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The Thousands of Problems for Theorem Provers (TPTP) problem library is the basis of a well
known and well established infrastructure that supports research, development, and deployment
of Automated Theorem Proving (ATP) systems. The extension of the TPTP from first-order form
(FOF) logic to typed higher-order form (THF) logic has provided a basis for new development and
application of ATP systems for higher-order logic. Key developments have been the specification
of the THF language, the addition of higher-order problems to the TPTP, the development of the
TPTP THF infrastructure, several ATP systems for higher-order logic, and the use of higher-order
ATP in a range of domains. This paper surveys these developments.

1. INTRODUCTION

The Thousands of Problems for Theorem Provers (TPTP) problem library [90] is
the basis of a well known and well established infrastructure that supports research,
development, and deployment of Automated Theorem Proving (ATP) systems. The
infrastructure includes the problem library itself, the TPTP language [92], the SZS
ontologies [89], the Thousands of Solutions from Theorem Provers (TSTP) solution
library, various tools associated with the libraries [88], and the CADE ATP System
Competition (CASC) [93]. All components are freely available online from the
TPTP web site http://www.tptp.org. This infrastructure has been central to the
progress that has been made in the development of high performance ATP systems
— most state of the art systems natively read the TPTP language, many produce
proofs or models in the TSTP format, much testing and development is done using
the TPTP library, and CASC is an annual focal point where developers meet to
discuss new ideas and advances in ATP techniques.

The TPTP was originally developed in 1992-3 using the clause normal form
(CNF) fragment of first-order logic, and was extended to full first-order form (FOF)
in 1997. In 2008-9 the typed higher-order form (THF) was added.! The first release
of the TPTP problem library with THF problems was in 2009, containing 2729
THF problems. The problems are written in a core subset of the THF language,

LA typed first-order form (TFF) is now also under development.
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named THFO0 [20], based on Church’s simply typed lambda calculus. The full THF
language and extended THFX language were also available at the time, but the
initial limitation to the THFO core allowed users to adopt the language without
being swamped by the richness of the full THF language. The THF and THFX
languages provide a richer type system, the ability to reason about types, more
term and type constructs, more connectives, and “syntactic sugar” that is usefully
expressive. In conjunction with the addition of THF0 problems to the problem
library, the TPTP infrastructure was extended to support THF.

The addition of THF to the TPTP problem library and infrastructure has had
an immediate impact on progress in the development of automated reasoning in
higher-order logic [91]. The impact has been in terms of higher-order ATP system
development, problem encoding in higher-order logic, higher-order ATP system
usage, and raised awareness of the growing potential for applications of automated
reasoning in higher-order logic.

A major application area of higher-order logic is hardware and software verifi-
cation. Several interactive higher-order proof assistants put an emphasis on this:
the Isabelle/HOL system [73] has been applied in the Verisoft project [45]; the Coq
system [22] has been applied in the Compcert verified compiler project [66]; the
HOL Light system [54] has been applied to the verification of several floating-point
algorithms at Intel [53]; and ACL2 [61] has been used to prove properties of state-
of-the-art commercial microprocessors prior to fabrication [26]. Another promising
application area for higher-order logic is knowledge based reasoning. Knowledge
based projects such as Cyc [68] and SUMO [72] contain a significant fraction of
higher-order constructs. A strong argument for adding higher-order ATP to this
application area is its demand for natural and human consumable problem and solu-
tion representations, which are harder to achieve after translating higher-order con-
tent into less expressible frameworks such as first-order logic. Further application
areas of higher-order logic include computer-supported mathematics [84, 50, 12, 47],
computational linguistics [63], reasoning within and about multimodal logics [18],
and logics of access control [35, 13].

Interactive higher-order proof assistants have been used in all these, and other,
applications of higher-order logic. The interactive construction of formal proofs for
such applications often requires a large number of user interactions — a resource
intensive task that is carried out by highly trained specialists. Often only a few of
the interaction steps really require human ingenuity, and many of them could be
avoided through better automation support. While there have been several suc-
cessful integrations of first-order ATP systems with interactive higher-order proof
assistants to provide automated support [23, 59, 8], there have been several barri-
ers that have hampered the application of higher-order ATP systems in this sense:
(i) the available higher-order ATP systems have not yet been optimized for this
task; (ii) typically there are large syntax gaps between the higher-order representa-
tion languages of the proof assistants, and the input languages of the higher-order
ATP systems; (iii) the results of the higher-order ATP systems have to be cor-
rectly interpreted; (iv) their proof objects often need to be translated back to the
application domain. The development of the THF infrastructure, and the conse-
quent increased automation in higher-order ATP, provides the way to overcome
these problems. This will provide increased possibilities for automated support in
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interactive higher-order proof assistants, which will benefit their application and
reduce user interaction costs.

This paper surveys the THF logic and language (Sections 2 and 3), the higher-
order TPTP and infrastructure (Section 4), some higher-order ATP systems for the
THF language (Section 5), and some applications using THF (Section 6).

2. THE TPTP'S HIGHER-ORDER LOGIC
2.1 Higher-order Logic

There are many quite different frameworks that fall under the general label of
“higher-order logic”. The notion reaches back to Frege’s original predicate calculus
[41]. Inconsistencies in Frege’s system, caused by the circularity of constructions
such as “the set of all sets that do not contain themselves”, made it clear that the
expressivity of the language had to be restricted in some way. One line of devel-
opment, which became the traditional route for mathematical logic, and which is
not addressed further here, is the development of axiomatic first-order set theories,
e.g. Zermelo-Fraenkel set theory. Russell suggested using type hierarchies, and
worked out ramified type theory. Church (inspired by work of Carnap) later intro-
duced simple type theory [34], a higher-order framework built on his simply typed
A calculus, employing types to reduce expressivity and to remedy paradoxes and
inconsistencies. Simple type theory is often also called classical higher-order logic.

Via the Curry-Howard isomorphism, typed A-calculi can also be exploited to
encode proofs as types. The simply typed A-calculus, for example, is sufficient
for encoding propositional logic. More expressive logics can be encoded using de-
pendent types and polymorphism [82, 44, 39]. In combination with Martin Lof’s
intuitionistic theory of types [67], originally developed for formalizing constructive
mathematics, this research led the foundations of modern type theory.

During the last decades various proof assistants have been built for both classi-
cal higher-order logic and type theory. Prominent interactive provers for classical
higher logic include HOL [49], HOL Light [52], PVS [75], Isabelle/HOL [73], and
OMEGA [86]. Prominent interactive type theory provers include the pioneering
Automath system [70], Nuprl [1], Lego [79], Matita [7], and Coq [22]. The latter
three are based on the calculus of constructions [36]. Further type theory systems
are the logical frameworks EIf [76] and Twelf [77].

The work presented in this paper aims at fostering the automation of classical
higher-order logic and type theory. The initial focus has been on the former. Au-
tomation of classical higher-order logic has been pioneered by the work of Andrews
on resolution in type theory [2], by Huet’s pre-unification algorithm [58] and his con-
strained resolution calculus [57], and by Jensen and Pietroswski’s [78] work. More
recently extensionality and equality reasoning in Church’s type theory has been
studied [11, 16, 28]. The TPs system [5], which is based on a higher-order mating
calculus, is a pioneering ATP system for Church’s simple type theory. Higher-order
ATP systems based on extensional higher-order resolution are LEO [17] and LEO-
IT [19], and a system based on higher-order extensional tableaux is Satallax [9].
Otter-A [10] is an extension of the first-order system Otter to an untyped variant
of Church’s type theory. Church’s simple type theory has been a common and
simple subset of the logics supported by such systems, and thus motivated using it
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as the starting point for the THF logic, in the form of THF0. THFO is therefore
synonymous with Church’s simple type theory.

THFO is the starting point for the development of more expressive languages in
the THF family, in order to serve and support type theory provers in the future.
Features beyond THFO that are already in the full THF language are described
in Section 3.3. The inclusion of these has been motivated by their use in existing
reasoning tools for logics beyond Church’s simple type theory. For just a few
examples, subtyping is supported in Nuprl, Isabelle, and Matita; binders for choice
and /or description are supported in Isabelle, HOL, NuPrL, and Satallax; dependent
product and sum types are supported in Automath, Lego, and Coq; sequents are
supported in the OMEGA system [86].

2.2 Church's Simple Type Theory

Church’s simple type theory is based on the simply typed A calculus. The set
of simple types is freely generated from basic types ¢ and o, and possibly further
base types using the function type constructor —. Higher-order terms are built
up from simply typed variables (X, ), simply typed constants (c,), A-abstraction,
and application. It is assumed that sufficiently many special logical constants are
available, so that all other logical connectives can be defined. For example, it is
assumed that —,_.,, Vooo—o, and Ia_s_, (for all simple types a) are given,
where IT  is used to encode universal quantification. The semantics of these logical
symbols is fixed according to their intuitive meaning.

Well-formed (simply typed) higher-order terms are defined simultaneously for all
simple types . Variables and constants of type « are well-formed terms of type a.
Given a variable X of type o and a term T of type (3, the abstraction term AX.T
is well-formed and of type a — 3. Given terms S of type o — (8 and T of type «,
the application term (S T') is well-formed and of type 5.

The choice of semantics for higher-order logic is of interest, as, unlike the first-
order case, there are different options [15, 16]. The semantics for THF is Henkin
semantics with choice (Henkin semantics by definition also includes Boolean and
functional extensionality) [16, 55].2 However, there is no intention to limit the
semantics, e.g., to fully extensional semantics only. The THF language is designed
to express problems syntactically, with the semantics being specified separately, as
illustrated in Section 3.2.

3. THE THF LANGUAGE

One of the keys to the success of the TPTP and related infrastructure is the consis-
tent use of the TPTP language. The TPTP language is a human-readable, easily
machine-parsable, flexible and extensible language suitable for writing both ATP
problems and solutions. The THF language is a syntactically conservative exten-
sion of the untyped first-order TPTP language, adding the syntax for higher-order
logic. Maintaining a consistent style between the first-order and higher-order lan-
guages facilitates reuse of infrastructure for processing TPTP format data, e.g.,
parsing tools, formatting tools, system testing, and result analysis (see Section 4).

2Initially Henkin semantics without choice was used, but choice was added very soon after the
first TPTP THF release, due to its common use in higher-order ATP systems.
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A particular feature of the TPTP language, which has been maintained in THF,
is Prolog compatibility. This allows an annotated formula to be read with a single
Prolog read/1 call, in the context of appropriate operator definitions. There are
good reasons for maintaining Prolog compatibility [92], including the ATP com-
munity’s familiarity with the generic style of Prolog syntax, fast prototyping and
development of TPTP compliant ATP systems and software (without the need to
write IO routines), and easy reuse or extension of existing TPTP tools (e.g., GDV
and IDV, as mentioned in Section 4.3.3). Reuse and upgrade of internal support
tools in the TPTP was a key to the rapid development of the THF part of the
TPTP.

3.1 General Features of the TPTP Language

The top level building blocks of the TPTP language are annotated formulae, include
directives, and comments. An annotated formula has the form:

language(name, role, formula, [source, [useful_infoll) .
An example annotated first-order formula, supplied from a file, is:

fof (union,axiom,
(! [X,A,B]
( member (X,union(A,B))
<=> ( member (X,A)
| member(X,B) ) )
file(’SET006+0.ax’ ,union),
[description(’Definition of union’), relevance(0.9)]).

The languages supported are clause normal form (cnf), first-order form (fof),
and typed higher-order form (thf). The role, e.g., axiom, lemma, conjecture,
defines the use of the formula in an ATP system. The forms of identifiers for
uninterpreted functions, predicates, and variables follow Prolog conventions, i.e.,
functions and predicates start with a lowercase letter, variables start with an up-
percase letter, and all contain only alphanumeric characters and underscore. The
TPTP language also supports interpreted symbols, which either start with a $, or
are composed of non-alphanumeric characters. The basic logical connectives are !,
2.7, |, & =>, <=, <=> and <™>, for V, 3,—, V, A, =, <, &, and & respectively.
Quantified variables follow the quantifier in square brackets, with a colon to sep-
arate the quantification from the logical formula. The source is an optional term
describing where the formula came from, e.g., an input file or an inference. The
useful_info is an optional list of terms from user applications.

An include directive may include an entire file, or may specify the names of
the annotated formulae that are to be included from the file. Comments in the
TPTP language extend from a % character to the end of the line, or may be block
comments within /* ...*/ bracketing.

Figure 1 presents an example problem file, SET171°3.p, written in the core
THFO language. A selection of relevant formulae from the included axiom file,
SET00870.ax, is shown in Figure 2. The example is from the domain of set the-
ory, stating the distributivity of union and intersection. The first section of each
TPTP problem file, as shown in Figure 1, is a header that contains information for
the user. This information is not for use by ATP systems. It is divided into four
parts. The first part identifies and describes the problem, the second part provides
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information about occurrences of the problem in the literature and elsewhere, the
third part gives the problem’s status as an SZS ontology value [89] and a table of
syntactic measurements made on the problem, and the last part contains general
comments about the problem. For THF problems the status value is for the default
semantics — Henkin semantics with choice. If the status is known to be different for
other semantics, e.g., without extensionality, this is provided on subsequent lines,
with the modified semantics noted, e.g.,

% Status  : Theorem
% : Without Boolean extensionality : CounterSatisfiable
A : Without xi extensionality : CounterSatisfiable

Following the header are any necessary include directives (typically for axiom files
containing axiom annotated formulae), and then the annotated formulae for the
problem, as shown in Figure 1.

3.2 The THFO Language

The example in Figures 1 and 2 is a higher-order version of the first-order TPTP
problem SET171+3, which employs first-order set theory to achieve a first-order
encoding suitable for first-order theorem provers. The encoding in THF0 exploits
the fact that higher-order logic provides a naturally built-in set theory, based on the
idea of identifying sets with their characteristic functions. As a result the higher-
order encoding of a set theory problem can often be solved more efficiently than
the corresponding first-order encoding [21].

The first and third annotated formulae of Figure 2 are type declarations that
declare the type signatures of U and N. A simple type declaration has the form
constant_symbol: signature. For example, the type declaration

thf (union_decl, type, (
union: ( $i > $0 ) > ( $i > $0o ) > $i > $0 )).
declares the symbol union (for U), to be of type (¢ — 0) — (+ = 0) — ¢ — o.
The mapping arrow is right associative. Thus, union subsequently expects two
sets as its arguments, and returns a set. Note the use of the TPTP interpreted
symbols $i and $o for the standard atomic types ¢ and o. In addition to $i and $o,
THF defines $tType to denote the collection of all atomic types. $tType is used
to introduce further atomic types on the fly. For example, the following introduces
the atomic type u together with a corresponding constant symbol in_u (for €) of
type u — (u — 0) — o.
thf (type_u,type, (
u: $tType)).

thf (const_in_u,type, (
inu: Cu>(Cu>g$)>$) ).

In a THF problem, all new atomic types must be declared before use, and all
uninterpreted symbols must have their signatures declared before use. THF0 does
not support polymorphism, product types or dependent types — such language
constructs are addressed in the full THF language (see Section 3.3).

The second and fourth annotated formulae of Figure 2 are axioms that specify the
meanings of U and N. A THFO logical formula can use the basic TPTP connectives,
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% File : SET171°3 : TPTP v4.0.1. Released v3.6.0.

% Domain  : Set Theory

% Problem : Union distributes over intersection

% Version : [BS+08] axioms.

% English : The union of X and (the intersection of Y and Z) is the

% intersection of (the union of X and Y) and (the union of X and Z).
% Refs : [BS+05] Benzmueller et al. (2005), Can a Higher-Order and a Fi

% : [BS+08] Benzmueller et al. (2008), Combined Reasoning by Autom

% : [Ben08] Benzmueller (2008), Email to Geoff Sutcliffe

% Source : [Ben08]

% Names

% Status : Theorem

% Rating : 0.00 v4.0.1, 0.33 v3.7.0

% Syntax : Number of formulae : 29 (. 0 unit; 14 type; 14 defn)

% Number of atoms : 219 ( 19 equality; 53 variable)

% Maximal formula depth : 9 (6 average)

% Number of connectives : 46 ( 5 ~s 3 |3 6 &; 31 @)
% ( 0<=>; 1 =>; 0 <=5 0¢<™)
% ( 0o ~l; 0 ~&; o !t 0 77)
% Number of type conns : 73 (73 > 0 *; 0 +; 0 <<)
% Number of symbols : 18 ( 14 ;0 :=)

% Number of variables : 38 ( 1 sgn; 4 ' 2 7, 32 ")
% ( 38 3 0 :=; 0 !> 0 7%)
% ¢ 0 @; 0 e+

% Comments : THFO syntax

%----Basic set theory definitions
include(’ Axioms/SET00870.ax’) .
%
thf(union_distributes_over_intersection,conjecture,(
! [A: $i > $0,B: $i > $0,C: $i > $o]
( ( union @ A @ ( intersection @ B @ C ) )
= ( intersection @ ( union @ A @B ) @ (union @ A@C ) ) ) )).

Fig. 1. The TPTP problem file SET171"3.p

M-abstraction using the = quantifier followed by a list of typed A-bound variables in
square brackets, and function application using the @ connective. Function appli-
cation is left associative. (The explicit function application operator @ is necessary
for parsing function application expressions in Prolog.) Additionally, universally
and existentially quantified variables must be typed. For example, the axiom

thf (union,definition,

( union
= (" [X: $i > $0,Y: $i > $0,U: $il
((xXeu)

l CYetu) ) N.
specifies the meaning of U by equating it to AX,_,,Y,_,, U,.((X U)Vv (Y U)). Thus
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%
thf (union_decl,type, (
union: ( $i > $0 ) > ( $i > $0 ) > $i > $0 )).

thf (union,definition,

( union
= (" [X: $i > $0,Y: $i > $0,U: $i] :
((xevu)

I (Yyeu)))d .

thf (intersection_decl,type, (
intersection: ( $i > $0 ) > ( $i > $0o ) > $i > $o0 )).

thf (intersection,definition,
( intersection
= ("~ [X: $i > $o0,Y: $i > $0,U: $i] :
((XeUu)
L (YQU)))N.

Fig. 2. Extract from the TPTP axiom file SET00870.p

the union of two sets X and Y is reduced to the disjunction of applying the sets X
and Y (seen as their characteristic functions).
The annotated formula of Figure 1 is the conjecture to be proved.

thf (union_distributes_over_intersection, conjecture, (
' [A: $i > $0,B: $i > $0,C: $i > $ol
( ( union @ A @ ( intersection @ B @ C ) )
= ( intersection @ ( union @ A @ B) @ (union @ A@C ) ) ) )).

This encodes VA,_.,.VB,_,,.VC,—,.(AU (BN C)) = ((AUB)N (AU Q)).

An advantage of higher-order logic over first-order logic is that the V¥ and 3 quan-
tifiers can be encoded [34]: Quantification is expressed using the logical constant
symbols IT and ¥ in connection with A-abstraction. Higher-order systems typically
make use of this feature in order to avoid introducing and supporting binders in
addition to A\. THFO provides the logical constants !! and 7?7 for II and ¥ respec-
tively, and leaves use of the universal and existential quantifiers open to the user.
Here is an encoding of the conjecture from Figure 1, using !! instead of !.

thf (union_distributes_over_intersection, conjecture, (
1~ [A: $i > $o]
1 (- [B: $i > $0]
1 (- [C: $i > $0o]
( ( union @ A @ ( intersection @ B @ C ) )
= ( intersection @ ( union @ A @ B )
@ Cunion @ A@C) ) ) ))) .

This encodes TINA, _,,.TIAB, _,,.IIAC,_,,.(AU (BN C)) = ((AUB)N (AU C)).
A final feature of THF0, not shown in Figures 1 and 2, is the use of logical
connectives as terms. For example,
thf (and_false,definition, (
( (& @ $false )
= ( ~ [Q: $0] : $false ) ) )).
Journal of Formalized Reasoning Vol. 3, No. 1, 2010.
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This is quite straightforward in the logic, because all logical connectives (in Henkin
semantics) are themselves equivalent to corresponding lambda abstractions, e.g.,
conjunction is equivalent to AP,, Q,.(P A Q).

Figure 3 presents the annotated formulae from another example problem encoded
in THFO. The example is from the domain of puzzles, and it encodes the following
‘Knights and Knaves Puzzle’: A very special island is inhabited only by knights and
knaves. Knights always tell the truth. Knaves always lie. You meet two inhabitants:
Zoey and Mel. Zoey tells you that Mel is a knave. Mel says, ‘Neither Zoey nor I
are knaves.” Can you determine who is a knight and who is a knave?> Puzzles
of this kind have been discussed extensively in the Al literature. This illustrates
the intuitive and straightforward encoding that can be achieved in THFO0. This
encoding embeds formulae (terms of Boolean type) in terms and quantifies over
variables of Boolean type; see for instance the knights_tell_truth axiom.

3.3 The THF and THFX Languages

The first release of the TPTP problem library contained problems in only the core
THFO fragment of the THF language. As higher-order ATP system developers and
users adopt the THF language, the demand for the richer features of the full THF
language and the extended THFX language will emerge. The THF and THFX lan-
guages have been defined with this in mind, with a rich set of syntactic constructs.
They provide a richer type system, the ability to reason about types, more term and
type constructs, more connectives, and “syntactic sugar” that is usefully expressive.
The TPTP infrastructure is capable of processing THF and THFX formulae. The
higher-order TPTP is thus able to meet the expectations of the community, hence
continuing uptake of the THF language and use of the TPTP as a common basis
for research and developments of higher-order ATP.
THF constructs, which are not shown in Figures 1 and 2, are:

— << as the subtype operator. For example, with fruit and food having been
declared as atomic types, the following declares that fruit is a subtype of food:
fruit << food
— @+ and @- as the binders for choice (indefinite description) and definite descrip-
tion. For example, if all elements of set p (of type $1 > $0) are equal to element
y (of type $i), then definite description applied to the set returns this single
element:
(1 [Z: $8i] : ((p @ 2Z) => (y =12)) )
= ( (e-[X: $i] : (p@ X)) =y)

— 1> and ?7* for IT (dependent product) and ¥ (sum) types. For example, to define
a list constructor to be a function from a list of length N to a list of length N +1:
cons: !> [N:nat] : ($i > (list @ N) > (1list @ (succ @ N)))
Another (more complex) example is motivated by functors in category theory.
func: 7+ [F: obj > obj]l : !> [X,Y: obj]
((thom @ X @ Y) > (hom @ (F @ X) @ (F @ Y)))
Here func is declared to be of a dependent sum type, and so it is a pair (F, F").

3This puzzle was auto-generated by a computer program, written by Zac Ernst.
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%

%————Type declarations
thf (mel_type,type, (
mel: $i )).

thf (zoey_type,type, (
zoey: $i )).

thf (knight_type, type, (
knight: $i > $o )).

thf (knave_type,type, (
knave: $i > $o )).

thf (says_type, type, (
says: $i > $o > $o )).

%----A very special island is inhabited only by knights and knaves.
thf (knights_xor_knaves,axiom, (
! [P: $i]
( ( knight @ P )
<*> ( knave @ P ) ) )).

%----Knights always tell the truth.
thf (knights_tell_truth,axiom, (
! [P: $i,S: $o]
( ¢ ( knight @ P )
& (says @ P @S ) )

=>35))).
%----Knaves always lie.
thf (knaves_lie,axiom, (
! [P: $i,S: $0]

( ¢ ( knave @ P )
& (says @ P @S ) )
=" (sS))N.

%-—---Zoey says ’Mel is a knave’
thf (zoey_speaks,axiom,
( says @ zoey @ ( knave @ mel ) )).

%----Mel says ’Neither Zoey nor I are knaves’
thf (mel_speaks,axiom,
( says @ mel

@ ( ~ ( knave @ zoey )
& ~ ( knave @ mel ) ) )).

%----What are Zoey and Mel?
thf (who_is_knight_and_knave,conjecture, (
? [Knight: $i,Knave: $i]
( ( knight @ Knight )
& ( knave @ Knave ) ) )).

Fig. 3. The annotated formulae of TPTP problem file PUZ081"3
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The first component F is a function mapping objects to objects. The second
component F’ has a more complicated type that depends on F. F”’ is a function
that takes three arguments. The first two arguments of F’ are objects X and
Y. The third argument of F’ has type (hom X Y). Note that this type depends
on the first two arguments. The return type of F’ is (hom (F X) (F' Y)). Note
that this type depends on the first component of the pair as well as the first two
arguments of F’.

— * and + for simple product and sum (disjoint union) types. For example, this
defines the type of a function that returns the roots of a quadratic, either two
roots, a single root, or unde fined in the case of no roots:

roots: quadratic > (($real * $real) + $real + undef)

THFX constructs, which are not shown in Figures 1 and 2, are:

— [ ] for tuples, used to represent lists. For example, a lambda term that takes

three individuals and forms a list would be:
make triple = ~ [X: $i,Y: $i,Z: $i] : [X,Y,Z]

— -=> as the sequent connective, which takes tuples as its left and right operands.
For example, this sequent asserts that if the result of applying the conjunction
connective to a conjunction is false, then at least one of the conjuncts must be
false.

[ @ (a & b)) =" [X: $0] : $false] ——> [a = $false,b = $falsel

THF also provides some support for type variables of type $tType and polymor-
phism. If a type declaration is prefixed by universally quantified type variables,
these act as type parameters. Type parameters are supplied with the application
operator @ For example, the set membership (€) constant for the user type u,
declared and defined by

thf (type_u,type, (
u: $tType )).

thf (const_in_u,type, (
inu:u> (Cu>$o ) > %0 )).

thf (ax_in_u,axiom,
( in_u
= ("~ [X: u,S: u > $o]
(sex))).
is generalized by
thf (const_in_all,type, (

! [U: $tTypel
((in_,all @ U D): U> (U>$0 ) > %0 ) ).

thf (ax_in_all,axiom,
( in_all
= ( ~ [U: $tType,X: U,S: U > $o]
(seu@Xx)) ).
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4. THE HIGHER-ORDER TPTP AND INFRASTRUCTURE

This section describes the higher-order components of the TPTP, noted in Section 1
as having had an impact on the development of automated reasoning for higher-
order logic.

4.1 The TPTP Problem Library

The first release of the TPTP problem library with THF problems was v4.0.0,
released on 4th July 2009. It contained 2729 problems written in THFO, stemming
from 852 abstract problems in nine domains.

—ALG - 80 problems. Fifty of these are problems concerning higher-order abstract
syntax, encoded in higher-order logic [29]. The rest are mostly problems exported
from the TPS test suite by Chad Brown.*

—COM - 1 problem. This is a very naive version of the recursion theorem.

—GRA - 93 problems. These are problems about Ramsey numbers, some of which
are open in the mathematics community.

—GRP - 1 problem. This problem proves that a group is Abelian iff every element
has order 2.

—LCL - 107 problems. These are mostly intuitionistic and modal logic problems
that have been encoded in higher-order logic, using the technique described in
[18]. There are also some problems exported from the TPS test suite.

—MSC - 2 problems. These are two problems exported from the TPS test suite.

—NUM - 212 problems. These are mostly theorems from the well known Landau
book [65]. The problems originate from Jutting’s Automath formalization [96],
from which they have been automatically converted into THF0. There are also a
few problems on Church numerals, which test higher-order ATP operations such
as (-normalization and unification of function variables.

—PUZ - 51 problems. The first group of these are classic puzzles, e.g., “knights and
knaves” problems, and the wise men puzzle, encoded in modal logic and hence
in higher-order logic. The second group of these are “checker board” problems,
exported from the TPS test suite.

—SET and SEU and SEV - 1407 problems. Many of these are ”standard” problems in
set theory that have TPTP versions in first-order logic. There is also a significant
group of problems in dependently typed set theory [27], a group of interesting
problems about binary relations, and a large group of problems exported from
the TPS test suite.

—SWV - 37 problems. These are security problems in authorization logics that can
be converted via modal logics to THFO [13, 42].

—SYN and SYO - 738 problems. These are simple problems designed to test prop-
erties of higher-order ATP systems. They have been extracted from a range
of sources [46, 15, 31]. There are also some syntactic intuitionistic logic prob-
lems taken from the ILTP library [81], encoded in higher-order logic using the
approach from [18].

4The original TPS suite is available at http://gtps.math.cmu.edu/tps.html.
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Table I.  Statistics for THF problems in TPTP v4.0.0
Min Max Avg Median

Number of formulae 1 749 65 8
% of unit formulae 0% 99%  24% 25%
Number of atoms 2 7624 641 87
% of equality atoms 0% 33% 5% 6%

in problems with equality 1% 33% 7% 7%
% of variable atoms 0% 84%  34% 33%
Avg atoms per formula 1.5 998.0 325 8.1
Number of symbols 1 390 37 8
Number of variables 0 1189 100 16

A quantified 0 175 17 2

V quantified 0 1067 76 8

3 quantified 0 64 6 2
Number of connectives 0 4591 348 44
Number of type connectives 0 477 53 10
Maximal formula depth 2 359 38 11
Average formula depth 2 350 11 6

2009 of the problems (73%) contain equality. 2098 of the problems (76%) are
known or believed to be theorems, 317 (11%) are known or believed to be non-
theorems, and the remaining 314 problems (13%) have unknown status. As is
noted in Section 5, non-theorems are useful for testing the soundness of provers,
and conversely theorem are useful for testing the soundness of model finders. Table I
provides some further detailed statistics about the problems.

4.2 The TSTP Solution Library

The Thousands of Solutions from Theorem Provers (TSTP) solution library, the
“flip side” of the TPTP, is a corpus of contemporary ATP systems’ solutions to
the TPTP problems. A major use of the TSTP is for ATP system developers to
examine solutions to problems, and thus understand how they can be solved.

Table 1T summarizes the TSTP results from the higher-order ATP systems de-
scribed in Section 5, for the 2729 THF problems in TPTP v4.0.0. The systems are
(in historical order of development) TPs 3.080227G1, LEO-II 1.1, three automated
versions of Isabelle 2009-1 (one - IsabelleP - trying to prove theorems, and two -
IsabelleM and IsabelleN - trying to find (counter-)models), and Satallax 1.1 (which
can prove theorems and find some (counter-)models). The “Any” and “All” rows
are with respect to the theorem provers and model finders respectively. The “None”
row shows the number of problems for which no result has been established. All the
runs were done on 2.80GHz computers with 1GB memory and running the Linux
operating system, with a 300s CPU limit.

The results show that the graph theory (GRA) Ramsey number problems are
very difficult - this was expected. For the remaining domains the problems pose
interesting challenges for the ATP systems. The systems have individual strengths
and weaknesses across the domains, e.g., IsabelleP is strong on set theory (SE?)
problems, LEO-II is strong on algebra (ALG), and TPs is strong on logical calculi
(LCL) problems. The differences between the systems lead to some problems being
solved uniquely by each of the systems, with TPs having the highest number of
unique solutions. Satallax’s combined solution count (proofs and (counter-)models)
is 1633. This might reasonably be compared with the combined IsabelleP+IsabelleN
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Table II. Results for THF problems
ALG COM GRA GRP LCL MSC NUM PUZ SE? SWV SYN Total Unique

Problems 80 1 93 1 107 2 212 51 1407 37 738 2729
IsabelleP 36 0 0 1 63 1 167 26 857 11 422 1584 75
Satallax 19 0 0 0 53 0 133 21 804 11 452 1493 38
LEO-II 49 0 0 1 68 0 147 26 727 19 438 1475 37
Tprs 32 1 0 1 83 1 161 20 723 17 410 1449 82
Any 53 1 0 1 86 1 176 28 1026 20 493 1885 232
All 15 0 0 0 48 0 112 14 514 9 346 1058
IsabelleN 3 0 0 0 12 0 6 18 75 11 164 289 52
IsabelleM 3 0 0 0 11 0 6 17 75 11 87 210 0
Satallax 0 0 0 0 9 0 4 2 40 8 77 140 15
Any 3 0 0 0 16 0 6 18 75 11 175 304 7
All 0 0 0 0 5 0 4 2 40 8 39 98
None 24 0 93 0 5 1 30 5 306 6 70 540

count of 1873, although Satallax has the advantage of being a single monolithic
system. The individual problem results show that IsabelleN solves a strict superset
of the problems solved by IsabelleM, indicating that the refute command may now
be redundant when using Isabelle in the normal interactive mode.

4.3 TPTP Tools

A range of tools are provided to support use of the TPTP [88]. Some are distributed
with the TPTP problem library, some are available on request from the first author,
and all are available as online services in the SystemOnT*TP interfaces described
in Section 4.3.4.

4.3.1 Parsing and Formatting. From a TPTP user perspective, the TPTP2X
and TPTP4X utilities are often the most useful for manipulating THF problems.
These two utilities have similar capabilities, of parsing (which provides a syntax
check), analyzing, transforming, and formatting THF formulae. TPTP2X addition-
ally provides format modules for outputting THF problems in the TPs [6], Twelf
[77], OmDoc [62], Isabelle [73], and S-expression formats. TPTP2X is implemented
in Prolog, thus taking advantage of the TPTP language’s compatibility with Pro-
log, and being easily extended with new functionality. TPTP4X is implemented in
C, and is thus faster than TPTP2X. TPTP2X is distributed with the TPTP problem
library, while TPTP4X is available online and as part of the TPTPWorld package
(available on request). In addition to the Prolog and C parsers, a Java parser built
using antlr is available (on request). The Java parser is used in the IDV derivation
viewer described in Section 4.3.3.

TPTP2X and TPTP4X provide imprecise syntax checking of THF formulae. More
precise parsing and syntax checking is available by using the BNFParser family of
parsers. These parsers are generated automatically from the BNF definition of the
THF language, using the lex/yacc framework [97]. The lex/yacc files used to
build these parsers are available (on request).

4.3.2  Type Checking. The THF syntax provides a lot of flexibility. As a result,
many syntactically correct expressions are meaningless because they are not well
typed. For example, it does not make sense to write (& = ~) because the equated
expressions have different types. It is therefore necessary to type check THF for-
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mulae using an inference system. This is achieved for THFO in the TPTP by using
TPTP2X to export THF problems in Twelf format, and submitting the result to
the Twelf tool [77]. The type checking in Twelf is based on typing rules, e.g.,

I'-F :: A>B '-s :: A T'FF :: A> $o
'-rF@es :: B FTE'F :: $o
are the typing rules for application and II, where S :: A denotes the judgement
that S has type A. The normative definition is given by representing THFO0 in the
logical framework LF [51]. A base signature ¥y is defined, and a list L of THF0
formulae is translated to a list of declarations ¥ extending ¥g. L is well-formed
iff 3o, ¥ is a well-formed Twelf signature. See [20] for full details.

Via the Curry-Howard correspondence [37, 56], the representation of THF in
Twelf can be extended to represent proofs — it is necessary only to add declarations
for the proof rules to Y, i.e., §-n-conversion, and the rules for the connectives and
quantifiers.

4.3.3 Solution Analysis. Tools for analyzing and presenting proofs output by
higher-order ATP systems are available. The two most salient of these are the GDV
derivation verifier, and the IDV derivation viewer.

GDV [87] is a tool that uses structural and then semantic techniques to verify
a derivation in TPTP format. Structural verification checks that inferences have
been done correctly in the context of the derivation, e.g., that the derivation is
acyclic, that assumptions have been discharged, etc. Semantic verification encodes
the semantic relationships between inferred formulae and their parent formulae as
logical obligations (in the form of ATP problems), and the obligations are discharged
by trusted ATP systems.

IDV [94] is a tool for graphical rendering of derivations in TPTP format. The ren-
dering of the derivation DAG uses shape and color to visually provide information
about the derivation. The node shape indicates the role of the formula, the color
indicates THF, FOF or CNF, and tags indicate features of the inference step. For
proofs that rely on translation between forms, e.g., LEO-II proofs (see Section 5.2),
the phases are separated into layers. The user can interact with the rendering in
various ways, e.g., to examine the formulae, zoom in, hide parts of the proof, and
form a proof synopsis using information from the AGInT tool [80].

4.3.4 Online Access via SystemOnTPTP. The SystemOnTPTP service provides
online access to ATP systems and all TPTP tools. The service can be used inter-
actively in a browser, starting at http://www.tptp.org/cgi-bin/SystemOnTPTP,
or can be accessed programmatically using http POST requests. The back-end of
the SystemOnTPTP service is available (on request) for users who want to run ATP
systems and tools locally, but under the control of the service’s harness.

4.4 The CADE ATP System Competition

The CADE ATP System Competition (CASC) [93] is an annual evaluation of the
performance of fully automatic ATP systems — it is the world championship for
such systems. CASC has been a catalyst for impressive improvements in ATP,
stimulating both theoretical and implementation advances [71]. The first THF
division of CASC was part of CASC-22 at CADE-22. Four THF ATP systems
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entered this division, and their robust performance demonstrated their potential
to prospective users. The full results and resources used in CASC-22 are available
from the web site, http://www.tptp.org/CASC/22/.

While the primary purpose of CASC is a public evaluation of the relative capa-
bilities of ATP systems, it also aims to promote ATP research. The THF division
of CASC provides insight and stimulus for the development of higher-order ATP
systems.

5. HIGHER-ORDER ATP SYSTEMS

Research and development of computer-supported reasoning for higher-order logic
has been in progress for as long as that for first-order logic. It is clear that the
computational issues in the higher-order setting are significantly harder than those
in first-order. Problems such as the undecidability of higher-order unification, the
handling of equality and extensionality reasoning, and the instantiation of set vari-
ables, have hampered the development of effective higher-order automated reason-
ing. Thus, while there are many interactive proof assistants based on some form
of higher-order logic [99], there are few automated systems for higher-order logic.
This section describes the (fully automatic) ATP systems for Church’s simple type
theory, that we know of.

51 TPS

TPs is a fully automated version of the higher-order theorem proving system TPs
[5, 6]. TPs can be used to prove theorems of Church’s type theory automatically,
interactively, or semi-automatically. When searching for a proof, TPS first searches
for an expansion proof [69] or an extensional expansion proof [28] of the theorem.
Part of this process involves searching for acceptable matings [3]. Using higher-
order unification, a pair of occurrences of subformulae (which are usually literals)
is mated appropriately on each vertical path through an expanded form of the theo-
rem to be proved. Strategies used by TPS in the search process include re-ordering
conjunctions and disjunctions to alter the enumeration of paths through the for-
mula, the use of primitive substitutions and gensubs [4], path-focused duplication
[60], dual instantiation of definitions, generating substitutions for higher-order vari-
ables that contain abbreviations already present in the theorem to be proved [25],
component search [24], generating and solving set constraints [32], and generating
connections using extensional and equational reasoning [28].

The behavior of TPs is controlled by hundreds of flags. A set of flags, with
values for them, is called a mode. Forty-nine modes have been found that col-
lectively suffice for automatically proving virtually all the theorems that TPs has
proved automatically thus far. As the modes have quite different capabilities, and
it is expected that any proofs found by any mode will be found quickly, strategy
scheduling the modes is a simple way of obtaining greater coverage. A perl script
has been used to do this, running each of the 49 modes for a specified amount of
time.

5.2 LEO-II

LEO-II [19] is a higher-order ATP system based on extensional higher-order res-
olution. LEO-II is designed to cooperate with specialist systems for fragments of
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higher-order logic. Currently, LEO-II is capable of cooperating with the first-order
ATP systems E [85], SPASS [98], and Vampire [83]. LEO-II is often too weak to find
a refutation amongst the steadily growing set of clauses on its own. However, some
of the clauses in LEO-II’s search space attain a special status: they are first-order
clauses modulo the application of an appropriate transformation function. The
default transformation is Hurd’s fully typed translation [59]. Therefore, LEO-II
launches a cooperating first-order ATP system every n iterations of its (standard)
resolution proof search loop (currently n = 10). If the first-order ATP system finds
a refutation, it communicates its success to LEO-II in the standard SZS format.
Communication between LEO-IT and the cooperating first-order ATP system uses
the TPTP language and standards. LEO-II uses a monolithic search strategy, i.e.,
it does not use strategy scheduling to try different search strategies or flag settings.

In addition to the fully automatic mode, LEO-II provides an interactive mode
[19]. This mode supports debugging and inspection of the search space, and also
the tutoring of resolution based higher-order theorem proving to students. The
interactive mode and the automatic mode can be interleaved.

LEO-II is implemented in Objective Caml, and is available from http://wuw.
ags.uni-sb.de/~1leo/ under a BSD-like licence.

5.3 IsabelleP, IsabelleM, IsabelleN

Isabelle [73] is a well known proof assistant for higher-order logic. It is normally
used interactively through the Proof General interface. In this mode it is possible
to apply various automated tactics that attempt to solve the current goal without
further user interaction. Examples of these tactics are blast, auto, and metis. It
is (a little known fact that it is) also possible to run Isabelle from the command
line, passing in a theory file containing a lemma to prove. Finally, Isabelle theory
files can include ML code to be executed when the file is processed. While it
was probably never intended to use Isabelle as a fully automatic system, these
three features have been combined to implement a fully automatic Isabelle. The
TPTP2X Isabelle format module outputs a THF problem in Isabelle HOL syntax,
augmented with ML code that runs tactics in sequence, each with a CPU time limit
until one succeeds or all fail. The tactics used so far are simp, blast, auto, metis,
fast, fastsimp, best, force, meson, and smt. The system is named IsabelleP.

The ability of Isabelle to find (counter-)models using the refute and nitpick
commands has also been integrated into automatic systems, called IsabelleM and
IsabelleN respectively. This provides the capability to find models for THF for-
mulae, which confirm the satisfiability of axiom sets, or the countersatisfiability of
non-theorems. This has been particularly useful for exposing errors in some THF
problem encodings, and revealing bugs in the THF theorem provers (and conversely,
the theorem provers have been useful in debugging IsabelleM and IsabelleN!).

5.4 Satallax

Satallax is based on a complete ground tableau calculus for higher-order logic with
a choice operator. Instantiations at base types other than the type o are restricted
to discriminating terms (terms involved in an inequality) as described in [30]. In
case there are no discriminating terms at a base type ¢, some term of type ¢ is used
as an instantiation just to make progress. Since any term would do, either the first
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Table III. Statistics for set theory problems

System Solved  Avg. CPU | System Solved  Avg. CPU
Satallax 78 0.01s | leanCoP 76 9.82s
Tps 78 2.68s | iProver 75 4.95s
LEO-II 76 0.06s | Vampire 73 5.19s
IsabelleP 76 712s | E 69 5.77s

term of type ¢ encountered is used, or a fresh variable of type ¢ is used, or the
choice operator at ¢ applied to the empty set is used, depending on flag settings
and the particulars of the problem. When instantiations of type o are required,
terms corresponding to both of the Boolean values (L and T) are used.

Instantiations at function types are generated using primitive substitutions. In-
stead of searching in the tableau calculus directly, the LISP code (1) progressively
generates all tableau steps that might be used in a refutation, (2) creates corre-
sponding propositional clauses, and (3) calls MiniSat [40] to check for propositional
satisfiability. If MiniSat finds the current set of clauses to be unsatisfiable, then
there is a corresponding tableau refutation. If a problem only requires instantia-
tions at base types (and never at function types), the generation of clauses for that
problem might terminate. In such a case, if a final call to MiniSat indicates the set
of clauses is satisfiable, then the original higher-order problem was satisfiable.

Satallax is implemented in Steel Bank Common LISP, and is available from http:
//www.satallax.com.

6. APPLICATIONS
6.1 Set Theory

As noted in Section 3.2, set theory problems can be elegantly encoded in THFO0 by
exploiting the fact that higher-order logic provides a naturally built-in set theory,
based on the idea of identifying sets with their characteristic functions. As a re-
sult the higher-order encoding of a set theory problem can often be solved more
efficiently than the corresponding first-order encoding [21]. The data in Table III
illustrates this effect. The data is for 78 set theory problems presented in [95],
encoded in FOF for the (now defunct) ILF project [38], and encoded in THF by
export from the TPS test suite.” Data is given for the four FOF ATP systems
that have the most solutions (for the FOF versions of these problems) in the TSTP
solution library, and the four THF theorem provers described in Section 5. The
FOF ATP systems are leanCoP 2.1 [74], iProver 0.7 [64], Vampire 11.0 [83], and
E 1.1 [85]. The columns provide the number of problems solved, and the average
CPU time taken over the problems solved. All the runs were done on 2.80GHz
computers with 1GB memory and running the Linux operating system, with a 300s
CPU limit.

These results confirm that for these problems, the higher-order encoding in con-
junction with the higher-order ATP systems is more effective. The number of
problems solved by the THF systems is slightly higher than the number solved by
the FOF systems, and the average times taken by the THF systems are significantly
lower than the times taken by the FOF systems. These results are amplified by the

5This is the largest group of consistently comparable FOF and THF set theory problems in the
TPTP.
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fact that THF ATP technology is in its infancy relative to the mature FOF ATP
systems.

A second application of THFO to set theory comes from the DetSeT project [27].°
The Scunak system was used to axiomatize and develop axiomatic (untyped) set
theory within a dependently typed framework [33]. Using this system, a version of
ZFC (Zermelo-Fraenkel set theory with choice) was axiomatized and a number of
theorems were proven. Even though the development took place within a dependent
type theory, it is possible to translate this into simply typed higher-order logic
by erasing the dependencies and appropriately handling logical constants. This
translation has been done and resulted in a development of set theory within higher-
order logic along the lines described in [48]. The translation provided 326 theorems
of ZFC. For each of these theorems, two THF problems were created: a global
version and a local version. The global version of the n*" theorem Z,, states that all
axioms and all previous theorems Z; with i < n imply Z,,. The local version states
that some subset of the axioms and previous theorems imply Z,. The subset for
the local version was chosen using the proof term produced by Scunak. The proof
term explicitly contains a reference to every axiom and previous theorem used in
the proof. One could imagine using higher-order ATP systems to help obtain proof
terms in Scunak (or similar systems). The collection of ZFC problems in the TPTP
allows the feasibility of this idea to be tested.

6.2 Embeddings and Combinations of Logics

Prominent non-classical logics, including quantified multimodal logics and intu-
itionistic logic, can be elegantly embedded in THFO0 [18]. THFO can hence serve
as a platform for flexibly combining classical and non-classical logics [14]. These
embeddings can in turn be exploited to model further embeddings of logics, for
example, logics of access control in computer security. The embedding of access
control logics in THFO [13] exemplifies how different logic embeddings can be ele-
gantly combined in THFO0. In this specific case a translation of prominent access
control logics in modal logic S4 [43] is combined with the above embedding of modal
logics into THFO.

Combination of logics, e.g., combining logics of knowledge and belief with logics of
time and space, are important for many real world applications, and the application
contexts can be difficult to model directly. The THFO0 language and the THFO
ATP systems can be employed to both (i) model and solve problems that use
combinations of logics (cf. the modeling of the famous Wise Men Puzzle in [14]),
and (ii) meta-reason about such combinations of logics, e.g., prove their consistency.

The experiments conducted in [14] are basic, and further work is needed to in-
vestigate the scalability of the logic embeddings approach. However, besides its
promising meta-reasoning aspects, further advantages of this approach are flexibil-
ity and reuse: it is not necessary to create new theorem proving calculi and systems
for each new combination of logics. The THF0 embedding and the THF0 ATP sys-
tems can be applied uniformly. The direct approach of creating new calculi and
systems for each new combination of logics is, in contrast, usually very tedious and
also error prone.

Shttp://mathgate.info/detsetitem.php

Journal of Formalized Reasoning Vol. 3, No. 1, 2010.



20 . G. Sutcliffe and C. Benzmiiller

7. CONCLUSION

This paper has described the TPTP THF infrastructure for automated reasoning
in higher-order logic, with performance data and example applications that show
that the infrastructure is useful and effective. The goals of developing THF were
to provide pragmatic standards for writing higher-order logic ATP problems and
solutions, provide libraries of test problems and solutions, and consequently support
and stimulate the development and deployment of ATP systems for higher-order
logic in applications. These goals are already being realized, through the TPTP
and TSTP libraries of test problems and solutions, the development of several new
higher-order ATP systems, the use of higher-order ATP in a range of domains,
and renewed interest in higher-order ATP in the community, e.g., at the CADE
conference during CASC.

The development of the THF part of the TPTP and its infrastructure has pro-
gressed far more rapidly than was the case for the FOF part, for which it took some
years to convert existing systems and their developers to the TPTP standards. The
THF development has benefited from being built on top of the the established FOF
part of the TPTP. Future systems and applications of higher-order ATP are ex-
pected to use THF from the start, thus making it immediately possible to use all
the TPTP THEF infrastructure. Further development of THF will also be guided by
the more mature FOF part of the TPTP. For example, ATP systems that output
proofs are particularly important, allowing proof verification. In the long term we
hope to see burgeoning research and development of ATP for higher-order logic,
with a richness similar to first-order ATP, with many ATP systems, common usage
in applications, meta-systems, etc.
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