
A New Look at Generalized Rewriting in Type
Theory

MATTHIEU SOZEAU

Harvard University

Rewriting is an essential tool for computer-based reasoning, both automated and assisted. This is

because rewriting is a general notion that permits modeling a wide range of problems and provides

a means to effectively solve them. In a proof assistant, rewriting can be used to replace terms
in arbitrary contexts, generalizing the usual equational reasoning to reasoning modulo arbitrary

relations. This can be done provided the necessary proofs that functions appearing in goals are

congruent with respect to specific relations. We present a new implementation of generalized
rewriting in the Coq proof assistant, making essential use of the expressive power of dependent

types and the recently implemented type class mechanism. The new rewrite tactic improves on

and generalizes previous versions by natively supporting higher-order functions, polymorphism
and subrelations. The type class system inspired by Haskell provides a perfect interface between

the user and the tactic, making it easily extensible.

1. INTRODUCTION

In this article, we will develop a new system for supporting generalized rewriting
in type theory. By generalized rewriting we mean the ability to replace a subterm
t of an expression by another term t′ when they are related by a relation R. When
the relation is Leibniz equality (or propositional equality in type theory jargon),
this reduces to standard equational reasoning. In Coq for example, we can use the
standard rewrite tactic to rewrite with an equation in a goal.

Suppose for example that we are proving the following lemma about natural
numbers:

Goal ∀ x : nat, x + 1 = S x .
Addition being defined by recursion on its first argument, we have to use induc-

tion to prove it. The case x = 0 follows by reflexivity, the second goal looks like
this after reduction:

x : nat
IHx : x + 1 = S x
============================
S (x + 1) = S (S x)

It is now possible to rewrite with the induction hypothesis using the tactic
rewrite IHx , obtaining a goal S (S x) = S (S x) and finishing the proof using
reflexivity.

This ability to replace equal terms anywhere is a basic feature of the proposi-
tional equality. However, when the considered relation is not Leibniz equality, we
have no such high-level support to replace related terms in arbitrary goals. Gen-
eralized rewriting allows to do that, greatly simplifying the ubiquitous reasoning
with relations in proofs. We will now introduce standard use cases of generalized

Journal of Formalized Reasoning Vol. 2, No. 1, 2009, Pages 41–62.

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#S

42 · Matthieu Sozeau

rewriting on equivalences like the regular equality (§1.1) but also orders or simply
transitive rewrite relations (§1.2).

This article is an hyperlinked literate Coq script, pretty-printed using coqdoc
with the following lexical conventions: keywords are in light red typewriter font,
defined constants are in green serif font, inductive types in blue sans serif font,
constructors in bordeaux sans serif and variables in magenta italic style.

1.1 Extensional notions of equivalence

The standard propositional equality is called intensional, because it relates only
objects that are convertible in the system, i.e. reduce to the same normal form. It
is a structural equality on terms, but in general one may want to consider objects
related up to a larger relation.

Typically, when one works with non-canonical representations of structures, the
standard equality is too coarse to capture the intended equivalence on objects.
Consider for example representations of the rationals or implementations of sets as
AVLs or unsorted lists with no duplicates. In these cases, the natural equivalence
relation on the objects is often given by an observation on the datatype: we can
compare non-canonical rationals by structurally comparing their canonical forms
and consider two representations of sets equivalent if and only if they contain exactly
the same elements up to a given equivalence on the elements type. We call these
relations extensional, as they relate objects using some of their external properties.

Operations defined on these datatypes often do respect the equivalence relations.
For example taking the inverse of two equivalent rationals will always give us equiv-
alent rationals in return, but extracting the denominators will not necessarily give
us equal numbers. When we reason on rationals or sets in contexts involving only
equivalence preserving operations, we would like to get the same ease of reasoning
as for the propositional equality.

For simplicity, we do not detail an implementation of a non-canonical datatype,
instead we present an abstract interface for it. A real-world example of this can
be found in Coq’s finite sets library. Suppose we have a datatype SET and its
associated equivalence relation eqset.

Parameter SET : Type.
Parameter eqset : relation SET.

We recall that a relation on a type A is modeled as a binary predicate of type A
→ A → Prop in Coq. For example the trivial relation that relates everything can
be defined as:

Definition true relation (A : Type) : relation A := λ x y , True.

We use a standard set of type classes to declare that a relation is reflexive, sym-
metric or transitive. We also have packages to declare a combination of these prop-
erties giving preorders, strict orders, partial orders, partial equivalences and equiva-
lences. We will describe these classes in detail in section 2.1. For now it is sufficient
to know that this allows us to refer to proofs of these properties for an arbitrary
relation using the overloaded tactics reflexivity, symmetry and transitivity,
as long as the proofs were declared in the context.

Parameter eqset equiv : Equivalence eqset.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#True
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#Equivalence

A New Look at Generalized Rewriting in Type Theory · 43

An interface exposes the operations on the structure and lemmas about them,
for example:

Parameter empty : SET.
Parameter union : SET → SET → SET.

Parameter union empty : ∀ s : SET, eqset (union s empty) s.
Parameter union idem : ∀ s : SET, eqset (union s s) s.

Naturally, we will also need compatibility lemmas showing that the eqset relation
is preserved by the operations:

Parameter union compat : ∀ s s’ : SET, eqset s s’ →
∀ t t’ : SET, eqset t t’ → eqset (union s t) (union s’ t’).

Now consider a proof on these sets using the facts that empty is neutral for union
and that union is idempotent:

Goal ∀ s, eqset (union (union s empty) s) s.
Proof. intros s. transitivity (union s s);

[apply union compat; [apply union empty | reflexivity]
| apply union idem].

Qed.

The intros tactic here just introduces the s variable in the local context, leaving
us with a goal eqset (union (union s empty) s) s to prove. Without any support
for rewriting with user-defined relations, we have to manually apply transitivity
of the eqset relation with union s s, apply the compatibility lemma and resolve
the generated subgoals with the appropriate theorems. However, as we know that
every operator is compatible with the eqset equivalence relation here, two simple
rewrites with the union empty and union idem lemmas should suffice to prove the
goal, the reasoning about compatibility being done automatically. This function-
ality is provided by the generalized rewriting tactic. One just has to register the
compatibility lemmas using a special command:

Instance union proper : Proper (eqset ++> eqset ++> eqset) union.
Proof. exact union compat. Qed.

The union proper proof has exactly the same content as the union compat one,
but its type is different. We use a concise notation for describing signatures of
operators, that declare the compatibility of an object with certain relations. The
arrows in the signature correspond to the arity of the function, here union : SET
→ SET → SET. The signature asserts that two calls to union made with pairwise
eqset related arguments are always in the relation eqset.

The previous goal can then be proved using the higher-level rewrite tactic which
applies reflexivity, transitivity and compatibility lemmas under the hood, building
essentially the same proof term as above.

Goal ∀ s, eqset (union (union s empty) s) s.
Proof. intros s. rewrite union empty , union idem. reflexivity. Qed.

There is no magic here, if the user-provided compatibility lemmas were not suf-
ficient to prove the compatibility conditions, the rewrite would fail.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper

44 · Matthieu Sozeau

1.1.1 Logical equivalence. A notoriously extensional relation in Coq is the log-
ical equivalence relation.

Indeed, the logical equivalence relation iff is not defined as equality of propositions
but as a double implication between them, that is:

Definition iff : relation Prop := fun A B ⇒ (A → B) ∧ (B → A).

The arrow here is the Coq function space. As we are in a constructive system, a
proof of logical equivalence between A and B actually gives us a pair of functions
from A to B and from B to A. The same idea of congruence applies here: as all
the logical connectives ∧, ∨, → are compatible with this equivalence, we can use
an automatic procedure to verify that replacing a proposition by an equivalent one
is valid in any goal built from these connectives:

Goal ∀ P Q : Prop, (P ↔ Q) → (Q → P) ∧ (Q → P).
Proof. intros P Q H . rewrite H . split; trivial. Qed.

The proof term corresponding to this proof will contain information to show that
the goal context (Q →) ∧ (→ Q) is congruent for iff-related propositions. This
proof is automatically constructed from congruence lemmas on the conjunction and
implication connectives.

This support is not restricted to the built-in propositions of type Prop, embedded
logics can also profit from the system. A striking example is given by separation
logic and its connectives. Formalizations in Coq [BT09, McC09] use the generalized
rewriting framework to reason abstractly on separation logic formulae.

1.1.2 Extensionality on functions. Another problem with the intensional equal-
ity is that it does not give the classical principle of functional extensionality valid in
set theory. This principle says that two functions are equal if they behave the same
on every input. Leibniz equality does not capture that as it relates only functions
which are syntactically the same. It is however impossible to distinguish two func-
tions which behave the same in Coq, as the only way to compare them is to observe
their behavior. Hence it is usually the case that a definition taking a function as
argument is compatible with extensional equality on this argument, we just do not
get it ”for free” using the propositional equality.

The definition of extensional equality is tied to the notion of Leibniz equality. In
general we may consider functions that are not extensionaly equal but pointwise
equal for another relation. We define pointwise equivalence in Coq as a relation on
functions that holds if the two functions build related arguments for every input.

Definition pointwise relation A {B} (R : relation B) : relation (A → B) :=
fun f g ⇒ ∀ a : A, R (f a) (g a).

Two functions are extensionally equal if they are pointwise Leibniz-equal:

Definition extensionality (A B : Type) : relation (A → B) :=
pointwise relation A eq.

An example use of this pointwise relation is given by the existential quantifier
defined as:

Inductive ex (A : Type) (P : A → Prop) : Prop :=
ex intro : ∀ x : A, P x → ex P

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#ex
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#exintro
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#ex

A New Look at Generalized Rewriting in Type Theory · 45

The constructive existential is a pair of a witness x of type A and a proof of
the proposition P x . If we have a proof of ex A P and a predicate Q pointwise
equivalent for iff to P , we can build a proof of ex A Q by using the equivalence to
build a proof of Q x from the proof of P x . Using signature notation, we have:

Instance ex proper A : Proper (pointwise relation A iff ++> iff) (@ex A).

We read this declaration as follows: if we apply @ex A to two pointwise equivalent
predicates we get back two equivalent propositions. We use this compatibility
lemma in the following proof, where the notation ∃ x : A, P is just a shorthand for
ex (fun x : A ⇒ P).

Goal Π A P Q , (∀ x : A, P x ↔ Q x) → (∃ x : A, ¬ Q x) → (∃ x : A, ¬ P x).
Proof. intros A P Q H HxQ . setoid rewrite H . exact HxQ . Qed.

When we rewrite in the goal ∃ x : A, ¬ P x with our proof of ∀ x , P x ↔ Q
x , we actually go under the lambda abstraction fun x : A ⇒ ¬ P x to rewrite its
body under the extended context x : A. We get back a new body ¬ Q x and a proof
that it relates to ¬ P x by iff. From this rewriting proof we can build an extended
one showing that fun x : A ⇒ ¬ P x and fun x : A ⇒ ¬ Q x are related by
pointwise relation A iff. As we know that existential quantification is compatible
with this relation, we get a final proof that ∃ x : A, ¬ P x is logically equivalent
to ∃ x : A, ¬ Q x , which is enough to show that the rewrite is valid. The standard
rewrite tactic does not go under binders like this for technical reasons, hence we
use the variant setoid rewrite instead.

Likewise, we can declare that the all combinator representing universal quantifi-
cation as a constant application is compatible with logical equivalence.

Definition all {A} (P : A → Prop) : Prop := ∀ x : A, P x .
Instance all proper A : Proper (pointwise relation A iff ++> iff) (@all A).

Logical equivalence is not the only relation of interest when reasoning with propo-
sitions. It is also useful to show the compatibility of connectives with the more
primitive logical implication, and rewrite with it. We can reify logical implication
as a constant impl and declare how it interacts with universal quantification for
example:

Definition impl (P Q : Prop) : Prop := P → Q .
Instance all impl A : Proper (pointwise relation A impl ++> impl) (@all A).

1.2 General relations

This naturally leads us to consider not only equivalence relations for rewriting but
also general relations with which our definitions are compatible.

Logical implication is one example of a non-symmetric relation we can use for
rewriting. Another good example in the context of proofs of programs is given by
the subset order on sets. Suppose we have defined a subset order on our abstract
datatype SET and shown that it forms a partial order w.r.t. eqset:

Parameter subset : relation SET.
Parameter subset po : PreOrder subset.
Parameter subset partial : PartialOrder eqset subset.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Init.Logic.html#ex
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#ex
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#ex
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#ex
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#ex
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#PreOrder
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#PartialOrder

46 · Matthieu Sozeau

The PreOrder and PartialOrder parameters provide proofs that eqset is reflexive,
transitive and antisymmetric w.r.t. eqset. We can declare that union is monotonic
for subset in the following sense:

Instance: Proper (subset ++> subset ++> subset) union.

Now rewriting with subset x y hypotheses can be done in contexts involving
union, e.g:

Goal ∀ s t , subset t empty → subset (union s t) s.
Proof. intros s t tempty . rewrite tempty , union empty . reflexivity. Qed.

1.2.1 Inverse relations. As the subset relation is not symmetric, we may some-
times need to consider its inverse to write signatures. We can define the inverse
of a relation R by flipping the arguments applied to R. We use the standard R-1

notation to denote it, so R-1 x y is equal to R y x .

Definition inverse {A} (R : relation A) : relation A := flip R.
Notation ” R -1 ” := (inverse R) (at level 2).

Take for example the set difference function diff , it should respect the following
lemma and signature:

Parameter diff : SET → SET → SET.
Parameter diff neutral : ∀ s, eqset (diff s empty) s.
Instance: Proper (subset ++> subset-1 ++> subset) diff .

Unfolding the definitions, this means we have a proof of:

∀ s s’ , subset s s’ → ∀ t t’ , subset t’ t → subset (diff s t) (diff s’ t’)

It models the fact that the second argument has to be larger or equal for the
difference to be smaller or equal. As an abbreviation, we might also use a con-
travariant arrow −→ to denote the same signature.

Instance: Proper (subset ++> subset −→ subset) diff .

Thanks to these declarations we can prove the following lemma using only rewrit-
ing.

Goal ∀ s t u, subset s t → subset empty u → subset (diff s u) t .
Proof. intros s t u st eu. rewrite ← eu, st , diff neutral. reflexivity. Qed.

Note that we rewrite in the contravariant position of diff using ← eu, so by an
hypothesis of type equivalent to subset-1 u empty . This corresponds exactly to the
relation in the signature.

1.2.2 Relation inclusion. Order relations and more generally antisymmetric re-
lations are often related to other, larger relations in practice. Our system also has
the ability to take this semantic relation inclusion information into account. For
example, the user can declare the following inclusion:

Instance: subrelation eqset subset.

This declaration proves that any two sets related by eqset are also related by
subset. It allows to factorize declarations of compatibility lemmas when one sig-
nature would subsume another. This allows us to rewrite with the eqset relation
under diff even though diff has a single compatibility lemma about its behavior
w.r.t. the subset relation:
Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#PreOrder
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#PartialOrder
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#flip
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation

A New Look at Generalized Rewriting in Type Theory · 47

Goal ∀ s t u, eqset s t → subset (diff s u) (diff t u).
Proof. intros. rewrite H . reflexivity. Qed.

We demonstrated how this system can be used to rewrite with orders, but it
also works with any user-defined relation like partial equivalence relations that lack
reflexivity or inductive relations modeling rewrite systems that lack symmetry and
reflexivity. The only kind of relations that hardly make sense for rewriting are
intransitive ones.

2. A NEW TACTIC FOR GENERALIZED REWRITING

We will present a new, generalized implementation of generalized rewriting in Coq
that blends well with the system, directly supporting polymorphism, higher-order
functions and rewriting under binders. Our algorithm is a mix of Basin’s [Bas94]
and Sacerdoti Coen’s [SC04] work that we will present in section 4.

We will split the problem in two parts to get a clear view on the whole system: a
constraint generation procedure (in ML, §2.3) and a customizable proof search that
is also at the meta-level (in Ltac), based on a set of type class instances [SO08]
(§2.4). This simplification follows a current trend in the design of proof search
algorithms (e.g. for type inference [Pot00]) to make them more modular: it allows
the study and more practically the independent modification of each part.

The resulting system allows to experiment efficient proof-search strategies and
supports all the previously-mentioned features, some of which are implemented
solely using the extensibility capabilities of type classes. The tactic uses a set of
general-purpose definitions on relations that we will present now.

2.1 Relations

We will begin by defining a number of standard concepts around relations as type
classes. We introduce classes that formalize the usual notions of reflexivity, sym-
metry and transitivity.

Class Reflexive {A} (R : relation A) := reflexivity : ∀ x , R x x .
Class Symmetric {A} (R : relation A) :=

symmetry : ∀ {x y}, R x y → R-1 x y .
Class Transitive {A} (R : relation A) :=

transitivity : ∀ {x y z}, R x y → R y z → R x z .

These class declarations introduce overloaded methods that can be used to refer
to arbitrary reflexivity, symmetry or transitivity proofs afterwards. A typeclass dec-
laration is essentially a record declaration which registers each projection as a class
method. Each method takes as argument an implementation of the class, but this
argument is declared implicit and its implementation should be found by a type-
class resolution procedure. Take for example the Reflexive class, its reflexivity
method has type: ∀ {A : Type} {R : relation A} {R : Reflexive R}, ∀ x : A, R x
x . After applying reflexivity on a goal of the form S x x , unification leaves us
with a constraint of the form Reflexive S . This constraint is solved by launching a
proof search for an instance of Reflexive on S using a set of user-declared instances
of Reflexive.

We can also package instances, for example to declare equivalences we use the
class:

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation

48 · Matthieu Sozeau

Class Equivalence {A} (R : relation A) := {
Equivalence Reflexive :> Reflexive R ;
Equivalence Symmetric :> Symmetric R ;
Equivalence Transitive :> Transitive R }.

The proof search uses methods declared with :> like Equivalence Reflexive to
infer that a relation R declared as an Equivalence also declares a Reflexive R instance.

This support allows us to write generic tactics that will work with any inde-
pendently declared instances of the typeclasses, resolving implicitly the particular
structures at hand when we apply them. See [SO08] for a detailed exposition of
type classes.

2.1.1 Standard Instances. We can already populate the instance database with
easy proofs by duality. All the above properties are preserved by inversion, for
example:

Instance flip Reflexive ‘(Reflexive A R) : Reflexive R-1 := reflexivity (R := R).

Finally we define some instances for the standard logical operators. We use
the Program extension [Soz08b] to define these instances. In this mode, each
undefined field is turned into an obligation that is automatically proved using a
default tactic. We use the firstorder tactic here to solve these simple goals.
Implication is reflexive and transitive:

Program Instance impl Reflexive : Reflexive impl.
Program Instance impl Transitive : Transitive impl.

Both logical equivalence and Leibniz equality have Equivalence instances.

2.1.2 Subrelations. The last interesting concept we introduce is that of subre-
lations: the inclusion order on relations. We make it a class so that we can declare
logic clauses to dynamically prove it on given relations. Indeed typeclass resolution
is essentially a prolog-like resolution on goals of the form C t using the declared
instances as clauses.

Class subrelation {A : Type} (R R’ : relation A) : Prop :=
is subrelation : Π x y , R x y → R’ x y .

An essential property of the subrelation relation is its reflexivity:

Instance subrelation refl : @subrelation A R R.

We declare the two following subrelation instances by default:

Instance iff impl subrelation : subrelation iff impl.
Instance iff inverse impl subrelation : subrelation iff impl-1.

2.2 Signatures and morphisms

The central notion of the system is that of being a morphism for a given relation R.
We say that an object m is a morphism for a relation R when R m m, that is m is in
the kernel of R, or m is a Proper element of R, using PER terminology1. Note that
this definition is very general and not in any way specialized for functions. We will

1The standard library of Coq 8.2 uses Morphism instead of Proper

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Morphism
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper

A New Look at Generalized Rewriting in Type Theory · 49

speak of objects of arrow types having Proper instances as morphisms, following
the terminology used in previous work.

Class Proper {A} (R : relation A) (m : A) : Prop := proper : R m m.

We make this notion a class, hence users can easily add new Proper instances
to the type class database. We make Proper’s type an implicit argument as it can
always be infered from the signature R or the object m itself.

Clearly, any element in a type accompanied by a reflexive relation is a proper
element for it. We add a new logic clause for the Proper R x goal saying it is enough
to find a proof of Reflexive A R to solve it.

Instance reflexive proper ‘(Reflexive A R) (x : A) : Proper R x .

2.2.1 Signatures. Another essential notion is the signature for objects with ar-
row types. We define a single compatibility arrow as a parametric extensionality
relation on arrow types for two given relations on the input and output type.

Definition respectful {A B} (R : relation A) (R’ : relation B)
: relation (A → B) :=
λ f g , ∀ x y , R x y → R’ (f x) (g y).

Naturally, a function f respects respectful R R’ if for any two objects related by
R the outputs of f applied to those are related by R’ . The respectful definition gives
a relational version of respect, which can be applied to two different functions, but
will eventually be instantiated by the same object in a Proper proof. For example,
to declare that logical negation is compatible with logical equivalence, we define:

Program Instance not iff morphism : Proper (respectful iff iff) not.

The content of not iff morphism is a proof of respectful iff iff not not, which
unfolds to the expected compatibility statement:

∀ P Q , iff P Q → iff (not P) (not Q)

We chose a shallow embedding of signatures in the dependent type theory. This
means that our signatures are written directly using the theory’s term language
and in particular its binding structure. This has the disadvantage that we cannot
write algorithms on the signatures in Coq itself as we would have to match directly
on the syntax of signatures, e.g. to decompose respectful applications. However we
can always do so using the Ltac tactic language which allows to manipulate the
syntax directly.

This choice makes sense because the unification procedure that is needed later
when trying to find constants having a given signature cannot be deeply embedded
easily, nor is it really desirable for efficiency. Another obvious advantage is that
one can design and support new constructions in signatures easily.

We declare a new parsing scope for relations seen as signatures so that the nota-
tions we use later can be given other meanings in different contexts. The relation
argument of Proper is parsed in this new scope.

Delimit Scope signature scope with signature.
Open Local Scope signature scope.

We define respect arrows using a set of notations, they associate to the right
following the arrow type. The notation ++> for covariance is the naked respectful

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#Reflexive
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#Reflexive
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#not
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#not
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#not
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#not
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#not

50 · Matthieu Sozeau

definition, R −→ R’ is an abbreviation for R-1 ++> R’ . The equivariant arrow =⇒
is currently an alias for the covariant arrow.

Notation ” R ++> R’ ” := (respectful R R’)
(right associativity , at level 55) : signature scope.

Notation ” R −→ R’ ” := (respectful R-1 R’)
(right associativity , at level 55) : signature scope.

We can start declaring Proper instances using these notations for usual operators
like logical negation.

Program Instance contraposed morphism : Proper (impl −→ impl) not.

It is also possible to declare parametric instances of the Proper class, which act
like Horn clauses in logic programming. Here we assert that every transitive relation
is itself a morphism:

Instance trans morphism ‘(Transitive A R) : Proper (R −→ R ++> impl) R.

The signature indicates that for every transitive relation R we have

R x’ x → R y y’ → R x y → R x’ y’

Using this morphism instance we will be able to rewrite with any declared tran-
sitive relation.

Goal ∀ ‘(Transitive A R) x y z , R x y → R y z → R x z .
Proof. intros A R T x y z H H0 .

A : Type, R : relation A, T : Transitive R
x , y , z : A
H : R x y , H0 : R y z
============================
R x z

rewrite H .

A : Type, R : relation A, T : Transitive R
x , y , z : A
H : R x y , H0 : R y z
============================
R y z

assumption.
Qed.

These generic lemmas serve as a basis to do rewriting with relations declared
by the user without her having to redeclare structural lemmas that apply to every
relation having some standard property like symmetry or transitivity. The stan-
dard library contains a set of standard Proper instances used to rewrite with the

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#not
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#Transitive
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#Transitive
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#Transitive
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#Transitive

A New Look at Generalized Rewriting in Type Theory · 51

predefined constants like iff, impl, etc... We will present them in more detail after
describing the constraint generation algorithm which relies only on the small theory
we presented here.

2.3 Constraint Generation

The rewriting tactic takes a rewriting lemma and a clause (the goal or an hypoth-
esis) as arguments. It is then in charge to find a subterm unifiable with the left-
or right-hand side of the lemma and generate a proof that the rewriting is correct.
To do so, the ML algorithm generates a proof skeleton and a set of constraints (or
existential variables) corresponding to the compatibility conditions necessary for
the replacement to be correct. Once these are solved (if possible) using the type
class instances defined in Coq, we get closed terms for all the existential variables
in the constraint set. These are substituted in the skeleton to get a complete proof
that the rewrite is valid.

The rewriting lemma parameter (denoted ρ) must be an object of type ∀−→φ ,R−→α t u,
i.e. a type whose ultimate codomain is an applied binary relation (note that any
variable in R −→α t u can be bound in −→φ here). We only consider left-to-right rewrit-
ing here, as we can always convert a rewrite from right to left to the other direction
using inverse. We will present the constraint generation system as a set of infer-
ence rules from which we will derive a syntax-directed variant in a standard way.
The set of constraints builds up incrementally in each rule, so there are both input
and output sets denoted with ψ which contain constraints of the form ?x : Γ ` τ
declaring hypothetical objects of a given type τ in context Γ. The type itself may
also be open, i.e. contain existentials. As we go under abstractions, we must also
extend a context Γ for the locally-bound variables.

The rewriting judgment Γ | ψ ` τ R
p τ ′ a ψ′ defined in figure 1 means that

in environment Γ, ψ, τ is rewritten to τ ′ with respect to relation R with p a proof
of type R τ τ ′ in context Γ, ψ′. Operationally, the new term τ ′, the proof p and
the constraints are outputs of the judgment determined by the input term τ and
the rewriting lemma ρ. In this declarative presentation all the occurrences of the
lemma are rewritten at once in parallel. We can easily refine the actual algorithm
derived from it to fix an order of rewriting and select precisely the occurrences of
interest to the user. We could also easily extend the algorithm to rewrite with
multiple lemmas at once, but we leave this refinement for future work (§5.1)).

Initially, given a goal clause Γ ` τ and a rewrite lemma ρ we want to find a
judgment of the form

Γ | ∅ ` τ impl-1
p τ ′ a ψ′

Once we have a proof of such a rewrite from τ to some τ ’, that is a proof of
τ impl-1 τ ′ we can apply it to the goal to progress to Γ ` τ ′. Dually, we use impl
as the top relation when trying to rewrite in a hypothesis of type τ and specialize
it with the resulting proof of type τ → τ ′.

N.B.: We supposed that relations, hypotheses and goals were always in Prop, but
the construction works just as well in Type, with computational relations.

2.3.1 Rules. The inference rules rely on a function type(Γ,ψ,t) which returns
the type of a given term in a context. All our terms are well-typed so these calls

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#inverse
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl

52 · Matthieu Sozeau

Γ | ψ ` τ R
p τ ′ a ψ′

Unify

unifyρ(Γ, ψ, t) ⇓ ψ′, ρ′ : R t u

Γ | ψ ` t R
ρ′ u a ψ

′

Atom

unify∗ρ(Γ, ψ, t) ⇑ τ , type(Γ, ψ, t)

ψ′ , {?S : Γ ` relation τ, ?m : Γ ` Proper τ ?S t}
Γ | ψ ` t ?S

?m
t a ψ ∪ ψ′

Lambda

Γ, x : τ | ψ ` b S
p b
′ a ψ′

S′ , pointwise relation τ S

Γ | ψ ` λx : τ.b S′
(λx:τ.p)

λx : τ.b′ a ψ′

App

type(Γ, ψ, f)↑ ≡ τ → σ
Γ | ψ ` f F

pf
f ′ a ψ′

Γ | ψ′ ` e E
pe
e′ a ψ′′

unify(Γ, ψ′′ ∪ {?T : Γ ` relation σ}, F, E ++>?T) ⇓ ψ′′′

Γ | ψ ` f e ?T
(pf e e′ pe)

f ′ e′ a ψ′′′

Sub

Γ | ψ ` τ S
p τ
′ a ψ′ type(Γ, ψ, τ) ≡ σ

ψ′ , {?S′ : Γ ` relation σ, ?sub : Γ ` subrelation S ?S′}
Γ | ψ ` τ ?S′

(?sub τ τ
′ p) τ

′ a ψ′

Pi

unify∗ρ(Γ, ψ, τ1) ⇑
Γ | ψ ` all (λx : τ1, τ2) S

p all (λx : τ1, τ ′2) a ψ′

Γ | ψ ` Πx : τ1, τ2 S
p Πx : τ1, τ ′2 a ψ′

Arrow

Γ | ψ ` impl τ1 τ2 S
p impl τ ′1 τ

′
2 a ψ′

Γ | ψ ` τ1 → τ2 S
p τ
′
1 → τ ′2 a ψ′

Fig. 1. Rewriting Constraint Generation - declarative version

can never fail. We denote by t↑ the weak head normal form of a term t, again it is
always defined as we use it only on well-typed terms. The unification function for a
given lemma ρ is denoted unifyρ(Γ, ψ, τ). It takes as input a typing environment,
a constraint set and a term and tries to unify the left-hand side of the lemma’s
applied relation with the term. It uses the same unification algorithm as the one
used when applying a lemma during a proof. Unification may fail (⇑) or succeed
(⇓), generating new constraints for the uninstantiated lemma arguments and an
instantiated lemma ρ’ whose type must be of the form R t u for some R, u. The
variant unify∗ρ(Γ, ψ, τ) tries unification on all subterms and succeeds if at least one
unification does. The function unify(Γ, ψ, t, u) does a standard unification of t and
u.

Let us now describe each rule:

—Unify The unification rule fires when the toplevel term unifies with the lemma.
It directly uses the generated proof p′ for the rewrite from t to some u with
respect to some R and returns the extended constraints Ψ′.

—App We rewrite under an application by rewriting successively in the function
and the argument. Here we assert that the rewrite relation for the function must
unify with E ++>?T for some new relation ?T to ensure that the constraint on

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#pointwiserelation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#all
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#all
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl

A New Look at Generalized Rewriting in Type Theory · 53

the argument corresponds to the expected relation for the function argument.
The resulting proof is a combination of the respectful proof for the function and
the proof found for the argument which builds related results in ?T .

—Atom This rule applies only when no other rule can apply and no rewrite can
happen in the term. It asserts that the term must remain unchanged for some
arbitrary relation ?S during the rewrite, which is witnessed by a Proper proof.
Typically, these constraints are either generated for unmodified arguments of a
function and the Proper proof is solved by a reflexivity proof for the appropri-
ate relation or they are generated for a function itself and the constraints get
instantiated by user-provided proofs.
For example, when rewriting the x argument in f x y using a proof p of R x x′ we
will generate a constraint for a compatibility lemma for f of the form Proper (R ++>
?S ++> ?R′) f . The proof of this lemma will be applied to x, x′ and p witnessing
the rewriting and then y, y and finally a proof that ?S y y (or Proper ?S y),
showing that the y argument is unchanged.

—Lambda To rewrite under an abstraction we simply rewrite the body inside the
enriched context. The resulting proof can be extended pointwise to a closed proof
in the original context by simply enclosing it in a λ.

—Sub We add a subsumption rule to the system which allows to assign multiple
relations to a single rewrite. The subrelation type class models the lattice of
relations ordered by inclusion. It allows for example to show that

subrelation (pointwise relation τ S) (eqτ ++> S)

and use a rewrite under an abstraction as a premise of the App rule.
—Pi This rule is an administrative step to rewrite inside the codomain of a de-

pendent product, knowing that we can’t rewrite in its domain. It translates the
product into an application of the combinator all whose Proper instances were
presented earlier.

—Arrow The rewrite can happen in the domain only in non-dependent products.
In this case we use the impl combinator instead.

2.3.2 Algorithm. We must now derive an algorithm from this declarative spec-
ification of the system. To do so, we must eliminate the subsumption rule which is
not syntax directed. The side conditions of the other rules are sufficient to ensure
determinism otherwise, and every test is decidable. As the subrelation class is user-
driven, we will only make assumptions on the associated set of instances. First,
the relation must be transitive to be able to compress a stack of Sub applications
into a single one. It must also be closed under pointwise relation to go through
the Lambda rule. The last problem is with App as it forces the relation on the
function to be of a particular shape: we must simply change the rule to integrate
Sub in the first premise:

Γ | ψ ` f F
pf
f ′ a ψ′ type(Γ, ψ, f)↑ ≡ τ → σ

Γ | ψ′ ` e E
pe
e′ a ψ′′

ψ′′′ , {?T : Γ ` relation σ, ?sub : Γ ` subrelation F (E ++> ?T)}
Γ | ψ ` f e ?T

?sub f f ′ pf e e′ pe
f ′ e′ a ψ′′ ∪ ψ′′′

AppSub

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#respectful
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#pointwiserelation
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#all
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#pointwiserelation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation

54 · Matthieu Sozeau

Note that we explicitly take the head-normal form of the function’s type to be
able to generate the constraints and we assume that this arrow is not dependent.

With these changes, we can directly derive an algorithm rew(Γ, ρ, τ) directed by
the type τ , which always succeeds and returns a tuple (ψ,R, τ ′, p) with the output
constraints, a relation R, a new term τ ′ and a proof p : R τ τ ′. In case no rewrite
happens, we will just have an application of Atom. Obviously, we can decorate the
actual algorithm to count the number of successful unifications and fail if nothing
was rewritten. We can use this to stop at the first rewrite too.

We now have the skeleton of a proof with holes and just need to solve the con-
straints to complete the proof. We assume here that we can mark constraints in
the constraint set to indicate if they come from the unification of the lemma or as
part of the algorithm itself. We will solve only the latter and leave the former for
the user to prove.

2.4 Resolution

The proof-search problems generated by the rew algorithm are sets of constraints
of the form Proper A R m or subrelation A R1 R2, where A,m are closed terms
but the relations R are open. The existential variables appearing in them may of
course be shared across multiple constraints, notably because of the App rule.

The signature relations may be arbitrary, and we want to be able to support
some particular signature constructions automatically, notably the respect arrows
and the inverse combinator. We also need to actually implement a satisfying
subrelation relation and support other features like higher-order morphisms and
partial applications. To handle all these, we will write logic clauses that allow to
prove Proper and subrelation as class instances. We will also extend the proof-search
algorithm using a few Ltac tactics to handle more complex resolution steps. All
of this is defined in a standard Coq script that we will present now. Note that we
have no claim of completeness on the set of instances presented here, we leave a
detailed study of the unification theory of signatures for future work.

As seen before, we can declare generic morphisms for standard polymorphic com-
binators that preserve compatibility, e.g. for flip:
Instance flip proper ‘(mor : Proper (A → B → C) (RA ++> RB ++> RC) f) :

Proper (RB ++> RA ++> RC) (flip f).
We won’t detail here the various proper declarations for standard operators and

classes like PER, Equivalence, etc... they can be found in the standard library
modules (see Coq.Classes.Morphisms). We will just detail the specific ones that
allow to handle the standard constraints generated by the algorithm. The user can
always add more signature constructs (e.g. to handle relation conjunction) that
may need some special support during resolution.

2.4.1 Subrelations. We have seen that logical equivalence is smaller than im-
plication or its inverse. This means that any morphism that ends with iff can
be viewed as a morphism producing impl-related arguments or its dual. We can
integrate this into our proof rules by defining the subrelation instance for respect
arrows. As usual, the arrow is contravariant for the subrelation relation on the left
and covariant on the right:
Instance respectful subrelation ‘(subrelation A R2 R1, subrelation B S1 S2) :

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#inverse
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#flip
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#flip
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#PER
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#Equivalence
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation

A New Look at Generalized Rewriting in Type Theory · 55

subrelation (R1 ++> S1) (R2 ++> S2).

We mentioned previously that for the constraint generation algorithm to be sound
and complete with respect to the declarative presentation, subrelation had to be
transitive. We will not add anything like a generic recursive transitive subrelation
instance as that would render proof-search useless: it would always loop if we tried
to search for an invalid subrelation constraint. Instead transitivity should be proved
for the specific set of instances that are declared at some point. We can assure that
the set of instances declared in the library is transitive: no two rules could form
the premises of a non-trivial use of transitivity, hence any goal provable with the
transitivity rule can be proved without it. When extending the subrelation instances,
the user should make sure to only add instances that are recursive to preserve the
transitivity property. This is trivially true for most user-defined subrelation lattices
which are one level deep (e.g, subrelation eq le and subrelation lt le).

We also mentioned that pointwise relation had to be congruent for subrelation.
Indeed it is a covariant morphism for it, just like respectful (pointwise relation A
R is in fact equivalent to respectful eq R):

Instance: Proper (subrelation ++> subrelation) (@pointwise relation A B).
Instance subrelation pointwise A ‘(sub : subrelation B R R’) :

subrelation (pointwise relation A R) (pointwise relation A R’).

These instances allow us to bootstrap the system in a natural way: we can now
rewrite inside signatures and under pointwise relation, as we know that respectful is
a morphism for subrelation as well. We can prove compatibility with subrelation and
also relation equivalence (defined as double inclusion of the relations and denoted
by =R) of many of the combinators we have seen like inverse, and even Proper itself
(see for example Coq.Classes.Morphisms Relations):

Instance proper A : Proper (relation equivalence ++> eq ++> iff) (@Proper A).

It follows that if we can find a Proper instance for m using signature R2 and a
subrelation R1 of R2 then m is also a proper element of it: this is exactly what is
internalized by the Sub rule. However, we will not directly integrate the rule as it
should only be applied once at the top of a search.

Lemma subrelation proper ‘(Proper A R1 m, subrelation A R1 R2) : Proper R2 m.

Indeed, this lemma is too general to introduce it to the Proper instance search:
it could be applied endlessly. Instead, we construct a tactic that restricts its use to
the top of the goal when some flag apply subrelation is set.

CoInductive apply subrelation : Prop := do subrelation.
Hint Extern 5 (@Proper) ⇒
match goal with [H : apply subrelation `] ⇒
clear H ; class apply @subrelation proper end : typeclass instances.

We add this tactic to the instance database to apply it when the goal is a Proper.
Thanks to this control, we can do all the logic programming we want inside Coq
using Ltac and let the user customize the proof search in the same way.

2.4.2 Partial applications. During constraint generation we build signatures for
applications starting at the first rewritten argument as we generate invariance con-
straints for the largest invariant subterms. This allows us to support parametric

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#pointwiserelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#respectful
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#pointwiserelation
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#respectful
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#pointwiserelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#pointwiserelation
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#pointwiserelation
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#pointwiserelation
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#respectful
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#relationequivalence
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#inverse
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms_Relations.html
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#relationequivalence
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper

56 · Matthieu Sozeau

morphisms very easily as we are generally not interested in rewriting in the first
few type parameters. However, this interacts with non-parametric morphisms as
well. Suppose we have P → Q and rewrite with H : Q ↔ Q’ . The generated
constraint will be of the form Proper (iff ++> inverse impl) (impl P). However, we
generally declare our morphisms for complete applications, e.g.: Proper (iff ++>
iff ++> inverse impl) impl. Hence we need a way to derive the former from the
latter. It suffices to declare the following instance whose application will generate
a metavariable for the unknown relation on the argument.
Instance partial ‘(Proper (A → B) (R ++> R’) m) ‘(Proper A R x)

: Proper R’ (m x) | 4.
We give a low priority to this instance so that it won’t be used except if no

other Proper instance is declared on m x . The actual implementation is a bit more
refined, allowing the user to declare the number of initial arguments of a constant
that should not be considered for rewriting (which is impossible to infer in general).
The tactic can then apply the partial instance repeatedly using this information to
get a Proper goal that will be matched by the user Proper instances directly.

2.4.3 Dual Morphisms. Finally, we can construct a tactic to handle the signa-
tures involving inverse in the same way. First, we observe that a term m is a Proper
element for a relation R-1 if and only if it is for R.
Program Instance proper inverse ‘(Proper A R m) : Proper R-1 m.
The goal is to make it possible for the user to declare a morphism for R only and

automatically infer that it is also a morphism for R-1 or any relation equivalent to
it with respect to the equational theory generated by:
Lemma inverse invol A (R : relation A) : R-1-1 =R R.
Lemma inverse arrow A (R : relation A) B (R’ : relation B)

: (R ++> R’)-1 =R R-1 ++> R’-1.
In practice, the user will have declared a morphism with a signature R-1 ++> S

and our goal will be to find a signature matching R ++> ?T. We first normalize
the goal signature to (R-1 ++> ?T’)-1, with ?T := ?T’-1, apply the proper inverse
lemma and get a goal that is directly matched by the user declaration. We hence
have found a instance for the signature R ++> S-1.

To normalize the signature, we simply push the inverse relation through respect
arrows using the inverse arrow equivalence. This may create some R-1-1 relations
that will be handled using the subrelation system using the inclusion subrelation
R-1-1 R. We introduce a new class to normalize signatures, resolution will be based
on the first one (m).
Class Normalizes {A} (m m’ : relation A) : Prop := normalizes : m =R m’-1.
Our strategy works by adding inverse everywhere in the signatures, going through

arrows.
Lemma norm1 A R : @Normalizes A R (inverse R).
Lemma norm2 ‘(Normalizes A R0 R1, Normalizes B U0 U1)

: Normalizes (R0 ++> U0) (R1 ++> U1).
We implement the strategy by a tactic that figures out if we have an arrow or an

atomic type at the head and applies the appropriate lemma. Once we have resolved
Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#inverse
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#iff
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#inverse
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Program.Basics.html#impl
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#inverse
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Classes.Morphisms.html#Proper
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#inverse
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/stdlib/Coq.Relations.Relation_Definitions.html#relation
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#inverse
http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#inverse

A New Look at Generalized Rewriting in Type Theory · 57

the inverse signature we can use subrelation to prove that the signature is related
to the one declared by the user.

3. ANALYSIS

3.1 Quantitative analysis

The constraint generation algorithm is linear in the size of the rewritten term,
simply folding through it, so it has a minor influence on the performance of the
whole tactic. On the other hand, the proof search strategy is a depth-first search
using the instance database whose complexity is potentially exponential in the size
of the constraints. In practice however, only a few instances in the database apply
to a given constraint and they generate ”smaller” subgoals as we have a terminating
set of clauses. For successful rewritings, the resolution is often linear in the size of
the constraints types, when no backtracking is needed. This search strategy allows
to get good performance even on deep goals. In practice the tactic gives immediate
responses even on large goals. It should be noted that the tactic only returns the
first solution of the constraints unlike the former one by [SC04]. We could easily
adapt the implementation to get all results. Regarding the proof term size it is
proportional to the rewritten term plus the proof terms for the constraints which
are again generally linear in the size of their type. As we rewrite deeper we build
more constraints and hence bigger proofs.

3.2 Implementation & experiments

The tactic presented here is already available as part of Coq 8.2 where it replaces
the previous one [Soz08a]. The implementation has been tested on the standard
library of Coq as well as all the user contributions of Coq (http://coq.inria.fr/
contribs-eng.html) which contains large projects using setoids such as CoRN and
CoLoR. It is not clear whether the performance gains on these later examples come
from the new setoid rewrite implementation or some other improvement over
previous versions of Coq but the standard library’s times on setoid-intensive files
have dropped significantly (−30%). Also, some other developments that could not
be handled previously clearly benefit from the improved performance, e.g. the one
done by Benton and Tabareau [BT09] which provided the impetus to reimplement
the whole tactic.

To speed up proof search of instances, we use an enhanced discrimination net
that can handle existentials contrary to the one already used in the eauto tactic of
Coq. We also added a dependency analysis between subgoals to perform so-called
green cuts in the search tree when two subgoals become independent (i.e. do not
share existential variables).

3.3 Refinements

The tactic extends the previous one by supporting the at option which allows
to select which occurrences of the lemma should be rewritten, in a left-to-right
traversal of the term. It should be noted that the semantic of the tactic is different
from the standard rewrite’s in that it tries to unify the lemma with each subterm
independently and in its local context instead of doing a single unification and
rewriting all subterms that match the resulting instantiated lemma. Typically our

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation
http://coq.inria.fr/contribs-eng.html
http://coq.inria.fr/contribs-eng.html

58 · Matthieu Sozeau

semantics allows to rewrite with a general lemma and select deep occurrences in
the goal without having to mention the term, e.g. consider:

Goal ∀ x y z : nat, (x + y) + z = y + (x + z).

If we want to rewrite with the commutativity lemma for addition, we get four
different possible instantiations that can be selected with at. This new semantic
allows finer-grain control over occurrences but it is also mandatory to be able to
rewrite under binders, where unification can capture variables introduced inside
subterms. Let’s consider the following goal:

Goal ∀ H : (∀ n, n × 1 = n), ∃ x , x × 1 6= 0.

To rewrite under the existential quantifier, we must apply H to x itself, hence
do unification in the local context.

4. RELATED WORK

Generalized rewriting is a notion that appears in many forms in the literature. For
example, it is at the core of “window inferencing” systems like the one described
in [RS93], that permits to prove goals by refinement steps each of which being an
application of a lemma of the form t R t′ or by recursively opening “windows”, new
subgoals that refine a given subterm of the current goal. We review the approaches
to integrate this idea in type theory.

4.1 LCF

The idea of combining rewriting tactics appears in the Boyer-Moore and LCF
systems, in particular in Lawrence Paulson’s work [Pau83] in Cambridge LCF. He
designs a set of so-called “conversions”, higher-order rewriting tactics that can be
used to implement custom rewriting strategies. He first focuses on the primitive
rewriting tools of the system, β-reduction and Leibniz equality; then shows how to
extend the technique to logical formulae using logical equivalence as the rewriting
relation. In this system, it is still the user who combines the tactics himself to
create a strategy.

4.2 NuPRL

The step further was to automatically infer the combination of proofs needed to
show that a rewriting is allowed, given compatibility lemmas on the constants
involved. This was done by Basin [Bas94] in NuPRL who also generalizes on the
relations involved. He supposes given a set of lemmas showing the compatibility of
operators with respect to some relations and combines them automatically to build
the appropriate proof term when the user tries a rewrite step. In this setting, it is
possible to give multiple signatures to a single constant, for example addition can
be given the signatures:

+ : {x = x′ → y = y′ → x+ y = x′ + y′}
+ : {x < x′ → y ≤ y′ → x+ y < x′ + y′}
+ : {x ≤ x′ → y < y′ → x+ y < x′ + y′}
+ : {x ≤ x′ → y = y′ → x+ y ≤ x′ + y′}
+ : {x = x′ → y ≤ y′ → x+ y ≤ x′ + y′}

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat

A New Look at Generalized Rewriting in Type Theory · 59

The first declares that addition is congruent for equality (actually, all objects are)
and the later show that it is monotone for the various combinations of =, < and ≤
on its arguments. The algorithm must sometimes choose one of these proofs during
proof search, as the output relation is generally not known in advance, and the
obvious combinatorial explosion in this setting led the author to find a heuristic
for this choice and implement a partial search. This heuristic is based on user-
provided information on the subrelation property of these relations, as is done by
the subrelation class in our system: = and < are incomparable here, and both are
stronger (smaller) than ≤. Choosing the “strongest” signature by considering only
the output relation gives the best experimental results, hence choosing one of the
first three signatures over the last two (implication is covariant for strongness on
the right).

The implementation is based again on a set of tactics that are composed on-the-
fly to produce a deterministic rewriting step that makes the goal progress.

4.3 Coq

Finally, the setoid rewrite tactic developed by Claudio Sacerdoti Coen [SC04] in
Coq (after an initial implementation by Samuel Boutin already improved upon by
Clément Renard) is slightly different. It differs from Basin’s approach in a number
of ways:

—The tactic is complete: instead of using a heuristic when multiple signatures can
be selected, the algorithm tries all possibilities. The rationale for this choice is
that goals are not deep enough in general to warrant a more efficient implementa-
tion that avoids the exponential factor. The tactic does not support subrelations
hence it could not use Basin’s heuristic.

—The tactic is semi-reflexive, which means it is separated in two parts, one meta
part (written in ML) that builds a trace for the rewrite using a database of user
lemmas and another part (in Coq) which proves a general theorem showing that
any trace gives rise to a correct rewrite. The trace consists of the applied user
lemmas along with information on variance.

—The tactic supports variance natively for asymmetric relations. Signatures are
written point-free (without explicit mention of the objects) from the algebra
(deeply embedded, as an inductive definition) of terms for atomic relations and
the combinators ++>, −→, =⇒ for respectively covariant, contravariant and
equivariant relations on arrow types. Symmetry is treated natively (arguably
for simplicity and user-friendliness) when using the contravariant and equivari-
ant arrows, as each signature defines an opposite signature which has the same
set of associated morphisms and one need to write only one of them. In com-
parison, our implementation does not treat the equivariant arrow but supports
the automatic inference of opposite signatures (§2.4.3). It is also using a shallow
embedding of the signatures, allowing the use of Coq’s logic to extend the set of
signature constructs easily.

—The tactic also supports non-reflexive relations, generating subgoals for reflexiv-
ity on unchanged arguments when needed.

Sacerdoti Coen [SC04] indicates some possible optimizations on the proof search
algorithm which is entangled with the recursive search for rewrites. However, in

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

http://coq.inria.fr/stdlib/Coq.Classes.RelationClasses.html#subrelation

60 · Matthieu Sozeau

practice, they are not sufficient to speed up the trace creation process when the goal
is very deep. This system was also somewhat limited due to the deep embedding of
signatures in supporting polymorphic or dependent relations and functions. Indeed
one has to reify the universal quantifier to write signatures in the deep embedding,
which is difficult to do in general.

Our implementation is a mix of Basin’s and Sacerdoti Coen’s, supporting subre-
lations and having completeness but not building the set of all possible solutions
for the compatibility constraints. It is much easier to extend than the previous one
and supports the use of polymorphism and dependent types directly, being entirely
made up from primitive Coq definitions.

Our implementation is tied to the type classes feature of Coq and its dependent
type theory, but the algorithm for generation of compatibility lemmas is relatively
agnostic to the underlying theory. The system could hence be adapted with vary-
ing levels of difficulty to other proof assistants based on higher-order logic, like
Isabelle or Matita. The latter would be an easy target due to its recent exten-
sion with unification hints [ARCT09] which can model a subset of the type classes
mechanism, altough it currently lacks backtracking.

4.4 Rewriting with Leibniz equality

Finally, our work can be compared with the existing support for rewriting with the
native equality of the system, for which every construction is congruent (except
when capturing binders). That is, the standard rewrite works in contexts involving
let-binders, pattern-matching or fixpoints and it allows substitution when type
dependencies are involved, none of which is handled here. The current setup of
the rewrite tactic is to use the standard rewrite when rewriting with a Leibniz
equality, and use generalized rewriting for other relations. We plan to extend the
support for rewriting with Leibniz equality using the generalized rewriting tactic
in future work.

5. CONCLUSION

5.1 Future work

Besides basic improvements like allowing computable relations (whose sort is Type
instead of Prop) and having a more efficient proof search, there are two important
directions for future work on the tactic.

5.1.1 Strategies. Instead of implementing the tactic by a single monolithic al-
gorithm that applies the rules as described before, we can split it into a set of
combinators that can be composed to produce complex rewriting strategies, in a
manner similar to [LV97]. The standard set of combinators would include:

—Applying a rule, or a set of rules at the toplevel of a term ;
—Applying a strategy on every direct subterm of a term ;
—Trying to apply a strategy and building a reflexivity proof if it fails or doesn’t

progress.
—Applying a sequence of strategies, choosing the first that works, etc...
—Building a recursive strategy as a fixed point.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

A New Look at Generalized Rewriting in Type Theory · 61

From these we can build up higher-order tactics for applying a strategy top-
down or bottom-up using the fixed point combinator to apply a strategy until it
fails. This gives us the ability to apply the appropriate rewrite strategy given a
term rewriting system expressed as a set of rewrite lemmas.

Practically, this allows us to build a more efficient variant of the autorewrite
tactic. The current version of the tactic is very rudimentary, it simply tries to
rewrite with a set of lemmas until no progress can be made. This process produces
huge proof terms due to the numerous copies of the same unchanged subterms: each
rewrite only changes a small part of the whole term but the proof term contains
everything. We can instead do a single fold over the term applying rewrite rules
in parallel to distinct, smaller subterms, resulting in a much smaller proof. It also
results in a quicker proof search in the case of generalized rewriting as compatibility
lemmas have to be searched for only once. Our initial experiments with such an
implementation gives an order of magnitude improvement in space and time usage,
even when rewriting with Leibniz equalities. We plan to pursue the implementation
of this extension to give real control over the rewriting to the user.

5.1.2 Treating Leibniz equality. Our system is oblivious to the relations used
for rewriting, hence it can also be used with the regular Leibniz equality. As every
Coq function is a morphism for this equality, the constraints generated by such a
rewrite will always be solved. However, we did not entirely profit from that fact in
the tactic: there are some contexts in which we refuse to rewrite (pattern-matching
scrutinees and branches, fixpoints and dependent arguments) even if they are valid
contexts for rewriting using Leibniz equality. We can specialize the algorithm to
generate the appropriate constraints and proofs in these cases to handle Leibniz
equality more completely.

5.2 Summary

We have presented a new tactic for generalized rewriting in Coq. This tactic uses a
constraint generation algorithm to generate type class constraints which are solved
by a generic but customizable instance search. The tactic extends previous ones in
a number of directions, providing support for arbitrary polymorphic relations and
morphisms, subrelations, automatic dualization of signatures and rewriting under
binders. The new architecture allows for far greater extensibility via Ltac and for
finer grain control on performance through its modular implementation. Finally,
the choice of a shallow embedding and use of type classes simplifies integration
inside user developments.

ACKNOWLEDGMENTS

I thank the anonymous referees for their useful comments on the presentation of
this work.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

62 · Matthieu Sozeau

References

[ARCT09] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico
Tassi. Hints in unification. In Berghofer et al. [BNUW09], pages 84–98.

[Bas94] David A. Basin. Generalized Rewriting in Type Theory. Elektronische
Informationsverarbeitung und Kybernetik, 30(5/6):249–259, 1994.

[BNUW09] Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wen-
zel, editors. Theorem Proving in Higher Order Logics, 22nd Interna-
tional Conference, TPHOLs 2009, Munich, Germany, August 17-20,
2009. Proceedings, volume 5674 of Lecture Notes in Computer Science.
Springer, 2009.

[BT09] Nick Benton and Nicolas Tabareau. Compiling Functional Types to
Relational Specifications for Low Level Imperative Code. In TLDI,
2009.

[LV97] Sebastiaan P. Luttik and Eelco Visser. Specification of rewriting strate-
gies. In 2nd International Workshop on the Theory and Practice of Al-
gebraic Specifications (ASF+SDF’97), Electronic Workshops in Com-
puting. Springer-Verlag, 1997.

[McC09] Andrew McCreight. Practical tactics for separation logic. In Berghofer
et al. [BNUW09], pages 343–358.

[Pau83] Lawrence C. Paulson. A Higher-Order Implementation of Rewriting.
Science of Computer Programming, 3(2):119–149 (or 119–150??), 1983.

[Pot00] François Pottier. A versatile constraint-based type inference system.
Nordic Journal of Computing, 7(4):312–347, November 2000.

[RS93] Peter J. Robinson and John Staples. Formalizing a Hierarchical Struc-
ture of Practical Mathematical Reasoning. Journal of Logic and Com-
putation, 3(1):47–61, 1993.

[SC04] Claudio Sacerdoti Coen. A Semi-reflexive Tactic for (Sub-)Equational
Reasoning. In Jean-Christophe Filliâtre, Christine Paulin-Mohring,
and Benjamin Werner, editors, TYPES, volume 3839 of Lecture Notes
in Computer Science, pages 98–114. Springer, 2004.

[SO08] Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In
César Muñoz Otmane Ait Mohamed and Sofiène Tahar, editors, The-
orem Proving in Higher Order Logics, 21th International Conference,
volume 5170 of Lecture Notes in Computer Science, pages 278–293.
Springer, August 2008.

[Soz08a] Matthieu Sozeau. Coq 8.2 Reference Manual, chapter User defined
equalities and relations. INRIA TypiCal, 2008.

[Soz08b] Matthieu Sozeau. Un environnement pour la programmation avec types
dépendants. PhD thesis, Université Paris 11, Orsay, France, December
2008.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.

	Introduction
	Extensional notions of equivalence
	Logical equivalence
	Extensionality on functions

	General relations
	Inverse relations
	Relation inclusion

	A new tactic for Generalized Rewriting
	Relations
	Standard Instances
	Subrelations

	Signatures and morphisms
	Signatures

	Constraint Generation
	Rules
	Algorithm

	Resolution
	Subrelations
	Partial applications
	Dual Morphisms

	Analysis
	Quantitative analysis
	Implementation & experiments
	Refinements

	Related Work
	LCF
	NuPRL
	Coq
	Rewriting with Leibniz equality

	Conclusion
	Future work
	Strategies
	Treating Leibniz equality

	Summary

