
Computing with Classical Real Numbers

CEZARY KALISZYK

RUSSELL O’CONNOR

ICIS, Radboud University Nijmegen, The Netherlands

{cek,roconnor}@cs.ru.nl

There are two incompatible Coq libraries that have a theory of the real numbers; the Coq standard
library gives an axiomatic treatment of classical real numbers, while the CoRN library from

Nijmegen defines constructively valid real numbers. Unfortunately, this means results about one

structure cannot easily be used in the other structure. We present a way interfacing these two
libraries by showing that their real number structures are isomorphic assuming the classical axioms

already present in the standard library reals. This allows us to use O’Connor’s decision procedure
for solving ground inequalities present in CoRN to solve inequalities about the reals from the Coq

standard library, and it allows theorems from the Coq standard library to apply to problem about

the CoRN reals.

1. INTRODUCTION

Coq is a proof assistant based on dependent type theory developed at
INRIA [CDT08]. By default, it uses constructive logic via the Curry-Howard
isomorphism. This isomorphism associates propositions with types and proofs of
propositions with programs of the associated type. This makes Coq a functional
programming language as well as a deduction system. The identification of a pro-
gramming language with a deduction system allows Coq to reason about programs
and allows Coq to use computation to prove theorems.

Coq can support classical reasoning by the declaration of additional axioms;
however, these additional axioms will not have any corresponding computational
component. This limits the use of computation to prove theorems, since Coq cannot
compute the normal form of an expression where the head is an axiom. There are
theories that allow program extraction from classical proofs, like A-translation, but
this has not been done for proofs involving real numbers.

At least two different developments of the real numbers have been created for Coq.
The Coq standard library declares the existence of the real numbers axiomatically.
This library also requires the axioms for classical logic. It gives users the familiar,
classical, real numbers as a complete ordered Archimedian field.

The other formalization of the real numbers is done constructively in the CoRN
library [CFGW04]. This library specifies what a constructive real number structure
is, and proves that all such structures are isomorphic. These real numbers are
constructive and there is one efficient implementation where real numbers can be
evaluated to arbitrary precision within Coq.

In this paper we show how to connect these two developments of the theory of
the real numbers by showing that Coq’s real numbers form a real number structure
in CoRN. We do this by:

—Deriving some logical consequences of the classical real numbers (Section 2).

Journal of Formalized Reasoning Vol. 2, No. 1, 2009, Pages 27–39.



28 · Cezary KaliszykandRussell O’Connor

Specifically, we formally prove the well-known result that sentences in Π0
1 are

decidable. Bishop and Bridges [BB85] call it the principle of omniscience and
consider it the root of nonconstructivity in classical mathematics.

—Using these logical consequences to prove that the classical real numbers form a
constructive real number structure (Section 3).

—Using the resulting isomorphism between classical and constructive real numbers
to prove some classical real number inequalities by evaluating constructive real
number expressions (Section 4).

1.1 The two universes of Coq

Coq has a mechanism for program extraction [Let02]. Programs developed in Coq
can be translated into Ocaml, Haskell, or Scheme. If these programs are proved
correct in Coq, then the extracted programs have high assurance of correctness.

To facilitate extraction, Coq has two separate universes: the Set universe, and
the Prop universe (plus an infinite series of Type universes on top of these two).
The Prop universe is intended to contain only logical propositions and its values
are discarded during extraction. The types in the Set universe are computationally
relevant; the values of these types make up the extracted code. In order to maintain
the soundness of extraction, the type system prevents information from flowing from
the Prop universe to the Set universe. Otherwise, vital information could be thrown
away during extraction, and the extracted programs would not run.

The Prop/Set distinction will play an important role in our work. The logical
operators occur in both universes. The following table lists some logical operations
and their corresponding syntax for both the Prop and Set universes.

Math Notation Prop Universe Set Universe

A ∧B A /\ B A * B

A ∨B A \/ B A + B

A → B A -> B A -> B

¬A ~A not used

∀x : X.P (x) forall x:X, P x forall x:X, P x

∃x : X.P (x) exists x:X, P x { x : X | P x }

One might think that proving that classically defined real numbers satisfy the
requirements of a constructive real number structure would be trivial. It seems that
the constructive requirements be no stronger than the classical requirement for a
real number structure when we use classical reasoning. However, Coq’s Prop/Set
distinction prevents a naive attempt at creating such an isomorphism between the
classical and constructive real numbers.

The difficulty is that classical reasoning is only allowed in the Prop universe. A
constructive real number structure requires a Set-level existence in the proof that
a sequence converges to its limit (see Section 3.1), but the theory provided by the
Coq standard library only proves a classical Prop-level existence. It is not allowed
to use the x given by the Prop existential:

exists x:X, P x

to fulfill the requirement of a set existential:

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.



Computing with Classical Real Numbers · 29

{ x : X | P x }.

There may be alternative ways to prove that the Coq’s classical reals form a
constructive real number structure by completely ignoring the classical existence
and extracting a witness from CoRN, but it still remains to be seen if this is feasible.
We present our original solution that transforms the classical existentials provided
by the Coq standard library into a constructive existential. This solution uses
Coq’s classical real number axioms to create constructive existentials from classical
existentials for any Π0

1 sentence (Section 2).

2. LOGICAL CONSEQUENCES OF COQ’S REAL NUMBERS

The Coq standard library defines the classical real numbers axiomatically. This ax-
iomatic definition has some general logical consequences. In this section we present
some of the axioms used to define the real numbers and then show how they im-
ply the decidability of Π0

1 sentences. The axioms of the real numbers cannot be
effectively realized, so a decision procedure for Π0

1 sentences is not implied by this
decidability result.

2.1 The axiomatic definition of the real numbers

The definition for the reals in the Coq standard library asserts a set R, the constants
0, 1, and the basic arithmetic operations:

Parameter R : Set.
Parameter R0 : R.
Parameter R1 : R.
Parameter Rplus : R -> R -> R.
Parameter Rmult : R -> R -> R.
...

A numeric literal is simply a notation for an expression, for example 20 is a notation
for the binary encoding of 20 in terms of R0 and R1:

(R1+R1)*((R1+R1)*(R1+(R1+R1)*(R1+R1)))

In addition to the arithmetic operations, an order relation is asserted.

Parameter Rlt : R -> R -> Prop.

Axioms for these operations and relations define their semantics. There are
17 axioms. We show only some relevant ones; the entire list of axioms can be
found in the Coq standard library. The properties described by the axioms include
associativity and commutativity of addition and multiplication, distributivity, and
neutrality of zero and one.

Axiom Rplus_comm : forall r1 r2:R, r1 + r2 = r2 + r1.
...

There are also several axioms that state that the order relation for the real
numbers form a total order. The most important axiom for our purposes will be
the law of trichotomy. We describe the reasons for its shape (in particular why it
is Set-based) in next subsection:

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.



30 · Cezary KaliszykandRussell O’Connor

Axiom total_order_T :
forall r1 r2:R, {r1 < r2} + {r1 = r2} + {r1 > r2}.

Finally, there is an Archimedian axiom (where IZR is the obvious injection Z→
R) and an axiom stating the least upper bound property.

Parameter up : R -> Z.
Axiom archimed : forall r:R, IZR (up r) > r /\ IZR (up r) - r <= 1.

Axiom completeness :
forall E:R -> Prop,
bound E -> (exists x : R, E x) -> {m : R | is_lub E m}.

2.2 Decidability of Π0
1 sentences

It is important to notice that the trichotomy axiom uses Set-style disjunctions.
This means that users are allowed to write functions that make decisions by com-
paring real numbers. This axiom might look surprising to a constructivist since
real numbers are infinite structures and therefore comparing them is impossible
in finite time in general. The motivation for this definition comes from classical
mathematics where mathematicians regularly create functions based on real num-
ber trichotomy. It allows one to define a step function, which is not definable in
constructive mathematics.

This trichotomy axiom can be used to decide any Π0
1 property. For any decidable

predicate over natural numbers P we first define a sequence of terms that take
values when the property is true:

an =def

{
1
2n if P (n) holds
0 otherwise (1)

We can then define the sum of this infinite sequence, which is guaranteed to
converge:

S =def

∞∑
n=0

an (2)

The trichotomy axiom allows us to compare S with 2. It follows that if S = 2
then the predicate P holds for every natural number, and if S < 2 then it is not
the case (the case of S > 2 is easily ruled out). Furthermore, this distinction can
be made in Set universe.

We formalized the above reasoning in Coq and we obtained the following logical
theorem.

forall_dec
: forall P : nat -> Prop,
(forall n : nat, {P n} + {~ P n}) ->
{(forall n : nat, P n)} + {~ (forall n : nat, P n)}

This statement means that:

dec Σ0
n −→ dec Π0

n+1,

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.



Computing with Classical Real Numbers · 31

and since Σ0
0 is decidable this implies that Π0

1 is decidable. To see why this implies
the decidability of particular Π0

1 sentence, consider an arbitrary Π0
1 sentence ϕ. If

ϕ is Π0
0, then it is decidable by the basic properties of Π0

0 sentences. Otherwise, ϕ
is of the form ∀n : N.ψ(n) where ψ(n) is decidable. The above lemma allows us to
conclude that ϕ is decidable from the fact that ψ(n) is decidable.

2.2.1 Constructive indefinite description. We can extend the previous result by
using a general logical lemma of Coq. The constructive indefinite description lemma
states that if we have a decidable predicate over the natural numbers, then we can
convert a Prop based existential into a Set based one. Its formal statement can be
found in the standard library:

constructive_indefinite_description_nat
: forall P : nat -> Prop,
(forall x : nat, {P x} + {~ P x}) ->
(exists n : nat, P n) -> {n : nat | P n}

This lemma can be seen as a form of Markov’s principle in Coq. The lemma
works by doing a bounded search for a new witness satisfying the predicate. The
witness from the Prop based existential is only used to prove termination of the
search. No information flows from the Prop universe to the Set universe because
the witness found for the Set based existential is independent of the witness from
the Prop based one.

Classical logic (included by Reals) allows us to convert a negated universal state-
ment into an existential statement in Prop:

not_all_ex_not
: forall (U : Type) (P : U -> Prop),
~ (forall n : U, P n) -> exists n : U, ~ P n

By combining these theorems with our previous result, we get a theorem whose
conclusion is either a constructive existential or a universal statement:

sig_forall_dec
: forall P : nat -> Prop,
(forall n : nat, {P n} + {~ P n}) ->
{n : nat | ~ P n} + {(forall n : nat, P n)}

3. THE CONSTRUCTION OF THE ISOMORPHISM

In this section we briefly present the algebraic hierarchy present in CoRN (it is
described in detail in [GPWZ02] and [CF04]). We show that Coq’s reals fulfill the
requirements of a constructive real number structure, and hence they are isomorphic
to any other real number structure.

3.1 Building a constructive reals structure based on Coq’s reals

The collection of properties making up a real number structure in CoRN is broken
down to form a hierarchy of different structures. The first level, CSetoid, defines
the properties for equivalence and apartness. The next level is CSemigroup which
defines some properties for addition. More structures are defined on top of each
other all the way up to a constructive ordered field structure — COrdField. Up to

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.



32 · Cezary KaliszykandRussell O’Connor

this point trichotomy is not required. Finally, the CReals structure is defined on
top of the COrderedField structure. The full list of structures is given below.

CSetoid – constructive setoid
CSemiGroup – semi group
CMonoid – monoid
CGroup – group
CAbGroup – Abelian group
CRing – ring
CField – field
COrdField – ordered field
CReals – real number structure

To prove that classical reals form a constructive real number structure, we created
instances of all these structures for the classical real numbers (called RSetoid,
RSemigroup, etc.). For example, RSetoid is the constructive setoid based on Coq’s
real numbers. The carrier is R, while standard Coq equality (equivalent to Leibnitz
equality) and its negation are used as the equality and apartness relations. The
proofs of the setoid properties of these relations are simple.

The basic arithmetic operations from Coq’s real numbers are shown to satisfy
all the properties required up to COrdField. The proofs of these properties follow
straightforwardly from similar properties provided by the Coq standard library. For
details, we refer the reader to CoRN source files [CoR09]. We present just the final
step, the creation of the CReals structure based on the ordered field.

Two additional operations are required to form a constructive real numbers struc-
ture from a constructive ordered field: the limit operation and a function that real-
izes the Archimedian property. The limit operation is the only step where the facts
about Coq’s reals cannot näıvely be used to instantiate the required properties.
This is because the convergence property of limits for Coq’s reals only establishes
that there exists a point where the sequence gets close to the limit using the Prop
based quantifier, whereas CReals requires such a point to exist using the Set based
quantifier. One cannot directly convert a Prop based existential into a Set based
one, because information is not allowed to flow from the Prop universe to the Set
universe.

The goal that remains to be proved in Coq is to show that if for any ε there is
an index in a sequence N such that all further elements in the sequence are closer
to the limit value than ε. The related property from the Coq standard library is
shown as hypothesis u.

e : R
e0 : 0 < e
u : forall eps : R, eps > 0 -> exists N : nat,

forall n : nat,
(n >= N)%nat -> Rfunctions.R_dist (s n) x < eps

______________________________________(1/1)
{N : nat | forall m : nat,

(N <= m)%nat -> AbsSmall e (s m[-]x)}

In order to prove this goal, we first reduce the Set based existential to a Prop
based one using the constructive_indefinite_description_nat.
Journal of Formalized Reasoning Vol. 2, No. 1, 2009.



Computing with Classical Real Numbers · 33

Applying this lemma to the goal above reduces the problem to the following:

e : R
e0 : 0 < e
u : forall eps : R, eps > 0 -> exists N : nat,

forall n : nat,
(n >= N)%nat -> Rfunctions.R_dist (s n) x < eps

______________________________________(2/2)
exists N : nat, forall m : nat,

(N <= m)%nat -> AbsSmall e (s m[-]x)}

This now follows easily from the hypothesis. However, we are also required to prove
the decidability of the predicate:

______________________________________(1/2)
{(forall m : nat, (x0 <= m)%nat -> AbsSmall e (s m[-]x))} +
{~ (forall m : nat, (x0 <= m)%nat -> AbsSmall e (s m[-]x))}

This goal appears hopeless at first because we are required to prove the decid-
ability of a Π0

1 sentence. However, we can use the forall_dec lemma from the
previous section to prove the decidability of this sentence. This possible since the
property:

P(m) := (x0 <= m)%nat -> AbsSmall e (s m[-]x))

is decidable. This completes the proof that the classical real numbers form a con-
structive real number structure.

3.2 The isomorphism

Niqui shows in Section 1.4 of his PhD thesis [Niq04] that all constructive reals
structures are isomorphic, the proof is present in CoRN as iso CReals. The con-
structed isomorphism defines two maps that are inverses of each other and proves
that the isomorphism preserves the constants 0 and 1, arithmetic operations and
limits. More details can be found in [Niq04].

In order to use the isomorphism in an effective way, we need to show that the
definitions of basic constants and the operations are preserved. Since the reals of
the Coq standard library are written as R and CoRN reals as IR, we called the
two functions of the isomorphism RasIR and IRasR. From Niqui’s construction, one
obtains the basic properties of this isomorphism:

—Preserves equality and inequalities:

Lemma R_eq_as_IR : forall x y, (RasIR x [=] RasIR y -> x = y).
Lemma IR_eq_as_R : forall x y, (x = y -> RasIR x [=] RasIR y).
Lemma R_ap_as_IR : forall x y, (RasIR x [#] RasIR y -> x <> y).
Lemma IR_ap_as_R : forall x y, (x <> y -> RasIR x [#] RasIR y).
Lemma R_lt_as_IR : forall x y, (RasIR x [<] RasIR y -> x < y).
...

—Preserves constants: 0, 1 and basic arithmetic operations: +, −, ∗. In the
properties listed below we do not show the dual theorems that state the same

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.



34 · Cezary KaliszykandRussell O’Connor

facts for opposite translation IRasR. Those are easy to prove using the properties
of RasIR.

Lemma R_Zero_as_IR : (RasIR R0 [=] Zero).
Lemma R_plus_as_IR :
forall x y, (RasIR (x+y) [=] RasIR x [+] RasIR y).

...

An important difference between the definition of real numbers in the Coq stan-
dard library and in CoRN is the way partiality is handled. Partial functions are
defined as total functions for Coq’s reals, but their properties require proofs that
the function parameters are in the appropriate domain. For example, division is
defined as a total operation on real numbers; however, all the axioms that specify
properties of division have assumptions that the reciprocal is not zero. This means
that the term 1

0 is some real number, but it is not possible to prove which one it is.
In CoRN, partial functions require an additional argument, the domain condition.

Division is a three argument operation; the third argument is a proof that the divisor
is apart from zero. Other partial functions, such as the logarithm, are defined in
a similar way. We prove that this isomorphism preserves these partial functions.
These lemmas require a proof that the arguments are in the proper domain to be
passed to the domain conditions of the CoRN functions.

—Preserves the reciprocal and division for any proof:

Lemma R_div_as_IR : forall x y (Hy : Dom (f_rcpcl’ IR) (RasIR y)),
(RasIR (x/y) [=] (RasIR x [/] RasIR y [//] Hy)).

Niqui’s theorem proves the basic arithmetic operations and limits are preserved
by the isomorphism. However, the real number structure does not specify any
transcendental functions. The existence of the transcendental functions follows
from the axiomatization, but the actual definitions used in the axiomatizations do
not need to be the same. Therefore it is necessarily to manually prove that these
functions are preserved by the isomorphism. This is easy if the Coq and CoRN
definitions are similar, but becomes difficult if the two systems choose different
definitions for the same function. We thus prove some more properties that the
isomorphism preserves:

—Preserves infinite sums:
The proof that the values of the sums are the same requires the decidability of
Π0

1 sentences and constructive indefinite description nat. The term prf
is the proof that the series converges.

Lemma R_infsum_as_IR : forall (y: R) a,
Rfunctions.infinit_sum a y -> forall prf,
RasIR y [=] series_sum (fun i : nat => RasIR (a i)) prf.

—Preserves transcendental functions: exp, sin, cos, tan, ln

Lemma R_exp_as_IR : forall x,
RasIR (exp x) [=] Exp (RasIR x).

Lemma R_sin_as_IR : forall x,
RasIR (sin x) [=] Sin (RasIR x).

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.



Computing with Classical Real Numbers · 35

Lemma R_cos_as_IR : forall x,
RasIR (cos x) [=] Cos (RasIR x).

Lemma R_tan_as_IR : forall x dom,
RasIR (tan x) [=] Tan (RasIR x) dom.

Lemma R_ln_as_IR : forall x dom,
RasIR (ln x) [=] Log (RasIR x) dom.

We finally prove that the isomorphism preserves the constant π. This was more
difficult because the π in Coq is defined as the infinite sum

πCoq =def

∞∑
i=0

(−1)i

2i+ 1
, (3)

while in CoRN π is defined as the limit of the sequence

pin =def

{
0 if n = 0
pin−1 + cos(pin−1) otherwise (4)

πCoRN =def lim
n→∞

pin. (5)

Both libraries contain proofs that the sine of π is equal to zero1, and additionally
that it is the smallest positive number with this property. Using these properties
it is possible to show that indeed the two definitions describe the same number:

Lemma R_pi_as_IR : RasIR (PI) [=] Pi.

4. COMPUTATION WITH CLASSICAL REALS

4.1 Solving ground inequalities

O’Connor’s work on fast real numbers in CoRN includes a semi-decision procedure
for solving strict inequalities on constructive real numbers. With the isomorphism
it is possible to use it to solve some goals for classical reals.

Consider the example of proving eπ − π < 20 for the classical real numbers. The
difference between these numbers is very small, so the proof is hard without using
numeric approximations:

______________________________________(1/1)
exp PI - PI < 20

Our tactic first converts the Coq inequality to a CoRN inequality by using the fact
that the isomorphism preserves inequalities. Then it recursively applies the facts
about the isomorphism to convert the Coq terms on both sides of the inequality and
their corresponding CoRN terms. This is done with using a rewrite database and
the autorewrite mechanism for setoids. The advantage of using a rewrite database
is that it can be easily extended with new facts about new functions being preserved
under the isomorphism. The disadvantage of this method is that the setoid rewrite
mechanism is fairly slow in Coq 8.1.

1The proof from the Coq standard library relies on an unproven lemma that sin
`

π
2

´
= 1 which

is currently stated as an axiom.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.



36 · Cezary KaliszykandRussell O’Connor

______________________________________(1/1)
Exp Pi[-]Pi[<](One[+]One)[*]

((One[+]One)[*](One[+](One[+]One)[*](One[+]One)))

(Recall that, in Coq, the real number 20 is simply notation for (1 + 1) ∗ ((1 + 1) ∗
(1 + (1 + 1) ∗ (1 + 1))).)

Once the expression is converted to a CoRN expression, the semi-decision pro-
cedure from CoRN can be applied (which itself uses another rewrite database to
change the representation again). This semi-decision procedure may not terminate.
If the two sides of the inequality are different, it will approximate the real numbers
accurately enough to either prove the required inequality (or fail if the inequality
holds in the other direction). If the two sides are equal, then the search for a
sufficient approximation will never terminate.

The decision procedure for CoRN takes an argument which is used for the starting
precision of the approximation. Setting it to an appropriate value can make search
faster, if the magnitude of difference between the sides is known a priori. Our
decision procedure also takes this an argument and passes it on to the CoRN tactic.

We have shown the intermediate step above for illustration purposes only. The
actual tactic proves the theorem in one step:

Example xkcd217 : (exp PI - PI < 20).
R_solve_ineq (1#1)%Qpos.
Qed.

Automatic rewriting is not enough to convert partial functions like division and
logarithm. The additional parameters needed in CoRN are the domain conditions.
The tactic itself could be called recursively to generate the assumptions. Unfor-
tunately Coq 8.1 cannot automatically rewrite inside dependent products, making
the recursive tactic more difficult to create. Coq 8.2’s new setoid rewriting system
will allow rewriting in dependent products, and we expect this to greatly simplify
the creation of a recursive tactic.

4.2 Using facts about Coq’s reals in CoRN

The Coq standard library contains more properties of real numbers than CoRN. It
also contains more tactics, like fourier for solving linear constraints. By using the
isomorphism the other way, it is possible to apply these tactics while working with
CoRN. Using the isomorphism this way is controversial because using the classically
defined real numbers means that the axioms of classical logic are assumed.

We will show how a goal that would normally be proved by the fourier tactic
in Coq’s reals can be done in CoRN. We will show it on a very simple goal, but the
procedure is similar in other cases:

x ≤ y ⇒ x < y + 1. (6)

The goal written formally in Coq is:

Goal forall x y:IR, (x [<=] y) -> (x [<] y [+] One).

After introducing the assumptions we can apply the isomorphism to the inequal-
ities both in the assumptions and in the goal:
Journal of Formalized Reasoning Vol. 2, No. 1, 2009.



Computing with Classical Real Numbers · 37

intros x y H; rapply IR_lt_as_R_back.
assert (HH := R_le_as_IR_back _ _ H).

This shows the following goal:

1 subgoal
x : IR
y : IR
H : x[<=]y
HH : IRasR x <= IRasR y
______________________________________(1/1)
IRasR x < IRasR (y[+]One)

Since the isomorphism preserves all the functions in the goal and assumptions,
we can apply the facts to change the terms that include the isomorphism on the
top of the term to terms that include the application of the isomorphism only on
variables.

replace RHS with (IRasR y + IRasR One)
by symmetry; rapply IR_plus_as_R.

replace (IRasR One) with 1. 2: symmetry; apply IR_One_as_R.

1 subgoal
x : IR
y : IR
H : x[<=]y
HH : IRasR x <= IRasR y
______________________________________(1/1)
IRasR x < IRasR y + 1

Now the fourier tactic is applicable:

fourier.

Proof Completed.

A similar transformation can be performed to use other facts and tactics from
the Coq library.

5. RELATED WORK

Melquiond has created a Coq tactic that can solve some linear inequalities over real
number expressions using interval arithmetic and bisection [Mel08]. This tactic is
currently limited to expressions from arithmetic operations and square root, but
could support transcendental functions via polynomial approximations. It has the
advantage that it can solve some problems that involve constrained variables.

Many other proof assistants include facts about transcendental functions that
could be used for approximating expressions that involve them. However there are
few mechanisms for approximating real numbers automatically since to compute
effectively this has to be done either by constructing the real numbers with ap-
proximation in mind, or by using special features of the proof assistant. The latter

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.



38 · Cezary KaliszykandRussell O’Connor

approach is used effectively for example in HOL Light, due to a close interplay
between syntax and semantics. The way a real number expression is described in
HOL Light can be analyzed and it can be used to prove an approximation.

The construction of HOL Light real numbers is described in [Har98]. The approx-
imation mechanism of HOL Light is provided in calc_real part of the distribution
of the prover as the REALCALC_REL_CONV conversion. This conversion uses the fact
that terms are transparent and decomposes a term or goal into subterms, looking for
underlying underlying real number operations or constants. Implementing approxi-
mation as a conversion means that it is not available as a function inside statements
of theorems, but instead while proving a goal about real number expression it is
possible to ask for an approximation of a particular closed term. The conversion
uses rewriting to generate a theorem that approximates a particular term.

Obua developed a computing library for Isabelle [NPW02]. In his PhD [Obu08] he
shows examples of computing bounds on real number expressions using computation
rather than deduction.

Lester implemented approximation of real number expressions in PVS [Les08].
Results of real number functions are proved to have fast converging Cauchy se-
quences when their parameters have fast converging Cauchy sequences. Cauchy
sequences for many real number functions are effective and can be evaluated inside
PVS.

6. CONCLUSION

We have formalized a proof that the axioms of Coq’s classical real numbers imply
the decidability of Π0

1 statements. We used this fact to prove that these classical
real numbers form a constructive real number structure. Then we used the fact that
all real number structures are isomorphic to use tactics designed for one domain to
solve problems in the other domain. In particular, we showed how to automatically
prove a class of strict inequalities on real number expressions.

The lemmas showing the decidability of Π0
1 statements have been added to the

standard library and are made available in the 8.2 release of Coq. The isomorphism
and the tactics used to prove inequalities over Coq’s reals have been added to the
CoRN library. They are available with the version of CoRN compatible with Coq
8.2.

6.1 Future Work

We wish to extend our tactics to solve inequalities over terms that involve partial
functions. This should be easier to do when CoRN uses the new setoid rewrite
mechanisms available in Coq 8.2. Currently CoRN uses the old setoid rewrite
mechanism which means that the translation of expressions from one domain to
another is quite slow. We would like to investigate ways that this could be made
faster. We would also like to automate the translation from CoRN expressions to
Coq expressions so that CoRN can have its own fourier tactic assuming classical
logic.

References

[BB85] Errett Bishop and Douglas Bridges. Constructive Analysis, chapter 1.3.
Springer-Verlag, Berlin, October 1985.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.



Computing with Classical Real Numbers · 39

[CDT08] The Coq Development Team. The Coq Proof Assistant Reference Man-
ual, version 8.2. LogiCal project, 2008. Distributed electronically at
http://coq.inria.fr/doc-eng.html.

[CF04] Lúıs Cruz-Filipe. Constructive Real Analysis: a Type-Theoretical For-
malization and Applications. PhD thesis, University of Nijmegen, April
2004.

[CFGW04] Lúıs Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-CoRN, the
constructive coq repository at nijmegen. In Andrea Asperti, Grzegorz
Bancerek, and Andrzej Trybulec, editors, MKM, volume 3119 of Lecture
Notes in Computer Science, pages 88–103. Springer, 2004.

[CoR09] Constructive Coq Repository at Nijmegen, 2009.
http://corn.cs.ru.nl/.

[GPWZ02] Herman Geuvers, Randy Pollack, Freek Wiedijk, and Jan Zwanenburg.
A constructive algebraic hierarchy in Coq. Journal of Symbolic Com-
putation, Special Issue on the Integration of Automated Reasoning and
Computer Algebra Systems, 34(4):271–286, 2002.

[Har98] John Harrison. Theorem Proving with the Real Numbers. Springer-
Verlag, 1998.

[Les08] David R. Lester. Real number calculations and theorem: Proving vali-
dation and use of an exact arithmetic. In Otmane Ait-Mohamed, editor,
TPHOLs, volume 5170 of Lecture Notes in Computer Science, pages
215–229. Springer, 2008.

[Let02] Pierre Letouzey. A new extraction for Coq. In Herman Geuvers and
Freek Wiedijk, editors, TYPES, volume 2646 of Lecture Notes in Com-
puter Science, pages 200–219. Springer, 2002.

[Mel08] Guillaume Melquiond. Proving bounds on real-valued functions with
computations. In Alessandro Armando, Peter Baumgartner, and Gilles
Dowek, editors, Proceedings of the 4th International Joint Conference
on Automated Reasoning, Lectures Notes in Computer Science, Sydney,
Australia, 2008.

[Niq04] Milad Niqui. Formalising Exact Arithmetic: Representations, Al-
gorithms and Proofs. PhD thesis, Radboud Universiteit Nijmegen,
September 2004.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL - A Proof Assistant for Higher-Order Logic, volume 2283
of Lecture Notes in Computer Science. Springer, 2002.

[Obu08] Steven Obua. Flyspeck II: The Basic Linear Programs. PhD thesis,
Technische Universitat Munchen, 2008. submitted.

Journal of Formalized Reasoning Vol. 2, No. 1, 2009.


