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We demonstrate tools and methods for proofs about the correctness and numerical accuracy of C
programs. The tools are foundational, in that they are connected to formal semantic specifications

of the C operational semantics and of the IEEE 754 floating-point format. The tools are modular,
in that the reasoning about C programming can be done quite separately from the reasoning about

numerical correctness and numerical accuracy. The tools are general, in that they accommodate

almost the entire C language (with pointer data structures, function pointers, control flow, etc.)
and applied mathematics (reasoned about in a general-purpose logic and proof assistant with

substantial libraries for mathematical reasoning). We demonstrate on a simple Newton’s-method

square root function.

1. INTRODUCTION

Formal verifications of functional correctness for programs in real-world imperative
languages should be layered:

High-level specification

Functional model

Properties proof: model satisfies high-level spec.

Imperative program

Refinement proof: program implements model

Many authors have described such a layering, more than we can hope to cite.
Ideally, each of these verifications is machine-checked (done in a logical framework

that can check proofs) and foundational (the program logic or other reasoning
method is itself proved sound in a logical framework). In many cases, however, one
or another of these proofs is done by hand, or left out—typically because of missing
tool support for one layer or the other.

And ideally, when machine-checked tools are available for both the properties
proof and the refinement proof, they should connect foundationally : that is, foun-
dational proofs of the two components should be expressible in the same logical
framework, so that the composition lemma is just another machine-checked proof
in the same framework.

Our contribution in this paper is to demonstrate how very modular such proofs can
be, using appropriate foundational verification tools at each layer. In particular,
we use the VST tool for C programs, and the Flocq library and Gappa tool for
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accurate reasoning about numerical algorithms. In addition, we achieve the first
end-to-end foundational proof about numerical-methods code in C, and the C code
can be further processed by a formally-verified compiler (CompCert) that shares
its foundations with VST.

The Verified Software Toolchain [ADH+14] (hereafter referred to as VST, and
avaiable at vst.cs.princeton.edu) is a program logic, embedded in the Coq proof assis-
tant, for proving correctness of C programs—for example, that C programs refine
functional models. VST has been used in conjunction with properties-proof tools in
different application domains (such as the FCF tool in the cryptography domain) to
obtain end-to-end (foundationally connected) machine-checked foundational proofs
of the correctness of C programs with respect to high-level specifications, using
functional programs as the functional models of standard cryptographic algorithms.

Flocq [BM11] (flocq.gforge.inria.fr) is a formalization in Coq of the IEEE 754
floating-point standard. It provides not only a constructive specification of the
bit-for-bit representations of sign, exponent, mantissa, etc., but also a theory,
a lemma library for reasoning about floating point computations in Coq’s logic.
Gappa (gappa.gforge.inria.fr) is a tool intended to help verifying and formally prov-
ing properties of numerical programs in floating-point or fixed-point arithmetic,
using interval arithmetic to bound the “gaps” between lower and upper bounds.
Gappa can be used as an automatic tactic in the Coq proof assistant (but can also
be used independently of Coq).

Here we will show how these independent tools can be used to make end-to-
end foundationally connected functional-correctness proofs of C programs that use
floating point. The point of connection—the language of functional models—is
functional programs (or relations) in Coq.

In particular, we will show that the functional model is such a strong abstraction
boundary that: the VST proof was done by the first author, who knows nothing
about how to use Gappa; and the Flocq+Gappa proof was done by the second
author, who knows nothing about how to use VST. This “modularity of expertise”
is an important consideration in forming teams of verification engineers.

VST’s program logic is proved sound, in Coq, with respect to the operational
semantics of CompCert Clight [Ler09]. This semantics is also a client of the
Flocq interface—CompCert’s semantics uses Flocq to characterize the semantics
of the machine-language’s floating point instructions (parameterized appropriately
for each target machine’s particular instantiation of IEEE floating point, which
Flocq is general enough to permit). Our modular proofs also compose with the
correctness proof of CompCert, to get an end-to-end theorem about the correct-
ness and numerical accuracy of the assembly-language program, even though our
reasoning is at the source-language level.

Our running example will be a naive1 implementation of single-precision square

1But still fairly efficient: Newton’s method doubles the number of accurate mantissa bits in each

iteration. Single-precision floating point has 23 mantissa bits, so sqrt newton(x) should terminate
in about dlog2 23e = 5 iterations for 1 ≤ x ≤ 4. When x ∼ 2k it will take (k + 10)/2 iterations.
A more sophisticated square root will start Newton’s-method iterations from y0 = 2blog2(x)c/2,
which is calculated in constant time: just take the exponent part of the floating-point number and

divide by 2. This kind of reasoning is also possible in Flocq, and in VST’s C-language interface
to Flocq.
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Fig. 1. Module and tool dependency. The .c file is a C program; the .v files are Coq files (definitions
and proofs); and the tools and libraries VST, Flocq, and GAPPA are implemented mostly in Coq.

root by Newton’s method. Neither of us wrote this program: it was written in-
dependently as part of the Cbench benchmark suite [vEFG+19], a challenge for
implementers of C verification tools. Therefore the program demonstrates, in a
small way, that our techniques do not require C programs to be written in a special
format, nor synthesized from some other specification.

Theorem. For inputs x between 1 and half the largest floating-point number,
sqrt newton(x) is within a factor of 3 · 2−23 of the true square root.
Proof. By composing a VST proof and a Gappa+Coq proof, as we will explain.

2. IMPERATIVE PROGRAM, HIGH-LEVEL SPEC, FUNCTIONAL MODEL

In this section we present the C program sqrt1.c and the specification of its correct-
ness, which will be a theorem-statement with the name body sqrt newton2. We also
show the high-level structure of the proof, as illustrated in Figure 1.

(1) The program sqrt1.c contains a hand-written function sqrt newton.

(2) The specification of that function is written in VST’s separation logic as the
definition sqrt newton spec2.

(3) The proof that sqrt newton satisfies sqrt newton spec2 is Lemma body sqrt newton2.

That lemma is proved by composing, in a modular way, the following pieces:

(4) A functional model of the C program is written, by hand, as the Coq function
fsqrt.

(5) An intermediate specification for the C program, called sqrt newton spec, which
we write to help separate the concerns of “proving things about C programs”
and “proving things about floating-point Newton’s method,” This specification
just says that the C program refines the functional model given by fsqrt—but
does not say that the functional model computes square roots accurately.
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(6) The proof that sqrt newton satisfies sqrt newton spec is Lemma body sqrt newton.
This proof does not use any reasoning about Newton’s method or any nontrivial
reasoning about floating-point or real numbers.

(7) the proof that the functional model computes square roots with a precisely
stated accuracy is Lemma fsqrt correct. the proof of this lemma makes no refer-
ence to C code or to VST.

(8) The composition of the main lemmas is the main theorem, body sqrt newton2.

All the material is available at github.com/cverified/cbench−vst in directory sqrt.
The version described here has the tag sqrt-publication-2020.

The imperative program is this C function (in sqrt1.c):

float sqrt newton(float x) {
float y, z;
if (x <= 0) return 0;
y = x >= 1 ? x : 1;
do { z = y; y = (z + x/z)/2; } while (y < z);
return y;
}

We took this program as given, without alteration, from the Cbench benchmark
suite [vEFG+19].

The functional model is this Coq program (in sqrt1 f.v):

Definition main loop measure (xy : float32 ∗ float32) : nat := float to nat (snd xy).
Function main loop (xy : float32 ∗ float32) {measure main loop measure} : float32 :=

let (x,y) := xy in
let z := Float32.div (Float32.add y (Float32.div x y)) (float32 of Z 2) in
if Float32.cmp Clt z y then main loop (x, z) else z.

Proof. . . . prove that measure decreases . . . Qed.
Definition fsqrt (x: float32) : float32 :=

if Float32.cmp Cle x (float32 of Z 0)
then (float32 of Z 0)
else let y := if Float32.cmp Cge x (float32 of Z 1) then x else float32 of Z 1 in

main loop (x,y).

We wrote this functional model by hand, closely following the logic of the C pro-
gram. But this is a functional program, and easier to reason about. More details
about this definition are given in Section 3.1.

The high-level specification (in program verification) is an abstract but mathemat-
ically precise claim about what the program is supposed to accomplish for the user
(but not how the code does it). Our high-level spec says that the results are within
3 · 2−23 of the true square root, provided that the input is not denormalized. Our
spec is expressed in Coq (using VST’s funspec notation in verif sqrt1.v) as,
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Definition sqrt newton spec2 :=
DECLARE sqrt newton
WITH x: float32
PRE [ tfloat ]

PROP ( 2−122 ≤ f2real(x) < 2125 )
PARAMS (Vsingle x)
SEP ()

POST [ tfloat ]
PROP (Rabs (f2real (fsqrt x) − sqrt (f2real x)) ≤ 3/(223) ∗ R sqrt.sqrt (f2real x))
RETURN (Vsingle (fsqrt x))
SEP ().

This Definition is really the pair of a C-language identifer sqrt newton and a VST
function-spec with. . . pre. . . post. The with clause binds variables (here, x)
visible in both precondition and postcondition. Vsingle injects from single-precision
floating-point values into CompCert’s val type, which is a discriminated union of
integers, pointers, double-precision floats, single-precision floats, etc.

In the precondition, 2−122 is the minimum positive normalized single-precision
floating-point value, and 2125 is half the maximum finite value; we could probably
improve (increase) the precondition’s upper bound. In the postcondition, 2−23 is
the value of the least significant bit of a single-precision mantissa, so we prove that
the result is accurate within 3 times this value.

The refinement specification is expressed (in verif sqrt1.v) as,

Definition sqrt newton spec :=
DECLARE sqrt newton
WITH x: float32
PRE[ tfloat ] PROP () PARAMS (Vsingle x) SEP ()
POST[ tfloat ] PROP () RETURN (Vsingle (fsqrt x)) SEP ().

Lemma body sqrt newton: semax body Vprog Gprog f sqrt newton sqrt newton spec.

The refinement theorem body sqrt newton says that the function-body f sqrt newton

satisifies the specification sqrt newton spec. The function body f sqrt newton is ob-
tained automatically from the C code. The Vprog and Gprog arguments are provided
to describe the global context, which gives the types of any global variables that
the function might use, as well as the specifications of any functions that this one
might call; but since sqrt newton does not use global variables and calls no functions,
then this theorem can use any Vprog and Gprog, such as the empty context.

The important point about body sqrt newton is that neither the theorem-statement
nor its proof depends on the correctness or accuracy of the functional model; we
are only proving that the C program implements the functional model, using the
fact that C’s + operator corresponds to Float32.add, and so on. We do not need to
know what Float32.add actually does, and we don’t have to know why the functional
model (Newton’s method) works.

The properties theorem is expressed (in sqrt1 f correct.v) as,

Lemma fsqrt correct:
∀x, 2−122 ≤ f2real(x) < 2125 →

Rabs (f2real (fsqrt x) − sqrt (f2real x)) ≤ 3/(223) ∗ R sqrt.sqrt (f2real x).
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The important point about fsqrt correct is that neither the theorem-statement nor
its proof depends on any knowledge about the C programming language, or VST’s
program logic, or even that the C program sqrt newton exists.

And finally, the main theorem is proved (in subsume sqrt1.v) by a (fairly) simple
composition of those two theorems—the C program satisfies its high-level spec:

Lemma body sqrt newton2: semax body Vprog Gprog f sqrt newton sqrt newton spec2.

3. DEFINING THE FUNCTIONAL MODEL

The specification sqrt newton spec expresses that the C function sqrt newton returns
the value of a Coq function fsqrt. The natural way to encode this Coq function is
to follow the structure of the C code and match it practically line per line. Where
the C code contains a loop, the Coq function will be recursive. In this case our
recursive function is main loop, shown in Section 2.

3.1 Termination of the loop

Verifiable C is a logic of partial correctness, so we do not prove that the C loop
terminates. But Coq is a logic of total functions, so in defining the fsqrt function
we must prove that the main loop recursion terminates.2

One standard way in Coq to prove termination of a recursive function f(z : τ) is
to exhibit a measure function, of type τ → N, so that the measure decreases on every
iteration (and, obviously, cannot go below zero). In this case τ = float32× float32
and the measure function is main loop measure. To define the recursive function, we
rely on the Function capability of the Coq system, which requires a single argument.
Here we use a pair to combine the values of the two variables manipulated in the
loop body, which are then named x and y after decomposing this pair. It so happens
that our measure depends only on the second part y of this pair but (when using
Coq’s Function command) the measure-function must take the same argument (xy)

as the function main loop.
Function main loop(x,y) keeps decreasing y, and y cannot decrease forever. To

prove that, we map y into N. We exhibit a function float to nat: float32→Nat, and
prove a monotonicity theorem, a < b → float to nat(a) < float to nat(b).

This theorem is written formally as follows:

Lemma float to nat lt a b :
float cmp Integers.Clt a b = true →

(float to nat a < float to nat b)%nat.

Because Coq functions must be total, float to nat must map NaNs and infinities to
something (we choose 0), but in such cases the premise of the monotonicity theorem

2We have several choices in writing a functional model. (1) We can model the program as a

function fsqrt : float → float, as we have done here, and then we must prove that fsqrt is a total
function, as we do in this section. (2) We can model the program as fsqrtn : N → float → float,
where fsqrtn(k)(x) expresses what will be computed in k iterations. (3) We can model this using
a (partial) relation, saying in effect “if the C function terminates, then there exists a return value
that is in relation with the input argument.” In general, the first approach is most elegant and
useful, but if the termination proof were particularly difficult (and not needed) we might choose

approach (2) or (3).
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would be false, and in proofs about main loop we maintain the invariant that y is
finite.

To understand the construction of float to nat, consider that the smallest repre-
sentable positive floating point number has the form 2fmin where fmin is a negative
integer that depends on the format. If x is a positive real number representable as
a floating point number, then x = 2e×m where e and m are integers and fmin ≤ e.
The number x/2fmin = me−fmin actually is a positive integer. This scheme makes
it possible to map all floating point numbers to natural numbers, in a way that
respects the order between real values on one side and between natural numbers on
the other side.

The largest representable floating point number has the form 2fmax − 2fmax−s,
where s is the number of bits used for the mantissa in the floating point number
format. We know that there are less than 2fmax−fmin positive real numbers repre-
sentable as floating point numbers. If we call float to nat the function that maps 0
to 2fmax , any positive x of the form 2e×m to m×2e−fmin +2fmax and any negative
x of the form −2e ×m to −m × 2e−fmin + 2fmax , we see that float to nat actually
performs an affine transformation with respect to the real number value of floating
point numbers, with a positive ratio.

4. THE REFINEMENT PROOF

The refinement theorem (in verif sqrt1.v) is,

Lemma body sqrt newton: semax body Vprog Gprog f sqrt newton sqrt newton spec.

This says that, in the global context of assumptions about variables (Vprog) and
function-specifications (Gprog), the function-body (f sqrt newton) satisfies its function-
specification (sqrt newton spec). The function-body is produced by using Comp-
Cert’s parser (and 2 front-end compiler phases) to parse, type-check, and slightly
simplify the source code (sqrt1.c) into ASTs of CompCert Clight, a high-level inter-
mediate language that is readable in C.

The proof is written in Coq, using the VST-Floyd proof-automation library
[CBG+18]. The use of VST-Floyd is described elsewhere [CBG+18, AC18, ABCD15],
and the refinement proof for sqrt newton is quite straightforward, so we will sum-
marize it only briefly.

The refinement proof is 61 lines of Coq:

Forward symbolic execution (in which each “line” is
just a single word, typically forward or entailer!)

22 lines

Loop invariant, loop continue-condition, loop post-
condition (do-while loops need all three of these)

9

Witnesses to instantiate existential quantifiers and
WITH clauses

3

Lines with a single bullet or brace 10
Proofs about the functional model, mostly fold/un-
fold/rewrite

17

Total 61
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VST proofs are not always so simple and easy. If the program uses complex data
structures or makes heavy (ab)use of C features such as pointer arithmetic, taking
the addresses of structure-fields, casts, or other things that make the program hard
to reason about—then the program is indeed harder to reason about, and the proofs
will be lengthy. Similarly, when the program does not directly follow the logic of the
functional model—if it is “clever” in order to be efficient [App15, section 6])—then
the proofs will be lengthy.

But simple programs (such as sqrt newton) have simple proofs. Furthermore, VST
supports modular verification of modular programs, so that each function-body has
its own proof, and (overall) proof size therefore scales in proportion to program size.

5. THE PROPERTIES PROOF

The properties of interest are in two parts: first we show that nothing goes wrong
(no NaNs or similar exceptional floating point numbers are created), second we show
that we do compute a value that makes sense (in this case, a close approximation
of the square root).

5.1 From floating point data to real numbers

The final conclusion of our formal proofs concerning the C program is that the
returned floating point number represents a specific value within a specific error
bound. This statement is essentially expressed using real numbers. For this state-
ment to become available, we first have to show that none of the intermediate
computations will produce an exceptional value.

In the loop, the following operations are performed: divide a number by another
one, add two numbers together, divide a number by 2. This is represented in our
formal development by the following expression.

Definition body exp x y :=
float div (float plus y (float div x y)) float2.

Each of the functions involved here may return an exceptional value (an infinity
value or the special value nan).

We need more precise reasoning on the range of each of the values to make sure
that such an exceptional value does not occur. In practice, the division is safe, and
this is proved in two different ways depending on whether the number x is larger
than 1 or not.

For instance, when x is larger than 1 we can establish the invariant that y is
larger than

√
x/2 and smaller than x. In that case, x/y is larger than 1 and smaller

than 2
√
x. When x is very large, 2

√
x is significantly smaller, and thus still within

range. We can then focus on the sum. If y is smaller than x, then y + x/y is not
guaranteed to be smaller than x, but we can now study separately the case where
x is larger than 4. In this case, 2

√
x is smaller than x, and we can conclude that

if x is smaller than half the maximal representable floating point number, then the
sum is within range. On the other hand, if x is smaller than 4 and y is larger than√
x/2 it is easy to show that the sum is smaller than 8 and thus obviously within

the range of floating point number representation.
The reasoning work is actually a little more complex than what is presented in

the previous paragraph, because each operation is followed by a rounding process.
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So it is not the sum y+x/y that we have to focus on, but y+ r(x/y), where r(x/y)
is the result of rounding to the correct floating point number, which may actually
be larger than x/y. The rounding operations add a few minute values everywhere,
so that all portions of reasoning have to be modified to account for these minute
values. The difficulty comes from the fact that these values are rounding errors with
respect to floating-point representations, the magnitude of which is relative to the
value being rounded. Relative magnitudes are confusing for many automated tools
for numeric computation, because one cannot reason entirely in linear arithmetic.

In the end, we decompose the range of possible inputs into two cases. In the first
case x is between a very small value and 1 and y is between another very small
value and 2. In the second case, x is between 1 and a very large value and y is
between 1/2 and another very large value. This is expressed by the following two
lemmas:

Lemma body exp val’ x y:
bpow r2 fmin ≤ f2real x < 1 →
bpow r2 (2 − es) ≤ f2real y ≤ 2 →
f2real (body exp x y) = round’ (round’ (f2real y + round’ (f2real x / f2real y )) / 2).

Lemma body exp val x y:
1 ≤ f2real x < / 2 ∗ f2real predf max → 1

2
≤ f2real y ≤ f2real predf max →

f2real (body exp x y) = round’ (round’ (f2real y + round’ (f2real x / f2real y )) / 2).

In these lemmas, we see that the real interpretation of the floating point expression
is explained in terms of regular real number addition and division, with rounding
operations happening after each basic real operation. Once we have established
that the inputs x and y are within the ranges specified by these two lemmas, we
can be sure that all computation will stay away from exceptional values in the
floating point format. We can start reasoning solely about real numbers.

5.2 Reasoning about rounding errors

We have already abstracted away from the C programming language; from this
point on, we can start to abstract away from the floating point format. We only
need to know that a rounding function is called after each elementary operation
and use the mathematical lemmas that bound the difference between the input and
the output of this rounding function.

As a way to break down the difficulty, we first study the case where 1 ≤ x ≤
4. We then use some regularity properties of computations with floating point
numbers to establish a correspondance between the other ranges and this one.
This correspondance will be explained in a later section.

A constant that plays a significant role in our proofs is the unit in the last place,
usually abbreviated as ulp. It corresponds to the distance between two floating
point values in the interval under consideration. For an input value x between 1
and 4,

√
x is between 1 and 2 and the unit in the last place is 2−23. In general,

computations about ulp have to take into account the change of magnitude in the
number being considered, but here for input numbers between 1 and 4 we are sure
to work with exactly 2−23 for the final result.

A proof then revolves around the following two main facts:
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(1) if y >
√
x + 16ulp, then (y + x/y)/2 is guaranteed to be smaller than y, even

after all the rounding operations,

(2) if
√
x− 16ulp < y <

√
x+ 16ulp then (y + x/y)/2 is guaranteed to be distant

from
√
x by at most 3ulp, even after all the rounding operations,

So, once the value of y enters the interval (
√
x− 3ulp,

√
x+ 3ulp), we know it will

stay in this interval. The value that is ultimately returned will have to be in this
interval.

The proof of these two facts deserves a moment of attention, because the method
to prove them was first to show that the distance between the rounded computation
of (y + x/y)/2 and the exact computation was bounded by a very small amount
( 5
2ulp). Then, in the first case we showed that the exact computation was so far

below y that even with the errors the decrease had to happen. For the second case,
the distance between the exact computation and

√
x is bounded by an even smaller

amount.
For the first part, where we prove a bound on the distance between the compu-

tation with rounding and the exact computation, we could benefit from the gappa

tool [BM17, BFM09]. The text of the question posed to gappa is so short it can be
exhibited here:3

@rnd = float< ieee_32, ne >;

{s in [1, 2] /\ e in [-32b-23,3] ->

( rnd (rnd ( (s + e) + rnd ((s * s) / (s + e))) / 2)

- ( ((s + e) + ((s * s) / (s + e))) / 2) ) in [-5b-24,5b-24]}

In this text, s stands for
√
x, s * s stands for x, and s + e stands for y, e is the

current error between y and
√
x.

For the second fact above, we use the following mathematical result:

y − x
y

2
−
√
x =

(y −
√
x)2

2

If we know |y −
√
x| to be smaller than 16ulp, that is 2−19, then the exact com-

putation yields a better approximation, with a distance no more than 2−39, which
we grossly over estimate using 2−24. When we add the potential rounding errors,
we obtain the result4 that is the main claim of the paper (3ulp), remembering that
this results holds for x between 1 and 4.

5.3 Scaling proofs

Once we have obtained the proofs for the input between 1 and 4, we generalize
the result to other ranges. The nature of floating point computations makes it
possible to view this as a simple scaling of all computations and proofs. When
adding two floating point numbers of the same magnitude, the same operation is
performed on the mantissa, independently of the magnitude, which is preserved in
the result (one has to be careful in the case one adds numbers of opposite sign, but
this situation does not occur for our case study). Similar characteristics occur for

3After a little processing, this statement becomes theorem from g proof in our formal develop-
ment.
4This proof is lemma converge below 16.
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multiplication and division, except that the magnitude of results changes. We must
be careful when the result magnitude reaches the limits of the range of representable
numbers.

To illustrate this point, let’s consider two computations with decimal floating
point numbers, with only 3 significant digits. In this case, instead of starting with
the range 1 to 4, we would start with the range 1 to 100. We would then want
to compare computations with x between 1 and 100 with computations with x
between 1 and 10000. For instance, Let us consider the computation as it occurs
when x = 3.97∗10 and y = 7.37 on the one hand and x = 3.97∗103 and y = 7.37∗10
on the other hand.

x = 3.97× 10, y = 7.37 x = 3.97× 103, y = 7.37× 10
x/y 5.39 5.39× 10
y + (x/y) 1.28× 10 1.28× 102

(y + (x/y))/2 6.40 6.40× 10

We see that in the two columns of this table the same computations are being
performed, except for adjustments in the powers of 10. These adjustements work
in the following way: if we multiply x by 102k and y by 10k, then the same significant
digits will appear in all intermediate results, that will be the same in the second
column after multiplication of the result in the first column by 10k. This observation
takes into account the behavior of rounding functions.

Now if we transpose this observation to binary floats as they are used in the IEEE
754 standard, this scaling result can be described formally using the following logical
statement:5

1 ≤ x ≤ 4 ⇒√
x

2
≤ y ≤ 2

√
x ⇒

y × 2e + (x× 22∗e)/(y × 2e)

2
=

y + x/y

2
× 2e

This result essentially explains that the last iteration of the loop in sqrt newton will
behave similarly, whether x is between 1 and 4 or in most of the range available
in floating point numbers. We only need an extra lemma to explain that if y is
larger than 2

√
x, ((y + x/y)/2) is smaller than y, even after rounding, even when

x is outside the [1, 4] interval.6

6. COMPOSING THE TWO PROOFS

VST’s program logic, Verifiable C, has a notion of funspec subsumption [BA19].
That is, funspec A can be proved to imply funspec B, independent of any function-
bodies that satisfy A. Suppose

A = WITHx.PRE{Px}POST{Qx}
B = WITH y.PRE{P ′y}POST{Q′y}

Then funspec sub A B means, ∀x∃y. P ′(y)→ (P (x) ∧ (Q(x)→ Q′(y)).

5This is lemma body exp scale in the formal development.
6Lemma body exp decrease16l for x < 1 and lemma body exp decrease16’ for 1 ≤ x.
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The logic’s subsumption rule says that if we have proved that function f satisfies
specification A, then it also satisfies B:

semax body V Γ f A funspec sub A B

semax body V Γ f B

We have already proved that sqrt newton satisfies sqrt newton spec, that is, the C
function implements the Coq function. The theorem fsqrt correct tells us the prop-
erties of the Coq function, so we can use subsumption to give a more informative
specification, sqrt newton spec2.

The Coq proof of funspec sub sqrt newton spec sqrt newton spec2 (in subsume sqrt1.v)
is 12 simple lines of Coq.

7. RELATED WORK

This work is motivated by the desire to provide an answer to a benchmark question
on the ability to formally verify C programs. This particular case study concentrates
on a C program with numeric computations using floating point numbers. The
community of researchers interested in the computation of floating point numbers
have a benchmark suite of their own [DMP+16].

Harrison did formal machine-checked proofs of low-level numerical libraries using
the HOL-Light system [Har96], based on a formalization of IEEE-754 floating point
as implemented on Intel processors—including square root [Har03]. A more abstract
and parameterized model of floating-point numbers for HOL-light was developed
later [JSG15]—but it is less precise, as it does not include the description of elements
known as NaNs (Not a Number).

Russinoff also provided a formal description of floating point technology, but
with an objective of producing hardware instead of software [Rus19]. The book
also contains descriptions of square root functions.

A previous study of imperative programs computing square roots concentrated
on square roots of arbitrary large integers [BMZ02]. The proof was based on the
Correctness extension of the Coq system [Fil98]. This particular study also in-
volved obligations concerning arrays of small numbers (used to represent arbitrary
large integers), so proofs about updates of arrays were needed. However, this study
has the same drawback as the one based on Frama-C that the chain between for-
mal proofs and actual executed code is broken: the semantics of the imperative
language was only axiomatized and not grounded in a formal language description
that is shared with the compiler.

The program we verify here uses Newton’s method, which computes the roots
of arbitrary differentiable functions. This method was already the object of a
formal study in Coq, with the general point of view of finding roots of multivariate
functions and Kantorovitch’s theorem [PAS11]. That study already included an
approach to take rounding errors into consideration, although with an approach
that is different from what happens with fixed-point computations. That study did
not consider the particular semantics of C programs.

Frama-C [CKK+12] is a verification tool for C programs. It generates verifica-
tion conditions for C programs; for floating-point programs these can be expressed
in terms of Flocq and proved in Coq [BM11]. But Frama-C’s program logic is
weaker than VST’s in three important ways: it is not a separation logic (hence,
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data structures will be harder to reason about); it is not embedded in a general-
purpose logic (hence, the mathematics of the application domain will be harder
to reason about); and Frama-C is not foundationally connected to the operational
semantics of C (hence, there is no machine-checked proof about the compiled code).
For our simple square-root function, the first two of these are irrelevant: sqrt newton

does not use data structures, and the C program proof separates nicely from the
application-domain proof. But for nontrivial C programs that use both data struc-
tures and floating point, and where some aspects of the refinement proof may rely on
mathematical properties of the values being represented, VST may have important
advantages.

Our work is reminiscent of the work by Boldo et al. on the formal verification of
a program to compute the one-dimensional (1D) wave equation [BCF+10]. Their
mathematical work is much more substantial, since they reason about the resolution
of a partial differential equation. The same work is later complemented with a
formal study of the corresponding C program, but they use Frama-C for the last
part of the reasoning [BCF+13].

Interval reasoning can often be used to provide formal guarantees about the result
of computations, and it is indeed the nature of our final result: the computation
is within an interval of ±3 ulp of the mathematical value that we are seeking to
compute. Part of the interval reasoning can be done automatically, and we did
so with the help of the Gappa tool [BM17, BFM09]. This tool provides proof of
interval bounds for some computations and has also been used as a way to guarantee
the correctness of other libraries, like the CRlibm library, which promises correct
rounding for a large collection of mathematical functions [DDdDM03].

Another attempt to use a general-purpose theorem prover to provide guarantees
about floating point computation relies on the PVS system and a static analysis of
programs [STF+19]. This tool can then be used to generate code with logical asser-
tion in ACSL to be fed to Frama-C. While this approach provides more automation
for the proofs, it still falls short with respect to end-to-end verification.

More related work is described at the Floating-point Research Tools page,
https://fpbench.org/community.html.

8. CONCLUSION

Reasoning about programs is done at many different levels of abstraction: hardware,
machine language, assembly language, source code, functional models, numerical
methods, and the mathematics of the application domain (which itself may contain
levels of abstraction). In formal machine-checked program verification, it is impor-
tant to separate these different kinds of reasoning. One should use the appropriate
theories and tools for each level, and avoid entanglement between tools meant for
different levels, and between reasoning methods appropriate for different levels.

Operational semantics is a good abstraction boundary between CompCert’s com-
piler-correctness proof and VST’s program-logic soundness proof; and separation
Hoare logic is a good abstraction boundary between the program-logic soundness
proof and the particular program’s refinement proof.

We have shown here that the Flocq specification of floating point, combined with
ordinary functional programming in Coq’s Gallina language, is a good abstraction
boundary between C programs and numerical reasoning. The VST refinement proof
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is concerned with the layout and representation of data structures, with control
structures, and (if applicable) concurrency. The Flocq+Gappa numerical-methods
proof is concerned with pure functions on floating point numbers, pure functions
on real numbers, and the interval-arithmetic reasoning that relates the two. These
very different kinds of reasoning are well separated.

But because all of these tools are embedded in Coq, and have foundational sound-
ness proofs in Coq, they connect with an end-to-end theorem in Coq, with no gaps,
about the behavior of the compiled program, assuming as axioms only the opera-
tional semantics of the target-machine assembly language.
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