes the extension of the given linear functional on C[a, b] to
B[a, b]. Clearly, this error is subtle enough that standard mathematical proof tech-
niques are unlikely to reveal the problem. This highlights the ability of formalized
reasoning to find subtle errors in mathematical proofs.

5.3 A Correct Proof of the Riesz Representation Theorem

The proof of the theorem is constructive. In fact, the function g such that L = Ig
is given by

g(a) = 0, g(x) = L̄(χ[a,x)) for a < x < b, and g(b) = L̄(χ[a,b]), (22)

where L̄ is an extension of L to the space B[a, b] of bounded functions on [a, b].
The only difference between this definition and the incorrect textbook definition of
g discussed in Section 5.1 is that g(b) is equal to L̄(χ[a,b]) instead of L̄(χ[a,b)).

The key property of the function g, defined in Equation (22), is that for any
x, y ∈ [a, b] with x < y,

g(y)− g(x) = L̄(χ[x,y)) if y < b and g(y)− g(x) = L̄(χ[x,b]) if y = b. (23)

The following version the proof of the Riesz representation theorem follows the
proof in [HS71], with this error corrected.

Proof of Theorem 5.2 (Correct Version). By the Hahn-Banach theorem,
the bounded linear functional L on C[a, b] can be extended to a bounded linear func-
tional L̄ on B[a, b] with the same norm as L. Let g be defined by Equation (22). If
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P : a = x0 < · · · < xn = b is any strictly increasing partition, then
n∑
i=1

|g(pi)− g(pi−1)| =
n∑
i=1

±(g(pi)− g(pi−1))

= L̄(±χ[pn−1,b] +
n−1∑
i=1

±χ[pi−1,pi))

≤ ‖L̄‖B[a,b] = ‖L‖C[a,b].

(24)

where the inequality follows from the fact that the argument to L̄ is a function that
always takes a value in {−1, 1} and therefore has supremum norm equal to 1. This
shows that g has bounded variation on [a, b] and that

V ba (g) ≤ ‖L‖C[a,b]. (25)

Given any f ∈ C[a, b] and ε > 0, choose δ > 0 such that |x − y| < δ implies
|f(x) − f(y)| < ε/2 for all x, y ∈ [a, b]. This is possible since f is uniformly
continuous. Using the fact that f is Riemann-Stieltjes integrable with respect
to g, choose any partition P of [a, b] with width less than δ and any sequence
{x0, . . . , xn−1} that satisfies P such that

|
n∑
i=1

f(xi−1)(g(pi)− g(pi−1)) − Ig(f)| ≤
ε‖L‖C[a,b]

2
.

Define a bounded function s ∈ B[a, b] by

s = f(xn−1)χ[pn−1,b] +
n∑
i=1

f(xi−1)χ[pi−1,pi).

By Equation (23) above,

L̄(s) =
n∑
i=1

f(xi−1)(g(pi)− g(pi−1)).

It is easy to see from the uniform continuity hypothesis on f that ‖f − s‖sup ≤ ε/2.
That is, |f(y)− s(y)| < ε/2 for all y ∈ [a, b]. Thus,

|L(f)− Ig(f)| ≤ |L(f)− L̄(s)|+ |
n∑
i=1

f(xi−1)(g(pi)− g(pi−1)) − Ig(f)|

≤ |L(f)− L̄(s)|+
ε‖L‖C[a,b]

2

= |L̄(f − s)|+
ε‖L‖C[a,b]

2

≤ ‖f − s‖sup‖L‖C[a,b] +
ε‖L‖C[a,b]

2
≤ ε‖L‖C[a,b].

(26)

Since f and ε were arbitrarily chosen, it follows that L = Ig. It therefore fol-
lows from Lemma 5.1 that ‖L‖C[a,b] ≤ V ba (g). Thus, Equation (25) implies that
‖L‖C[a,b] = V ba (g).
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5.4 The PVS Proof of the Riesz Representation Theorem

The Riesz representation theorem is stated in PVS as follows for an arbitrary
bounded linear functional LC on C[a, b].

fun_to_op(g): C_Bounded_Linear_Operator = (LAMBDA (f):
integral(a,b,g,f))

riesz_representation: LEMMA EXISTS g:
op_norm[a,b,Continuous_Function[a,b]](LC) =

total_variation(a,b,g)(b) AND
LC = fun_to_op(g)

The bounded function s, constructed in the proof in Section 5.3, is explicitly defined
in PVS, where it is named step_approx. An important property of s, that a
partition can be chosen so that ‖f − s‖sup is arbitrarily small, is also proved as a
lemma.

char_fun(r1,r2)(x): nnreal =
IF r1<=x AND x<r2 AND r2<b THEN 1 ELSIF r1<=x
AND x<=r2 AND r2=b THEN 1 ELSE 0 ENDIF

step_approx(P:partition(a,b),xis:xis?(a,b,P))
(fr:(bounded_on_int?[a,b])): (bounded_on_int?[a,b]) =

(LAMBDA (x:INTab): sigma[below(P‘length-1)](0,P‘length-2,
LAMBDA (n:below(P‘length-1)):

fr(xis‘seq(n))*char_fun(P‘seq(n),P‘seq(n+1))(x)))

step_approx_def: LEMMA FORALL (eps:posreal):
EXISTS (delta:posreal):
FORALL (P:partition(a,b),xis:xis?(a,b,P)):
strictly_increasing?(P) AND width(a,b,P)<delta IMPLIES
(FORALL (x:INTab): abs(f(x)-step_approx(P,xis)(f)(x)) < eps)

The most important property of s, namely that

s = f(xn−1)χ[pn−1,b] +
n∑
i=1

f(xi−1)χ[pi−1,pi).

for any partition P = {p0, . . . , pn} of [a, b] and any sequence {x0, . . . , xn−1} satis-
fying P , is proved inside the proof of the Riesz representation theorem. It is used
to prove the theorem and is then proved separately.

LET gg = (LAMBDA (x:INTab):
IF x = a THEN 0 ELSE LB(char_fun(a,x)) ENDIF)

IN
FORALL (ff:Continuous_Function[a,b],P:partition(a,b),

xis:xis?(a,b,P)): strictly_increasing?(P) IMPLIES
LB(step_approx(P,xis)(ff)) = Rie_sum(a,b,gg,P,xis,ff)

Journal of Formalized Reasoning Vol. 4, No. 1, 2011.



A Formal Proof Of The Riesz Representation Theorem · 23

6. COMPLEXITY OF THE FORMAL PROOF

There were many results that were formally proved during this project that are
easy to see on paper but significantly more difficult to prove in PVS. Examples
include most of the basic results on partitions. Many of the results in PVS, such
as Theorem 2.2 (Section 2.6), used refinements (i.e. unions) of partitions. These
were not previously part of the NASA libraries, because they are not used by the
theories on the standard Riemann integral. Here is an example of a statement that
is obvious on paper but somewhat tricky in PVS.

Statement 1: “The union of two partitions is a partition that is strictly increasing.”
As stated in PVS:

partition_union(a,(b|a<b))(P,Q: partition(a,b)):
{PQ: partition(a,b) | (FORALL (x:T): member(x,PQ) IFF
(member(x,P) OR member(x,Q))) AND strictly_increasing?(PQ)}

There are 258 steps in the proof of the validity of this type declaration.
As discussed in Section 2.6, the approach taken in the textbook by Haaser and

Sullivan for proving that continuous functions are Riemann-Stieltjes integrable with
respect to any function of bounded variation is to prove that this integral is equiv-
alent to the Darboux-Stieltjes integral. In the formal PVS development, a simpler
method was used. Theorem 2.2 (Section 2.6) was proved, which captures the un-
derlying concept behind this equivalence in a statement that is strong enough to
prove the integrability of continuous functions. The section on this integral equiv-
alence is about four pages long in Haaser and Sullivan’s book. The formal proof of
Theorem 2.2 in PVS requires 465 proof statements, and it relies on another lemma,
specifically designed to help prove the theorem, whose proof is 282 steps long.

The proof of the Hahn Banach theorem was significantly longer in PVS than in
the textbook. The proof in Haaser and Sullivan’s book is about one page. However,
in PVS, the proof of the Hahn Banach theorem (Theorem 4.2 in Section 4) is 851
proof steps, although it is not too complicated. The formal proof of Lemma 4.4
(Section 4.2), which directly supports the Hahn-Banach theorem, is half a page in
the textbook but 1010 steps long in PVS.

Finally, the proof of the Riesz representation theorem is also about one page
long in the textbook. In PVS, the proof of the theorem itself takes 773 steps, and
including all of the supporting lemmas in the same PVS file, the proof takes 1343
steps.

7. CONCLUSION

The Riesz representation theorem, as originally stated by Riesz [Rie09], has been
proved in the PVS theorem prover. The formalization of the theorem and the
Riemann Stieltjes integral is based mostly on Haaser and Sullivan’s book [HS71].
In order to prove the Riesz representation theorem, it was necessary to prove that
continuous functions on a closed interval are Riemann Stieltjes integrable with
respect to any function of bounded variation. Haaser and Sullivan’s book uses the
equivalence of the Riemann Stieltjes and Darboux Stieltjes integrals to prove this
integrability result. A simpler method was used in the formal PVS development,
where a theorem was proved that captures the the main concept of this integral
equivalence that is useful in the proof of the integrability of continuous functions.
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The Hahn Banach theorem was proved in the case where the normed linear spaces
are the continuous and bounded functions on a closed interval. The proof of the
Hahn-Banach theorem follows from Zorn’s lemma, and this appears to be the first
application of Zorn’s lemma, in the NASA PVS libraries, to a result from analysis.

There is an error in Haaser and Sullivan’s proof of the Riesz representation theo-
rem. Indeed, the proof is constructive, and the constructed function does not satisfy
a necessary property. This error illustrates the ability of formal verification to find
logical errors. A specific counterexample was given to the proof in the textbook.
Finally, a corrected proof of the Riesz representation theorem was presented.

The PVS development presented in this paper can be downloaded online at the
link http://shemesh.larc.nasa.gov/people/ajn/pvs_development/. Included
there are the PVS theories in which the Riemann Stieltjes integral is defined, as
well as the theories that directly support the Riesz representation theorem.
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