
Mizar in a Nutshell

ADAM GRABOWSKI

Institute of Mathematics, University of Bia lystok

and

ARTUR KORNI LOWICZ and ADAM NAUMOWICZ

Institute of Informatics, University of Bia lystok

This paper is intended to be a practical reference manual for basic Mizar terminology which may
be helpful to get started using the system. The paper describes most important aspects of the

Mizar language as well as some features of the verification software.

1. INTRODUCTION

Mizar is the name of a formal language designed by Andrzej Trybulec for writing
strictly formalized mathematical definitions and proofs, but is also used as the name
of a computer program which is able to check proofs written in this language. The
Mizar project encompasses the development of both these aspects. The combina-
tion of a convenient language with efficient software implementation made Mizar
successful as a proof assistant with numerous applications and a powerful didactic
tool. Currently the main effort of the Mizar community is to build the Mizar Math-
ematical Library (MML), the comprehensive repository of interrelated definitions
and proved theorems which can be referenced and used in new articles.

This paper is not a step by step tutorial of Mizar, but rather a reference manual
describing the expressiveness of its language and the capabilities of the verification
system. The main purpose is to help the readers get acquainted with basic Mizar
terminology and jargon. After studying the paper, the readers should be ready to
understand all Mizar texts available in MML and start individual experiments with
writing and verifying their own proofs using Mizar.

2. LANGUAGE

The Mizar language is designed to be as close as possible to the language used
in mathematical papers and at the same time to be automatically verifiable. The
two goals are achieved by selecting a set of English words and phrases which occur
most often in informal mathematics. In fact, Mizar is intended to be close to the
mathematical vernacular on the semantic level even more than on the level of the
actual grammar. Therefore the syntax of Mizar is much simplified compared to
the natural language, stylistic variants are not distinguished and instead of English
words in some cases their abbreviations are used.

In particular, the language includes the standard set of first order logical connec-
tives and quantifiers for forming formulas and also provides means for using free
second order variables for forming schemes of theorems (infinite families of theo-
rems, e.g. the induction scheme, see Section 3.5.1). The rest of Mizar syntactic

Journal of Formalized Reasoning Vol. 3, No. 2, 2010 Pages 153–245.

154 · Adam Grabowski et al.

constructs is used for writing proofs and defining new mathematical objects. A text
written in that language is usually referred to as an article.
Every article is a plain ASCII text file with lines not longer than 80 characters,
starting with keywords environ and begin. The proper article is what follows the
keyword begin. Sandwiched between these two keywords one can specify one or
more of eight types of directives telling the system what notions from what pre-
existing MML articles will be needed in the proper article (see Section 4.4), and
possibly the name of external files containing the symbols of new entities the user
will want to define in the proper article.
The complete grammar of a Mizar article is presented in Appendix B.

The table below lists all Mizar reserved words (please mind that the language is
case-sensitive):

according aggregate and antonym
as associativity assume asymmetry
attr be begin being
by canceled case cases
cluster coherence commutativity compatibility
connectedness consider consistency constructors
contradiction correctness def deffunc
define definition definitions defpred
end environ equals ex
exactly existence for from
func given hence hereby
holds idempotence identify if
iff implies involutiveness irreflexivity
is it let means
mode non not notation
notations now of or
otherwise over per pred
prefix projectivity proof @proof
provided qua reconsider redefine
reflexivity registration registrations requirements
reserve sch scheme schemes
section selector set st
struct such suppose symmetry
synonym take that the
then theorem theorems thesis
thus to transitivity uniqueness
vocabularies when where with
wrt

Please note that some of the words have different meaning depending on the
context, e.g. for (compare its usage in Sections 2.1 and 2.3.6), set (compare
its usage in Sections 2.2.3 and 2.3.3), or the (compare of the usage of it in Sec-
tions 2.3.3 and the two distinct usages of it in 2.3.5). There are also synonyms be
and being, while hereby can be treated as a shorthand for thus now. The words
according, aggregate, associativity, exactly, prefix, section, selector,

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 155

to, transitivity and wrt are reserved, but currently not implemented in the
processing software. The language also utilizes a set of special symbols:

, ; : () [] { } = & ->
.= ... $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 (# #)

One also has to keep in mind that an occurrence of a double colon (::) in
Mizar texts starts a one-line comment. More information on user-defined identifiers,
symbols that may be used for introduced notions and special processing of numerals
can be found in Section 3.1 describing the Mizar lexical analyzer.

2.1 Formulas

Mizar is essentially a first order system, so the statements one can write and check
for correctness with the Mizar verifier are composed of atomic (predicative) for-
mulas combined with classical logic connectives and quantifiers. However, Mizar
maintains the type information associated with all terms, so the set of atomic for-
mulas contains also qualified and attributive formulas (see Section 2.3 what kinds
of notions can be defined in Mizar).

The table below shows the Mizar representation of standard logical connectives
and quantifiers:

¬α not α
α ∧ β α & β
α ∨ β α or β
α→ β α implies β
α↔ β α iff β
∃xα ex x st α
∀xα for x holds α
∀x:αβ for x st α holds β

In fact, each quantified variable has to be given its type, so the quantifiers actu-
ally take the form:

for x being set holds ...
or

ex y being real number st ... ,
where set and real number represent examples of types. If several statements are
to be written with the same type of variables, Mizar allows to globally assign this
type to selected variable names with a reservation, e.g.:

reserve x,y for real number;
Then one does not have to mention the type of x or y in quantified formulas.
With some reservations declared, Mizar implicitly applies universal quantifiers to
formulas if needed.

Also for the users’ convenience, writing
for x holds for y holds ...

or
for x holds ex y st ...

may be shortened to
for x for y holds ...

and

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

156 · Adam Grabowski et al.

for x ex y st ...
respectively. Moreover, instead of writing e.g.:

for x holds for y holds ...
or

ex x st ex y st ...
more convenient forms with lists of variables are allowed, namely

for x,y holds ...
and

ex x,y st
Let us also mention here that the binding force of quantifiers is weaker than that

of connectives.

2.2 Proofs

Just like standard mathematical papers, Mizar articles consist of introduced defi-
nitions and statements about them, with proofs being the biggest part of the text.
Therefore let us first focus on proofs.

By its design, Mizar supports writing proofs in a declarative way (i.e. mostly
forward reasoning), resembling the standard mathematical practice. The proofs
written in Mizar are constructed according to the rules of the Jaśkowski style of
natural deduction [6], or similar systems developed independently by F.B. Fitch
[3] or K. Ono [15]. It is this part of the Mizar language that has had the biggest
influence on other systems and became the inspiration to develop similar proof
layers on top of several procedural systems. To name the most important ones,
there was the system Declare by D. Syme [18], the Mizar mode for HOL by J.
Harrison [5], the Isar language for Isabelle by M. Wenzel [22], Mizar-light for HOL-
light by F. Wiedijk [24] and most recently the declarative proof language (DPL) for
Coq by P. Corbineau [2]. The Mizar way of writing proofs was also the model for
the notion of ’formal proof sketches’ developed by F. Wiedijk [23]. Below we present
the typical proof skeletons reflecting the structure of the statement being proved.
However, most proofs can be stated in many ways, because all Mizar formulas
are internally expressed in a simplified “canonical” form (see Section 3.2 for the
description of Mizar semantic correlates). As far as the proof structure agrees
with the semantic correlate of the proved formula, it is valid. The correctness of
a given proof skeleton is checked by the Mizar verifier’s module called Reasoner
(see Section 3.4).

2.2.1 Proof skeletons. For any formula Φ its proof may take the form of a proof
block in which the same formula is finally stated as a conclusion after the thus
keyword. In practice, this only makes sense for atomic formulas:

Φ
proof
...
thus Φ;

end;

If the formula to be proved is a conjunction, then the proof should contain two
conclusions:

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 157

Φ1 & Φ2

proof
...
thus Φ1;
...
thus Φ2;

end;

When proving an implication, the most natural proof is the one where we first
assume the antecedent and conclude with the consequent:

Φ1 implies Φ2

proof
assume Φ1;
...
thus Φ2;

end;

Mizar interprets an equivalence statement as a conjunction of two implications,
which yields the following proof skeleton:

Φ1 iff Φ2

proof
...
thus Φ1 implies Φ2;
...
thus Φ2 implies Φ1;

end;

In this case, the level of proof nesting can be slightly reduced if we use the
following skeleton:

Φ1 iff Φ2

proof
hereby
assume Φ1;
...
thus Φ2;

end;
assume Φ2;
...
thus Φ1;

end;

The typical way to prove a disjunction is to assume that the first disjunct does
not hold and then to prove the other:

Φ1 or Φ2

proof
assume not Φ1;
...

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

158 · Adam Grabowski et al.

thus Φ2;
end;

Although from the logical point of view we could as well assume that the second
disjunct does not hold and complete the proof by showing the validity of the first
disjunct, the users should be warned that this proof skeleton is invalid, because
at the level of semantic correlates used by the Reasoner the conjunction is not
commutative (see 3.4).

Also note that any formula can be proved using the reductio ad absurdum method,
like in this indirect proof:

Φ
proof
assume not Φ;
...
thus contradiction;

end;

A proof of a universally quantified formula starts with selecting an arbitrary but
fixed variable of a certain type and then concluding the validity of that formula
substituted with it:

for a being Θ holds Φ
proof
let a be Θ;
...
thus Φ;

end;

Please note that if a has a reserved type Θ, the ‘be Θ’ and ‘being Θ’ phrases
are not necessary and can be omitted. A proof of an existential statement must
provide a witness term a and an appropriate conclusion.

ex a being Θ st Φ
proof

...
take a;
...
thus Φ;

end;

Obviously the type of a must fit (in the Mizar jargon: widen to) the one used
in the quantifier (see Section 2.3.3 for the discussion of the Mizar type system and
the widening relation).

2.2.2 Justification. Mizar checks all first order statements in an article for log-
ical correctness using its Checker module equipped with a certain concept of
obviousness of inferences (see Section 3.5). If a statement produces an inference
which is obvious to the Checker, it suffices to end it with a semicolon (;) and
the Checker will not report any errors. In most cases, however, the lack of any
justification is reported by inserting the following error flag in the Mizar text:

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 159

::> *4
::> 4: This inference is not accepted

indicating with the *4 marker the position of the missing justification in a previous
line. The Checker keeps producing the error message until the user justifies the
inference. As presented above, the justification may take the form of a proof block
that starts with the keyword proof and finishes with end and a closing semicolon.
When a given statement can be found obvious by the Checker as a consequence
of previously stated statements, the proof can be reduced to a straightforward jus-
tification that consists of the by keyword followed by a comma-separated list of
references to appropriate statements, terminated with a semicolon. The references
can point to statements previously marked with respective labels, e.g.

lb1: Φ1;
...
lb2: Φ2;
...
Φ by lb1,lb2;

As the proofs can be nested, labels can be used to mark formulas on various proof
levels overriding any previously defined ones in a given proof block.

One may also use references to theorems from separate Mizar articles (local or
available in the MML). Then the reference takes the form <FILENAME>:<number> or
<FILENAME>:def <number> where <FILENAME> is the name of the referenced article
and <number> corresponds to a certain theorem or definition in that article. See
also Section 3.1 for the definition of valid label and file identifiers.

Please also note that it is very typical for proof steps to form linear reasoning
paths. To facilitate this, instead of

lb1: Φ1;
...
lb2: Φ2;
Φ by lb1,lb2;

one can write the statements linked with then:

lb1: Φ1;
...
Φ2;
then Φ by lb1;

In a similar way, linear reasoning that leads to a conclusion may be closed with
the hence keyword replacing thus and then.

If a statement should be justified using a scheme (a statement with free second
order variables), the simple justification utilizes the from keyword instead of by,
indicating to the Mizar verifier that a different module, the Schematizer, should
be used to check the correctness of that inference. In that case the reference takes
the form <FILENAME>:sch <number> for a scheme with a certain number contained
in the article <FILENAME> or is an identifier if the reference is made to a local scheme.
As the schemes usually have their premises, before the terminating semicolon a
complete scheme reference requires also a comma-separated list of references to

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

160 · Adam Grabowski et al.

formulas to be substituted for scheme premises put in a bracket. Please note that
unlike the references in a straightforward justification after by, where the order in
which labels are stated should not be relevant, in the case of scheme references they
must match exactly the order of the scheme’s premises. See Section 3.5.1 for more
information on schemes in Mizar with some examples.

2.2.3 Auxiliary proof elements. Having introduced the basic structure of Mizar
proofs and how statements can be justified, in order to fully understand any Mizar
proof, one also has to know the semantics of other Mizar keywords that may con-
stitute proofs. Below we briefly present these auxiliary proof elements and show
examples of their usage.

Let us start with two constructions which are not really necessary, but their use
approximates mathematical vernacular better. One of them is iterative equality of
the form

α1 = α2 justification
.= α3 justification
. . .
.= αn justification;

where αi are terms, which can be transformed into the form without .=:

α1 = α2 justification; then
α1 = α3 justification; then

. . .
α1 = αn justification;

The last formula in the above sequence is equivalent to the whole iterative equal-
ity.

The other construct is the Fraenkel operator, i.e. a version of set comprehension
in ZF. For proper identification of Fraenkel terms, SUBSET should be added to the
requirements environment directive.

The general form of the Fraenkel operator is as follows:

{t where v1 is Θ1, . . . , vn is Θn : Φ}

where t is a term, vi is a variable of the type Θi. For every i the type Θi has to
widen to the type Element of A, where A is arbitrary, not necessarily non-empty,
set, and Φ is a formula. If not, the error *129 is reported. Listed variables do not
need occur in t and Φ.

The most common form of unfolding this term is given below:

x in { t where t is Element of A : not contradiction }; then
consider t1 being Element of A such that

A1: t1 = x;

set can be used to introduce abbreviations for more complex terms for easier
typing:

set A = X \/ (Y /\ Z);
set B = (X \/ Y) /\ (X \/ Z);
A = B by XBOOLE_1:24;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 161

and A and B can be further used in the rest of the proof.
reconsider forces the system to treat a given term as if its type was the one

stated; it is usually used if a particular type is required by some construct (e.g. def-
initional expansion) and the fact that a term has this type requires extra reasoning
after the term is introduced in a proof.

let k, n be Nat;
assume k >= n; then
reconsider m = k - n as Element of NAT by NAT_1:21;

consider introduces a new constant of a given type satisfying stated conditions.

consider k being Integer such that
A1: m = 2 * k + 1;

It is also the method of accessing variables under an existential quantifier:

ex k being Integer st m = 2 * k + 1 & k > 0; then
consider k1 being Integer such that

A1: m = 2 * k1 + 1 & k1 > 0;

Observe that the ordering of conjuncts matters with this construct; if we try to
swap the conjunction under A1 label, we obtain *4 error.

given is an abbreviation for an assumption (assume) of an existential statement
(ex) followed by consider, so that instead of typing

assume ex n being Integer st x = 2 * n; then
consider n being Integer such that

A1: x = 2 * n;

it is shorter to write

given n being Integer such that
A1: x = 2 * n;

thesis is a keyword playing a role of the phrase which has to be proved; so it
can significantly shorten the last statement of a proof replacing the dynamically
changing thesis; it is only allowed within a proof, otherwise the error *65 is reported.

contradiction can be read logically as falsum. It is often used in the negated
context; as not contradiction occurs very often in Fraenkel operators. In proofs
by contradiction it plays the role of the thesis, hence thesis and contradiction
can be exchanged in such cases.

per cases facilitates the method of proving by exhaustion. If the list of cases
is exhaustive based on a logical tautology (usually the law of excluded middle),
it does not need its own justification, otherwise it should be justified by a list of
references (a nested proof is not permitted here). This construct does not need a
closing end.

suppose is a word starting new case in the proof by exhaustion (per cases).
The thesis remains unchanged, i.e. is identical under every case. Below we present
a simple proof with two cases:

reserve A,B,C for set;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

162 · Adam Grabowski et al.

theorem
A \ B c= C implies A c= B \/ C
proof
assume

A1: A \ B c= C;
let x be set;
assume

A2: x in A;
per cases;
suppose x in B;
hence thesis by XBOOLE_0:def 3;

end;
suppose not x in B;
then x in A \ B by A2,XBOOLE_0:def 5;
then x in C by A1,TARSKI:def 3;
hence thesis by XBOOLE_0:def 3;

end;
end;

Please note that the theorem keyword makes the statement exportable (it is then
possible to refer to it in other articles).

case is similar to suppose; although if the latter faithfully reflects the idea of
proof by cases, case can be used, e.g. to prove a disjunction of conjuncts. Both
suppose and case have to be bracketed with their closing end.

now opens diffuse reasoning (that requires a closing end). The proved statement
is not written explicitly, letting the Reasoner to reconstruct it dynamically – useful
in the case of a long list of generalized variables and a long thesis.

A general form is

now
...
thus Alpha(x);

end;

where dots replace reasoning (sequence of formulas) and it is just a proof of Alpha(x).
Conversion of arbitrary diffuse statement into formula is usually not problematic,
maybe with the exception of

now
assume Alpha;
...
take x;
thus Beta;

end;

where exemplification can be translated back into the formula

Alpha implies ex x st Beta;

hereby can be treated as a kind of shorthand for thus and now. This construc-
tion allows to omit one nesting of the proof:
Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 163

hereby
assume k in n;

::here the proof...
hence k < n;

end;

k in n implies k < n
proof
assume k in n;

::here the proof...
hence k < n;

end;

2.3 Defining notions

In this section we will show how to define new notions in the Mizar language.
It is important to know what kinds of notions can be introduced and how they
correspond to notions used in standard ’pen-and-paper’ mathematics.

To start, let us consider the following formulas:

∀n∈N n+ 1 > 0

the sum of a natural number and 1 is positive

for n being a natural number it holds that n+ 1 > 0

for n being a natural number it holds that n+ 1 is positive

All the above formulas express the same property, but use different syntactic
and logical devices. First of all, there is a universal quantifier, spelled as ∀ or “for
. . . holds . . . ”. There is a variable n, numerals 0 and 1, which construct a term
using the + operation symbol. Whenever n is used, we always state what sort of
values it can take, in other words what is the type of it (’natural number’ in this
case). The type may consist of a single noun (’number’), or may be made more
precise by prepending some adjectives (like ’natural’), so that the statement is true.
In the above formulas we also have a relation symbol >, which is used to create
a predicative formula, and also an attributive formula created using the adjective
’positive’.

All these constructs are supported in Mizar. Namely, predicates are used to
construct formulas, modes are constructors of types, adjectives are constructed
with attributes, and functors are constructors of terms.

All new notions are introduced within a definitional block which starts with the
definition keyword and finishes with a corresponding end;. Within such a block
there may appear:

—arguments (if required) with their corresponding types, called loci (locus in sin-
gular) introduced with the let keyword

—possibly some assumptions for the definition that follow assume or given
—the main part of the definition – a detailed description of this part will follow in

next sections

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

164 · Adam Grabowski et al.

—correctness conditions if they are needed to guarantee the soundness of the defi-
nition

—properties of the introduced notion (e.g. commutativity of an operation, or re-
flexivity of a relation), if applicable

—additionally, a definitional block may contain local reasonings that may be used
in several proofs within the current block.

A single definitional block may be used to introduce many notions. However, a
new notion becomes available only after the block is closed with end;. For example,
in the following text, the Mizar system reports an error marked with the *102 flag
indicating an unknown predicate:

definition
pred pred_symbol_1 means not contradiction;
pred pred_symbol_2 means pred_symbol_1;

::> *102
::> 102: Unknown predicate
end;

To fix this problem, one should introduce the latter predicate in a separate defi-
nitional block:

definition
pred pred_symbol_2 means pred_symbol_1;

end;

Now let us concentrate on the loci declarations. First of all, none of the arguments
may be omitted in the declaration part of a definitional block. For example, when
defining a subset’s complement within a superset, both arguments must be declared
in the loci section that is opened with the let keyword:

definition
let E be set, A be Subset of E;
func A‘ -> Subset of E equals
E \ A;
...

end;

The following definition is, therefore, incorrect:

definition
let A be Subset of E;

::> *140
func A‘ -> Subset of E equals
...

end;
::>,140
::> 140: Unknown variable

Even if the variable E has already been locally defined in the article, an error is
reported:

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 165

set E = the set;
...
definition
let A be Subset of E;

::> *222
func A‘ -> Subset of E equals
...

end;
::> 222: Local constants are not allowed in library items

Although taking the complement is in fact a two-argument operation, defining it
as above yields one hidden argument (E) and one visible argument (A). An alternative
definition might look like this:

definition
let E,A;
func ‘(E,A) -> Subset of E equals
E \ A;
...

end;

where both arguments are visible. But, as in standard mathematics practice, such
definitions are not used frequently. The Mizar system, however, does not require
that the minimal number of visible arguments be used. Yet the arguments cannot
be repeated:

definition
let E,A;
func ‘(E,A,A) -> Subset of E equals

::> *141
E \ A;
...

end;
::> 141: Locus repeated

The key property of Mizar loci is that every locus must be used as a parameter of
another locus, or a visible argument of the defined notion. In our example definition,
the set E is a parameter of the type of the its subset A, so it does not need to be a
visible argument. However, the following definition would be incorrect:

definition
let E be set, A be Subset of E;
func ‘E -> Subset of E equals

::> *100
E \ A;
...

::> 100: Unused locus

because A does not comply with that requirement.
Throughout this paper, for reader’s convenience, in contexts where in the de-

scription of defined notions it is not necessary to provide their full meaning, it may
Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

166 · Adam Grabowski et al.

be enough to provide the symbol of the defined notion together with the number
of its left and right arguments, called its format. If we add to the format also the
information on the types of all loci (and the result type if applicable), then we get
the definition’s pattern.

With that general terminology set, let us move on to the aspects specific to the
definitions of certain kinds of constructors.

2.3.1 Predicates. The definitions of predicates, just like all other constructors,
are stated in a definitional block. After the list of loci declarations, the pred
keyword is followed by the defined predicate’s format. The arity is specified with a
certain number of loci symbols on both sides of the predicate symbol, e.g.:

definition
let f,g be Function; let A be set;
pred f,g equal_outside A means

:Def:
f|(dom f \ A) = g|(dom g \ A);

end;

Here the equal_outside predicate has three arguments: two left arguments
and one right argument. Then, after the means keyword follows a label (optional)
which may be later used to refer to that definition and the definiens, i.e. the formula
describing the defined relation, in our example: f|(dom f \ A) = g|(dom g \ A).

Referring to a definition means making a reference to its corresponding defi-
nitional theorem generated implicitly by the system, in our example it has the
following meaning:

for f,g being Function, A being set holds
f,g equal_outside A iff f|(dom f \ A) = g|(dom g \ A);

The Mizar language supports also ”piecewise definitions”, where the actual mean-
ing is different in different setting e.g.:

definition
let x,y be ext-real number;
pred x <= y means
ex p,q being Element of REAL st p = x & q = y & p <= q
if x in REAL & y in REAL

otherwise x = -infty or y = +infty;
end;

In that case, the definitional theorem has the form:

for x,y being ext-real number holds
(x in REAL & y in REAL implies
(x <= y iff ex p,q being Element of REAL st

p = x & q = y & p <= q)) &
(not x in REAL or not y in REAL implies

(x <= y iff x = -infty or y = +infty));

Some of the defined notions can be accompanied in their definitional block by
statements and proofs of specific properties. For example, a relation defined in such
Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 167

a way that it is always symmetric, may have this fact recorded with the symmetry
property within its definition. Then the Mizar verifier can use this property as an
extra heuristic whenever the notion is used. More information on the properties
supported by Mizar can be found in Section 2.5.

Let us also mention that any Mizar definition may be formulated under some
assumptions that follow the assume keyword. Typically, assumptions are needed
to assure that the introduced notion is well-defined, i.e. the required correctness
conditions can be proved for a given definiens. Although it is not disallowed by
the language, it makes little sense to use assumptions in definitions of predicates,
because in that case no correctness conditions are required, so an assumption would
result in an unnecessarily restricted definition.

2.3.2 Attributes. Attributes are constructors of adjectives. One can define an
attribute with the attr keyword, followed by its subject, is keyword, the attribute’s
symbol, and the means keyword followed by the definiens (there can also be a label
before the definiens to allow making references). It is required that the locus which
plays the role of the subject be the last one in the list of all loci. Otherwise, there
would be unused loci in the definition.

definition
let E be set, A be Subset of E;
attr A is proper means :Def:
A <> E;

end;

The corresponding definitional theorem which is used by the Checker whenever
a reference is made to the definition, can be formulated as follows:

for E being set, A being Subset of E holds
A is proper iff A <> E;

An important extension of the Mizar attribute system is the support for attributes
with visible arguments. This mechanism, for example, allows to introduce the notion
of n-dimensional space or r,c-sized matrix. In that case, after the is keyword,
but before the attribute symbol the syntax allows for a list of arguments, e.g.:

definition
let N be Cardinal, X be set;
attr X is N-element means
card X = N;

end;

Just like in the case of attributes without visible arguments, the system requires
that the subject be specified as the last locus. In the above example, although all
loci (X and N) are used in the pattern, the position of the subject (X) is determined.
Therefore the following definition would be incorrect:

definition
let X be set, N be Cardinal;
attr X is N-element means

::> *374

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

168 · Adam Grabowski et al.

card X = N;
end;
::> 374: Incorrect order of arguments in an attribute definition

2.3.3 Modes. Types in Mizar are constructed using modes. Mizar supports two
kinds of mode definitions:

—modes defined as a collection (called a cluster) of adjectives associated with an
already defined radix type to which they may be applied, called expandable modes,

—modes that define a type with an explicit definiens that must be fulfilled for an
object to have that type.

Expandable modes are introduced with the mode keyword, the mode’s symbol
with an optional list of arguments (the arguments follow the of keyword), followed
by the is keyword, a list of adjectives and the radix type. For example:

definition
mode Function is Function-like Relation;

end;

As the name indicates, expandable modes are just shortcuts, or macros, which
are internally expanded by the system into a collection of adjectives associated with
a radix type. Therefore, the verifier does not need any reference to accept that an
object of type Function has also the type Function-like Relation, and the other
way round.

A definition of a non-expandable mode has a slightly different syntax, because
the underlying property is stated explicitly in the definition. So, after the mode
keyword, the symbol and the potential list of its arguments, there is an arrow ->
and the mother type followed by the means keyword and the definiens (which may
be labeled). For example:

definition
let X be set;
mode a_partition of X -> Subset-Family of X means :Def:
union it = X &
for A being Subset of X st A in it holds A <> {} &
for B being Subset of X st B in it holds A = B or A misses B;

end;

Please note that the it keyword in the definiens is used to refer to an object
possessing the type being defined.

One of the key features of the Mizar type system is that the introduced types
must be non-empty, i.e. there must exist at least one object of a given type.
This restriction is introduced to guarantee that the formalized theory always has
some denotation. Therefore mode definitions require a proof of that fact stated in
the form of the existence condition. More information on correctness conditions
can be found in Appendix A. The equivalent existence condition for expandable
modes is realized by existential registrations of clusters of adjectives. So before the
expression Function-like Relation could be used to define a new expandable
mode, it must be first registered (see Section 2.6).

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 169

Let us note that the non-emptiness of types allows to introduce into reasonings
variables of any type with the consider statement, because their existence is guar-
anteed. Moreover, Mizar can internally support global choice in the sense that it
generates one object for every type, not specifying its structure,
e.g.: the real number is a fixed real number. Whenever the term the real number
is used, it is always the same number, although its value is not specified.

The mother type in a mode definition is used to specify the direct predecessor
of the defined mode in the tree of Mizar types (representing the type widening
relation). The type constructed with the new mode widens to its mother type. The
widening relation also takes into account the adjectives that come with types, i.e.
the type with a shorter list of (comparable) adjectives is considered to be wider.
The built-in type set is always the widest.

With the above example definition, the system automatically accepts as true that
every partition is a family of subsets of the underlying set. It means that all notions
defined for families of subsets can be also applied to partitions. However, to state
that a certain family of subsets is in fact a partition one needs to make a reference
to the corresponding definitional theorem. The theorem generated by the system
for the above definition has the following meaning:

for X being set, IT being Subset-Family of X holds
IT is a_partition of X iff
union IT = X &
for A being Subset of X st A in IT holds A <> {} &
for B being Subset of X st B in IT holds A = B or A misses B;

Please note that non-expandable modes can be redefined (see Section 2.4), while
expandable modes cannot, because of their macro-like nature.

2.3.4 Functors. The constructors of terms in Mizar are called functors. A func-
tor’s definition starts with loci declarations and assumptions (if needed), just like
in the case of other previously defined constructors.

Then after the func keyword the functor’s format is specified. Mizar supports
prefix, infix and suffix formats, as well as circumfix (bracket-like) formats that are
useful for encoding notions like intervals, etc.

Please note that if the number of arguments on the left or right side of the
functor’s symbol is greater than one, then these arguments must be put in brackets.

After the format, there is an arrow -> followed by the type of the defined opera-
tion. In case the type is set (the most general type that all objects automatically
have), this phrase can be omitted. Finally, the meaning of the term is provided
after the means keyword followed by the (usually labeled) definiens, e.g.:

definition
let X,Y be set;
func X \/ Y -> set means
x in it iff x in X or x in Y;
existence;
uniqueness;

end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

170 · Adam Grabowski et al.

Within the definiens, the keyword it may be used for referring to the term being
defined, with the declared type.

A functor is well-defined if its definition contains proofs of two correctness con-
ditions: existence and uniqueness. Please see Appendix A for more information
on the formulas to be proved as correctness conditions.

As in the case of other definitions, a reference made to a definition is in fact a
reference to its definitional theorem. In our example it would look like this:

for X,Y,Z being set holds Z = X \/ Y iff
for x being set holds x in Z iff x in X or x in Y;

It is often the case that the definiens of a functor has the form it = In
other words, the object being defined is simply equal to some term which may
be constructed. Then it is advisable to use a slightly different syntax to define
such functors, where instead of the means keyword and the standard definiens one
should use equals followed by the term to which the new object should be equal.
For example, symmetric difference can be defined as below:

definition
let X, Y be set;
func X \+\ Y -> set equals
(X \ Y) \/ (Y \ X);
coherence;

end;

In that case, the required correctness condition is different (coherence). Namely,
if the term can already be constructed, it obviously exists and is unique, but it may
be necessary to prove that the term has the declared type.

The definitional theorem in that case has a simpler form:

for X,Y,Z being set holds
Z = X \+\ Y iff Z = (X \ Y) \/ (Y \ X);

Please note that although the definitional theorem is always generated by the
system and may be referenced in proofs concerning that notion, it is often not
necessary to refer to it. That is because the Checker uses equals expansion and
every occurrence of such a term (like X \+\ Y in our example) may be automatically
expanded to its full form (in that case (X \ Y) \/ (Y \ X)). The expansion takes
place if the name of the article that contains such a definition is listed in the
definitions environment directive (see Section 4.4). Please note that the current
implementation of the Mizar system restricts the expansions to three levels only.

2.3.5 Structures. Structures in Mizar can be used to model mathematical no-
tions like groups, topological spaces, categories, etc. which are usually represented
as tuples. A structure definition contains, therefore, a list of selectors to denote its
fields, characterized by their name and type, e.g.:

definition
struct multMagma
(# carrier -> set,

multF -> BinOp of the carrier #);
end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 171

where multMagma is the name of a structure with two selectors: an arbitrary set
called its carrier and a binary operation on it, called multF. This structure can be
used to define a group, but also upper and lower semilattices, so in fact any notion
that is based on a set and a binary operation on it.

Please note that the above structure does not define a group yet (nor any other
more concrete object), because there is no information on the properties of multF.
The structure is just a basis for developing a theory. In practice, after introducing
a required structure, a series of attributes is also defined to describe the properties
of certain fields.

As mentioned before, the above multMagma structure can be used to define no-
tions which are not only groups. Still, the operation in such structures inherit the
name multF, because the current Mizar implementation does not provide a mecha-
nism to introduce synonyms for selectors (or whole structures). Therefore, in cases
when a different name is frequently used in standard mathematical practice, it may
be better to introduce a different structure. For example, lattice operations are
commonly called meet and join, so a lower semilattice may be better encoded as:

definition
struct /\-SemiLattStr
(# carrier -> set,

L_meet -> BinOp of the carrier #);
end;

Mizar supports multiple inheritance of structures that makes a whole hierarchy of
interrelated structures available in the Mizar library, with the 1-sorted structure
being the common ancestor of almost all other structures. For example, formalizing
topological groups in Mizar can be done by independently defining and developing
group theory and the theory of topological spaces, and then merging these two
theories together based on a new structure, e.g.:

definition
struct (1-sorted) TopStruct
(# carrier -> set,

topology -> Subset-Family of the carrier #);
end;

definition
struct (multMagma, TopStruct) TopGrStr
(# carrier -> set,

multF -> BinOp of the carrier,
topology -> Subset-Family of the carrier #);

end;

The advantage of this approach is that all notions and facts concerning groups
and topological spaces are naturally applicable to topological groups.

Let us note that when introducing a new structure, the inherited selectors can
be listed in any order, as far as relations between them are preserved. The list of
names of ancestor structures is put in brackets before the name of the structure
being defined.

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

172 · Adam Grabowski et al.

An important extension of the Mizar structure system is the possibility to define
structures parameterized by arbitrary sets, or other structures, e.g.:

definition
let F be 1-sorted;
struct (addLoopStr) VectSpStr over F
(# carrier -> set,

addF -> BinOp of the carrier,
ZeroF -> Element of the carrier,
lmult -> Function of [:the carrier of F,the carrier:],

the carrier #);
end;

For example, the above structure can be used as the basis of a vector space over
the field of real or complex numbers. The system allows for defining structures with
several parameters, all of them must be introduced as loci in the definition.

Concrete mathematical objects, e.g. the additive group of integers are introduced
with so called aggregates - special term constructors defined automatically by the
definition of a structure, e.g.: multMagma(#INT,addint#), where INT is the set
of integers, and addint represents the addition function. It is necessary that all
terms used in the aggregate have the respective types declared in the structure’s
definition. In our example INT is obviously a set, and addint must be of type
BinOp of INT.

Every structure defines implicitly a special attribute, strict. The corresponding
adjective’s meaning is that an object of a structure type contains nothing more,
but the fields defined for that structure. For example, a term with structural type
based on TopGrStr may be strict TopGrStr, but it is neither strict multMagma, nor
strict TopStruct. Clearly, every term constructed using a structure’s aggregate is
strict.

Finally, the Mizar language has means to restrict a given term with a complex
structure type to its well-defined subtype. This special term constructor, the for-
getful functor also utilizes the structure’s name, e.g. the multMagma of G, where
G has a potentially wider type which inherits the multMagma structure. Again, such
terms are strict, with respect to the given structure type.

2.3.6 Synonyms and antonyms. Mizar supports using synonyms of a relation,
adjective, type or operation if a different symbol should be used instead of the
original one. The new symbol must, of course, be appended to a vocabulary file.

Synonyms are introduced in the notation ... end; block that resembles the
definitional block, e.g.:

definition
let A be set, B be Subset of A;
pred pred_symbol_1 A,B means not contradiction;

end;

notation
let A be set, B be Subset of A;
synonym pred_symbol_2 A,B for pred_symbol_1 A,B;

end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 173

The types of loci in a synonym declaration may be more specific than those in
the original definition. However, it is not possible to substitute loci with constant
terms, so a set A cannot be substituted with the set of natural numbers NAT:

notation
let B be Subset of NAT;
synonym pred_symbol_2 B for pred_symbol_1 B,NAT;

::> *300,142
::> 142: Unknown locus
::> 300: Identifier expected
end;

Synonyms can also be used to change the format, e.g. from prefix to infix like
below:

notation
let A be set, B be Subset of A;
synonym A pred_symbol_2 B for pred_symbol_1 A,B;

end;

Moreover, a synonym can change (increase or decrease) the number of visible
arguments, e.g.:

notation
let A be set, B be Subset of A;
synonym pred_symbol_1 B for pred_symbol_1 A,B;

end;

Please note that, like in definitions, here also one must obey the rules that disallow
repeated or unused loci.

In the case of modes, synonyms can only be used for non-expandable modes.
Therefore the following notation would be incorrect:

notation
let X be set;
synonym mode_symbol of X for Subset of X;

::> *134
end;
::> 134: Cannot redefine expandable mode

because Subset of X is defined as an expandable mode (Element of bool X).
An important feature of Mizar synonyms is that they do not inherit the type

of a redefined original constructor (see Section 2.4 for more information on redef-
initions). Let us take a look at an example where Morphism of a,b denotes an
arbitrary morphism between objects of the same category. In the following example,
the type is defined with the mother type set:

definition
let C be non void non empty CatStr, a,b be Object of C;
mode Morphism of a,b -> set means
...

end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

174 · Adam Grabowski et al.

and then the type is redefined as Morphism of C (any morphism in the underlying
category):

definition
let C be non void non empty CatStr, a,b be Object of C;
redefine mode Morphism of a,b -> Morphism of C;
...

end;

If we consider a synonym:

notation
let C be non void non empty CatStr, a,b be Object of C;
synonym morphism of C,a,b for Morphism of a,b;

end;

then the synonym does not possess the type Morphism of C, as seen in the following
proof extract:

set C = the non void non empty CatStr;
set a = the Object of C;
set b = the Object of C;
set m = the morphism of C,a,b;
m is Morphism of a,b;
m is Morphism of C;
::> *4
::> 4: This inference is not accepted

Analogous rules apply to introducing synonyms for functors. In the case of
predicates and attributes, one may also introduce antonyms. The rules concerning
introducing antonyms are the same, so let us only present here one example of their
use:

notation
let i be Integer;
antonym i is odd for i is even;

end;

Then instead of using the artificially looking phrases like non even Integer one
may use a much more natural notation.

The paper [7] provides useful hints to make definitions effective.

2.4 Redefinitions

Redefinitions are used to change the definiens or type for some constructor if such a
change is provable with possibly more specific arguments (please note that structure
definitions cannot be redefined). Depending on the kind of redefined constructor
and the redefined part, each redefinition induces a corresponding correctness con-
dition that guarantees that the new definition is compatible with the old one. A
detailed description can be found in Appendix A.

Considering the most general notion of equality:

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 175

definition
let x, y be set;
pred x = y;

end;

the predicate may be better described in the context of specific arguments. For
example, if the arguments of equality are known to be relations, then the fact that
they are equal may be expressed using the notion of pairs:

definition
let P, R be Relation;
redefine pred P = R means
for a,b being set holds [a,b] in P iff [a,b] in R;

end;

Similarly, equality of functions is best expressed if we can compare the results of
their application on the common domain:

definition
let f, g be Function;
redefine pred f = g means
dom f = dom g & for x being set st x in dom f holds f.x = g.x;

end;

Redefinitions may also be used to introduce properties (see Section 2.5) when
the property does not hold for the original (more general) predicate. For example,
with the following generic operation:

definition
let M be multMagma;
let x, y be Element of M;
func x*y -> Element of M equals
(the multF of M).(x,y);

end;

the result need not be commutative. But if the underlying structure is appropriate
(commutative in this redefinition), the property can be recorded:

definition
let M be commutative non empty multMagma;
let x, y be Element of M;
redefine func x*y;
commutativity;

end;

It must be noted here that Mizar uses a flat concept of redefinitions, i.e. a redef-
inition always redefines the original constructor and never a previously introduced
redefinition.

Another important restriction is that only a proper pattern can be used in a
redefinition. In other words, it is not possible to redefine a constructor with a loci
substituted with a constant. For example, with the following definition:

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

176 · Adam Grabowski et al.

definition
let X, Y be set;
func X \/ Y -> set means
x in it iff x in X or x in Y;

end;

it is not allowed to make a redefinition with the constant term NAT used in place of
a locus:

definition
let X be set;
redefine func X \/ NAT -> non empty set;

::> *113
coherence;

end;
::> 113: Unknown functor

Redefinitions that change the type of a constructor may only be used when the
new type widens to the original one. Let us consider the definition below:

definition
let f be Function;
assume f is one-to-one;
func f" -> Function equals
f~;

end;

Then an example of a valid redefinition may be one where the argument is a
permutation, and so is the new result type:

definition
let X be set;
let f be Permutation of X;
redefine func f" -> Permutation of X;

end;

Restricting the original type is, therefore, incorrect, so the following redefinition
would yield an error:

definition
let X be set;
let f be Permutation of X;
redefine func f" -> set;

::> *117
coherence;

end;
::> 117: Invalid specification

Please also note that it is required that the order of loci used in a redefinition
match the original definition. For example, with the definition:

definition

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 177

let f be Function, x be set;
func f.x -> set means
[x,it] in f if x in dom f otherwise it = {};

end;

one might want to redefine it in the following more specific context, however, an
error would be reported:

definition
let C be non empty set, D be set;
let c be Element of C;
let f be Function of C,D;
redefine func f.c -> Element of D;

::> *109
end;
::> 109: Invalid order of arguments of redefined constructor

In this case, the solution would be to change the order of f and c, as follows:

definition
let C be non empty set, D be set;
let f be Function of C,D;
let c be Element of C;
redefine func f.c -> Element of D;

end;

The above example shows that extra loci may be added compared to the original.
The current Mizar implementation does not allow to reduce the number of loci,
even if the types of the available (fewer) arguments might widen to the types in the
definition.

2.5 Properties

As stated in Section 2.3, some of the defined notions can be accompanied in their
definitional block by statements and proofs of specific properties. These properties
are stored together with the definitions, so the Mizar Checker can automatically
use a corresponding formula as an extra heuristic whenever the notion is used.
Some of the properties may be introduced in redefinitions (see Section 2.4), where
loci types are more specific.

2.5.1 Projectivity. This is the property of a function which states that its double
application does not change the result, i.e f(f(x)) = f(x). A typical example of a
functor definition which possesses this property is:

definition
let x be real number;
func sgn x -> integer number equals
1 if 0 < x, -1 if x < 0 otherwise 0;
...
projectivity;

end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

178 · Adam Grabowski et al.

The projectivity property is only applicable to functors with one visible argu-
ment, and the result type must widen to the type of the argument. If the property
is stated, a corresponding correctness condition must be proved within the defini-
tion (see Appendix A for more details). In the current Mizar implementation, this
property cannot be used in redefinitions.

2.5.2 Involutiveness. This is the property of a function which says that the
result of double application is equal to the original argument, i.e. f(f(x)) = x. A
typical example would be an operation of taking the inverse element, e.g. in a
group:

definition
let G be Group, h be Element of G;
func h" -> Element of G means
h * it = 1_G & it * h = 1_G;
...
involutiveness;

end;

Here it is also meaningful only if there is one visible argument. The result type
is required to be equal to the type of the argument. The correctness condition to
be proved for definitions with involutiveness can be found in Appendix A. In the
current Mizar implementation, this property cannot be used in redefinitions.

2.5.3 Idempotence. An idempotent binary operation applied to two equal val-
ues gives that value as the result. For example the set-theoretical union has this
property (x \/ x = x):

definition
let X,Y be set;
func X \/ Y -> set means
x in it iff x in X or x in Y;
...
idempotence;

end;

The idempotence property is applicable to functors with two visible arguments
with the same type. The correctness condition to be proved for definitions with
idempotence can be found in Appendix A. In the current Mizar implementation,
this property cannot be used in redefinitions.

2.5.4 Commutativity. This is a property of binary operations that allows to
simply swap the arguments. Again, the set theoretical union obviously has this
property (x \/ y = y \/ x):

definition
let X,Y be set;
func X \/ Y -> set means
x in it iff x in X or x in Y;
...
commutativity;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 179

end;

The commutativity property is applicable to functors with two visible argu-
ments with the same type. See Appendix A for more information on the required
correctness condition. Please note that commutativity can be used in redefini-
tions.

Below we present five kinds of supported properties that are applicable to binary
predicates (and can be introduced in both definitions and redefinitions).

2.5.5 Reflexivity. A relation is said to be reflexive if any argument is in that
relation with itself. Let us take as an example the divisibility relation:

definition
let i1,i2 be Integer;
pred i1 divides i2 means
ex i3 being Integer st i2 = i1 * i3;
reflexivity;

end;

See Appendix A for the description of the formula that needs to be proved as the
correctness condition.

2.5.6 Irreflexivity. Conversely, a relation is irreflexive if any argument can never
be in that relation with itself, as is the case with e.g. the proper inclusion:

definition
let X,Y be set;
pred X c< Y means
X c= Y & X <> Y;
irreflexivity;

end;

Appendix A presents the formula that needs to be proved as the correctness
condition.

2.5.7 Symmetry. With a symmetric relation the arguments can be swapped.
An example of a clearly symmetric predicate is presented below:

definition
let X,Y be set;
pred X misses Y means
X /\ Y = {};
symmetry;

end;

See Appendix A for the description of the formula that needs to be proved as the
correctness condition.

2.5.8 Asymmetry. Asymmetric predicates are ones that always change their
logical value whenever the arguments are swapped. An example we used to demon-
strate irreflexivity can also be used here, as the proper inclusion is obviously
asymmetric, too:

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

180 · Adam Grabowski et al.

definition
let X,Y be set;
pred X c< Y means
X c= Y & X <> Y;
asymmetry;

end;

The corresponding correctness condition to be proved is presented in Appendix A.

2.5.9 Connectedness. A binary relation is said to be connected if for any ar-
guments a and b, either (a,b) or (b,a) is a member of the relation. A typical
example is the inclusion relation defined on ordinal numbers:

definition
let A,B be Ordinal;
redefine pred A c= B means
for C st C in A holds C in B;
connectedness;

end;

See Appendix A for more information on the corresponding correctness condition.

2.6 Registrations

In the Mizar language, the common name registration refers to several kinds of
Mizar features connected with automatic processing of the type information based
on adjectives. Grouping adjectives in so called clusters (hence the keyword cluster
used in their syntax) enables automation of some type inference rules (see [17] for
a detailed description of this mechanism).

The first kind are the existential registrations which are used to secure the non-
emptiness of Mizar types. For example, the following registration provides a proof
(stated as the existence correctness condition) that there exists at lease one set
which is both finite and non-empty:

registration
cluster finite non empty set;
existence
...

end;

Another kind of registrations is called a conditional registration. Let us demon-
strate its syntax by the following example which states that every set which is
empty must also be finite:

registration
cluster empty -> finite set;
coherence
...

end;

Let us note here that the Mizar syntax allows the list of adjectives before the ->
arrow to be empty. In that case a registration is used to record adjectives which
can always be associated with the given type. For example:
Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 181

registration
let X be finite set;
cluster -> finite Subset of X;
coherence
...

end;

The dependencies of adjectives recorded as conditional registrations are then used
automatically by the Mizar verifier. However, it is important to distinguish their
processing in the Analyzer and the Checker modules. The calculus done within
the Checker (see Section 3.5) makes it possible to infer some consequences of
registrations e.g. a contraposition of a conditional registration. This is not possible
in the Analyzer, so the type checking done in this module may in some cases
require an explicitly stated registration:

cluster infinite -> non empty set;

although this consequence of adjectives is obvious for the Checker (infinite is
defined as an antonym for finite).

The users must be aware of the fact that existential registrations are extended
with the available conditional consequences. For example, with the two following
conditional registration available:

cluster empty -> Relation-like set;

cluster empty -> Function-like set;

the subsequent existential registration:

cluster empty set;

registers in fact the following type with the (rounded-up) cluster of adjectives:

cluster empty Relation-like Function-like set;

Knowing that feature is extremely important, because a successful import of
such a registration from a database is only possible if the constructors of all its
adjectives are available in the article’s environment (the Constr utility may be
used to detect all needed constructors for a particular registrations with respect to
a given environment, see Section 4.5).

Finally, the third kind of registrations are term adjectives registrations, sometimes
also called functorial registrations in the Mizar jargon. As the name suggests, they
are used to register a certain property possessed by a specified term. In contrast
to redefinitions, not only patterns can be used, but also more complex terms. The
term may be constructed using a functor, selector, aggregate or forgetful functor.
For example:

registration
let X be non empty set;
let Y be set;
cluster X \/ Y -> non empty;
coherence
...

end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

182 · Adam Grabowski et al.

An extended syntax of term adjectives registrations (with an extra type) can
be used to register adjectives which are applicable only for terms with a redefined
type. Let us consider the following registration:

registration
let T be TopSpace;
let X, Y be open Subset of T;
cluster X \/ Y -> open Subset of T;
coherence
...

end;

In this case, the adjective open is only correct if the type of the term (X \/ Y)
is properly identified as the redefined variant (Subset of T).

Please bear in mind that it is a common misconception (resulting from similar
syntax) that registrations with the extra type change the type of the registered
term the way that redefinitions do. On the contrary, to accept such a registration,
the system must be able to infer that the given term has the provided type (as a
result of a respective redefinition).

Let us finally state here as a general rule that registrations are usually preferred
to redefinitions. The first reason is that registrations do not introduce new construc-
tors. Also the adjective clusters imported via registrations are simply cumulated,
while the flat concept of redefinitions gives access only to the last redefinition avail-
able. More information on the internal processing of adjectives in Mizar can be
found in [11].

2.7 Terms identification

In mathematical practice, a given object or an operation is often treated in many
different ways depending on contexts in which they occur. A natural number can
be considered as a von Neumann number, or as a finite ordinal. The least common
multiply can be considered as an operation on numbers, or as the supremum of
elements of some lattice, and so on. In such cases it is often worthwhile to have
automatic ’translation’ theorems. In Mizar this is done with terms identification
using the identify keyword (technically implemented in the registration block),
e.g.:

registration
let p, q be Element of Nat_Lattice;
identify p "\/" q with p lcm q;
compatibility;

end;

The aim of the identification is matching the term at the left side of the with
keyword with the term stated at the right side, whenever they occur together. The
current implementation allows matching in one direction only, i.e. when the verifier
processes a sentence containing the left side term, it generates its local copy with
the left side term symbol substituted by the right side one and makes both terms
equal to each other. Such an equality allows to justify facts about the left side
terms via lemmas written about the right side ones, but not vice versa. In this

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 183

sense identification is not symmetric, which is showed with the following example,
where Nat_Lattice is the lattice of naturals with lcm and hcf as operations.
Then, the following lemma

L1: for x, y, z being natural number holds
x lcm y lcm z = x lcm (y lcm z);

can be used to justify the sentence

L2: for x, y, z being Element of Nat_Lattice holds
x "\/" y "\/" z = x "\/" (y "\/" z) by L1;

but justifying L1 with L2 directly does not work.
Terms identification is available immediately at the place where it is introduced

till the end of the article. If one wants to use the identification introduced in an
external article, it should be imported in the environment. The current imple-
mentation of identification is internally similar to registrations, so identification
does not have a library directive on its own, so identifications are imported with
registrations.

Below are typical errors that may be reported while working with term identifi-
cations:

registration
let p, q be Element of Nat_Lattice;
identify p "\/" q with 1_NN;

::> *189,189
end;

::> 189: Left and right pattern must have
the same number of arguments

In this case the error description offered by the checker is self-explanatory.

registration
let p, q be Element of Nat_Lattice;
let m, n be Nat;
identify p "\/" q with m lcm n when p = m, q = n;

::> *139 *139
end;

::> 139: Invalid type of an argument.

This error means that the types of variables p and q do not round up to the types
of m and n, respectively. The solution to the problem is the registration:

registration
cluster -> natural Element of Nat_Lattice;
coherence;

end;

2.8 Summary of definitions, redefinitions and registrations

The table below summarizes the usage of required correctness conditions and prop-
erties applicable to a particular kind of definition.

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

184 · Adam Grabowski et al.

Definitions
Correctness conditions Properties

Predicate —

reflexivity
irreflexivity
symmetry
asymmetry

connectedness
Attribute — —

Mode existence —

Functor
existence

commutativity
idempotence

uniqueness
involutiveness
projectivity

In case of redefinitions the required correctness conditions and properties depend
on whether the result type or definiens is changed:

Redefinitions changing the result type
Correctness conditions Properties

Mode coherence —
Functor coherence commutativity

Redefinitions changing the definiens
Correctness conditions Properties

Predicate compatibility

reflexivity
irreflexivity
symmetry
asymmetry

connectedness
Attribute compatibility —

Mode compatibility —
Functor compatibility commutativity

Below is a list of correctness conditions required to justify a particular kind of
registration.

Registrations
Correctness conditions

Existential existence
Conditional coherence
Functorial coherence

Term identification compatibility

It should also be observed that partial definitions require an additional consistency
condition (see Appendix A). Moreover, please note that a universal correctness
condition correctness can be typed as a replacement for all correctness conditions
remaining to be proved in a given definition or registration.

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 185

3. SYSTEM

The Mizar verifier consists of several modules responsible for checking various as-
pects of correctness of Mizar articles. They are: Scanner, Parser, Analyzer,
Reasoner, Checker, Schematizer.

3.1 Scanner – tokenizer

The Scanner reads the source file and slices it into tokens. As the first step, all
comments (parts of lines that start with the double colon ::) are pruned. Next the
module analyzes segments of the text delimited by whitespaces and cuts them into
tokens – the longest possible strings that can be classified into one of the categories:

reserved words. – the full list is provided in Section 2.
symbols. – introduced in users’ vocabulary files to denote defined notions; a sym-

bol may contain any characters of the 7-bit ASCII code with codes above 32.
numerals. – sequences of digits starting with a non-zero digit (hence 0 is not

treated as a numeral); the numeric value of a numeral cannot exceed 32767 (maxi-
mal signed 16-bit integer).

identifiers. – strings of letters or digits that are neither reserved words, symbols,
nor numerals; identifiers are used to name variables, schemes and labels; according
to that rule, the text 01 is a valid identifier.

filenames. – uppercase strings of up to eight characters (alphanumeric and un-
derscores); used in environment directives to import items from selected articles,
and in library references within the main part of an article.

Let us finally recall here that the case of letters is significant for Mizar.

3.2 Parser

The main role of the Mizar Parser is checking the syntactic correctness with
respect to the grammar (see Appendix B) of the stream of tokens produced by the
Scanner and producing the abstract representation of the article in the form of
stacked blocks and items, to be used by the Analyzer.

It must be noted that the representation is generated taking into account some
features of the language that are not regulated by the rules of grammar: the pri-
ority and arity of imported operations, and a dedicated algorithm for long term
analysis (see [19] for a detailed description). To reduce the number of parentheses,
additional rules specify that the associative notation can be used for conjunctive
and disjunctive formulas, but not for implications and equivalences. Moreover, the
binding force of logical connectives is stronger than that of quantifiers.

3.3 Analyzer

The main role of the Analyzer is identification (disambiguation) of used con-
structors and notations on the basis of the type information imported from the
environment and available registrations.

If more than one way of identification is possible (as a result of symbol overload-
ing), the one that is last in the notations directive is effective. Let us assume, for
example, that we have two addition operations denoted with the same + symbol,
one for complex numbers and the other for extended real numbers (with ±∞).

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

186 · Adam Grabowski et al.

Then the expression 1+2 could be understood in two ways, provided the system is
able to infer that the numbers 1 and 2 have both types. The Analyzer would
then choose the operation which comes last in the list of available notations.

There is, however, a mechanism available in Mizar that can be used to force using
a selected identification. With the above example, the phrase

1 qua complex number + 2

forces the Analyzer to treat 1 as a complex number, and as a consequence the
variant for extended reals cannot be used.

3.4 Reasoner

The Reasoner module is responsible for checking if a proof tactic used by the
author corresponds to the formula being proved. The checking is based on the
internal representation of formulas in a simplified “canonical” form - their seman-
tic correlates using only VERUM, not, & and for _ holds _ together with atomic
formulas. Other formulas are encoded using the following set of rules:

—VERUM is the neutral element of the conjunction;
—double negation rule is used;
—de Morgan’s laws are used for disjunction and existential quantifiers;
—α implies β is changed into not(α & not β);
—α iff β is changed into α implies β & β implies α, i.e. not(α & not β) &
not(β & not α);

—conjunction is associative but not commutative.

Thanks to that simplification, a skeleton of a proof is considered valid as far as the
semantic correlate it generates is the same as that of the statement being proved.

3.5 Checker

The most complex module of the Mizar system is its Checker that works as a
classical disprover. Most importantly, in that module an inference of the form

α1, . . . , αk

β

is transformed to
α1, . . . , αk,¬β

⊥
A disjunctive normal form (DNF) of the premises is then created and the system
tries to refute it

([¬]α1,1 ∧ . . . ∧ [¬]α1,k1) ∨ . . . ∨ ([¬]αn,1 ∧ . . . ∧ [¬]αn,kn)
⊥

where αi,j are atomic or universal sentences (negated or not) - for the inference to
be accepted, all disjuncts must be refuted. So in fact n inferences are checked

[¬]α1,1 ∧ . . . ∧ [¬]α1,k1

⊥
...

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 187

[¬]αn,1 ∧ . . . ∧ [¬]αn,kn

⊥
In the refutation process, the Checker uses numerous heuristics that combine

into its notion of obvious inference. The processing concerns the type information
associated with all terms, the properties of used constructors, the equality calculus,
equals expansion and term identifications (identify registrations). The Checker
also uses special built-in automation procedures for processing selected, very fre-
quently used objects like e.g. complex numbers (direct computation) or boolean
operations on sets. These internal routines turned on using the requirements
directive are described in detail in [13].

3.5.1 Schematizer. Mizar supports the so called schemes to enable feasible en-
coding of statements frequently used in standard mathematics that go beyond first-
order logic. In Mizar one may use free second order variables for forming schemes
of theorems (infinite families of theorems). The syntax is best seen with a typical
example, e.g. the induction scheme:

scheme :: NAT_1:sch 2
NatInd { P[Nat] } : for k being Nat holds P[k]

provided
P[0] and
for k being Nat st P[k] holds P[k + 1];

If the second order variable represents a predicate, it is denoted by an identifier
followed by a list of argument types in square brackets (e.g. P[Nat]). In case of
a functor, simple brackets are used and the result type is stated (e.g. F(Nat) ->
Nat). Functors with an empty list of arguments are called scheme constants.

Locally, (within the article that introduces a scheme) a scheme is referenced by
its label (NatInd in this example). A scheme stored in the Mizar database can be
referenced with a library reference. To use a scheme one needs to follow these three
steps:

(1) define a private functor or predicate to be pattern-matched with the scheme’s
variables, depending on the scheme

(2) prove the scheme’s premises
(3) make a reference to the scheme using the from keyword in a justification of

the statement (an external scheme must be imported with the schemes envi-
ronment directive and the order of premises must match exactly the scheme’s
declaration).

An example of scheme usage that demonstrates the three steps marked with
respective comments is presented below:

2 divides n * (n+1)
proof
:: step 1 - private predicate
defpred P[Nat] means 2 divides $1 * ($1+1);
:: step 2 - premises

a1: P[0];
a2: for k being Nat st P[k] holds P[k+1];

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

188 · Adam Grabowski et al.

:: step 3 - referring to the scheme
for k being Nat holds P[k] from NAT_1:sch 2(a1,a2);
hence 2 divides n * (n+1);

end;

Below we point out typical errors that may be encountered while using schemes.
Let us assume that we have a scheme:

scheme :: NAT_1:sch 12
{ D() -> non empty set, A() -> Element of D(),
G(set,set) -> Element of D() }:

ex f being Function of NAT,D() st f.0 = A() &
for n being Nat holds f.(n+1) = G(n,f.n);

and want to use it to prove the existence of a recursive function, e.g.

definition
let s be Real_Sequence;
func Partial_Sums(s) -> Real_Sequence means

:: SERIES_1:def 1
it.0 = s.0 & for n being Nat holds it.(n+1) = it.n + s.(n+1);

end;

The correct usage may look like:

deffunc U(Nat,Real) = $2 + s.($1+1);
consider f being Function of NAT,REAL such that
f.0 = s.0 & for n being Nat holds f.(n+1) = U(n,f.n)
from NAT_1:sch 12;

where the scheme constants D() and A() are substituted by REAL and s.0, and
the scheme variable G(set,set) by the local functor U, respectively. This works,
because the types of the substituting terms fit the scheme declaration, i.e. REAL has
the type non empty set, s.0 is Element of REAL, and the result of U is Element
of REAL as well.

If we tried to use some irrelevant g instead of f, an error would be reported:

consider f being Function of NAT,REAL such that
g.0 = s.0 & for n being Nat holds f.(n+1) = U(n,f.n) from NAT_1:sch 12;
::> *20
::> 20: The structure of the sentences disagrees with the scheme

Similarly, if instead of s.0 some other term was used, say s, that does not have
the expected type (Element of REAL in this example), an error would occur:

consider f being Function of NAT,REAL such that
f.0 = s & for n being Nat holds f.(n+1) = U(n,f.n) from NAT_1:sch 12;
::> *26
::> 26: Substituted constant does not expand properly

Again, using e.g. s (without a proper type) instead of $2 + s.($1+1) in the
deffunc definition would also be invalid:

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 189

deffunc U(Nat,Real) = s;
consider f being Function of NAT,REAL such that
f.0 = s.0 &
for n being Nat holds f.(n+1) = U(n,f.n) from NAT_1:sch 12;
::> *30
::> 30: Invalid type of the instantiated functor

As stated before, to use a scheme we first define a private functor or predicate
to be pattern-matched with the scheme’s variables. This step is not necessary,
however, when a scheme predicate or functor is substituted by a matching formula
or term with exactly the same number and order of arguments. Let us analyze
the following example where we want to construct a function f : N→ N such that
f(n) = n!. One can use the following scheme:

scheme :: FUNCT_1:sch 4
Lambda { D() -> non empty set, F(set) -> set } :
ex f being Function st dom f = D() &
for d being Element of D() holds f.d = F(d);

substituting D() with the set of natural numbers NAT and F(set) with a local
functor:

deffunc F(Element of NAT) = $1!;

to get the function f as below

ex f being Function st dom f = NAT &
for d being Element of NAT holds f.d = F(d) from Lambda;

But, because both F(set) and ! are unary functors, the same result can be obtained
directly as:

ex f being Function st dom f = NAT &
for d being Element of NAT holds f.d = d! from Lambda;

However, if we wanted to introduce f : N→ N such that f(n) = 2 ∗ n, this method
would not work:

ex f being Function st dom f = NAT &
for d being Element of NAT holds f.d = 2*d from Lambda;
::> *28
::> 28: Invalid list of arguments of a functor

The error is generated because the multiplication (*) is a binary operation while
F(set) is expected to have just one argument. In this case defining a private functor
is required to use the scheme.

deffunc G(Element of NAT) = 2*$1;
ex f being Function st dom f = NAT &
for d being Element of NAT holds f.d = G(d) from Lambda;

Private definitions are also necessary when the order of arguments does not match
exactly. For example, to create f : N × N → N such that f(m,n) = mn one could
use the following scheme:

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

190 · Adam Grabowski et al.

scheme :: BINOP_1:sch 4
Lambda2D { X,Y,Z() -> non empty set,

F(Element of X(),Element of Y()) -> Element of Z() } :
ex f being Function of [:X(),Y():],Z() st
for x being Element of X() for y being Element of Y()
holds f.(x,y) = F(x,y);

as follows

ex f being Function of [:NAT,NAT:],NAT st
for x,y being Element of NAT holds f.(x,y) = x |^ y from Lambda2D;

But if we wanted to have f(m,n) = nm, an error would be reported:

ex f being Function of [:NAT,NAT:],NAT st
for x,y being Element of NAT holds f.(x,y) = y |^ x from Lambda2D;
::> *28
::> 28: Invalid list of arguments of a functor

because the order of x and y is reversed. To use the scheme in this situation, a
private functor like

deffunc F(Element of NAT,Element of NAT) = $2 |^ $1;

must be applied as below:

ex f being Function of [:NAT,NAT:],NAT st
for x,y being Element of NAT holds f.(x,y) = F(x,y) from Lambda2D;

Similar restrictions concern the use of scheme predicates.

4. SOFTWARE

4.1 Installation

The Mizar system and the Mizar Mathematical Library are publicly available for
download and may be used by anyone free of charge for non commercial purposes.
The contents of the Mizar distribution is copyrighted by the Association of Mizar
Users which maintains the Mizar Mathematical Library and coordinates the devel-
opment of Mizar software. The system is available in a ready to use precompiled
form for many operating systems. Latest Mizar releases (version 7.11.07, MML
4.156.1112) can be downloaded from the Mizar site via anonymous FTP or HTTP
for the following OS’s:

—Linux (i386),
—Solaris (i386),
—FreeBSD (i386),
—Darwin/Mac OS X (i386),
—Darwin/Mac OS X (PPC),
—Linux (PPC),
—Linux (ARM),
—Win32.

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 191

The distribution is self-contained, so the installation is rather straightforward.
The package contains the Mizar processor, all the articles constituting the Mizar
Mathematical Library and their abstracts, the database based on these articles, a
set of utility programs, and a GNU Emacs Lisp mode for convenient work with the
system. The installation requires about 220 MB of free disk space.

Below we show how to install Mizar in a Unix-like environment, and also on
Microsoft Windows.

4.1.1 Unix-like OS’s. The distribution can be downloaded as a tar archive, e.g.
mizar-7.11.07_4.156.1112-i386-linux.tar. The name of the archive indicates
the version of the Mizar system it contains (here 7.11.07), the version of MML
(here 4.156.1112) and the OS the software has been compiled for (here an i386-
based Linux).

Within the archive there is a script install.sh which is used to unpack the
Mizar system to specified directories. In most cases it is enough to call it without
any parameters:

./install.sh

and then answer three questions about the place where files should be copied. Please
note that the installation of a new version always replaces an old one completely
if the same directories are specified during both installations to avoid any version
conflicts.

There are two options that may be used with this script:

./install.sh --default

runs the script in a non-interactive mode (see below for default directories),

./install.sh --nodialog

always runs the script in a plain mode (not using the dialog utility to a semi-
graphic user interface for the installation) getting input directly from STDIN (useful
for using within shell scripts).

When running the installation script in the interactive mode, first you must
provide a name of a directory where you want to install Mizar executables (default
is /usr/local/bin). Make sure this directory is in your PATH environment variable.

Then you will be prompted to choose a directory for Mizar shared files (default
is /usr/local/share/mizar).

Please note that after the installation you must set a new environment variable,
MIZFILES to point to this directory. For example, when using the Bash shell, you
may put the following line in the Bash config file, .bashrc to have the setting per-
manent:

export MIZFILES=/home/john/my-mizar-files

Otherwise, the system will not be able to find the database correctly.

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

192 · Adam Grabowski et al.

Finally you will be asked by the installation script about a directory where Mizar
documentation files should be placed (default is /usr/local/doc/mizar).

After that, with the MIZFILES set correctly, the system is ready to use. The
distribution contains a GNU Emacs Lisp initialization file which you may use for
convenient work with the system. To use it, simply append the file .emacs from the
selected Mizar doc directory to your GNU Emacs initialization file, usually stored
as the .emacs file in a user’s home directory.

4.1.2 Microsoft Windows. The distribution can be downloaded as a self-ex-
tracting zip archive e.g. mizar-7.11.07_4.156.1112-i386-win32.exe. The name
of the archive indicates the version of the Mizar system it contains (here 7.11.07),
the version of MML (here 4.156.1112). The software has been precompiled so that
it can be run on virtually any version of Microsoft Windows (9x/2000/NT/XP/Vis-
ta/7).

Executing the self-extracting archive in a temporary directory produces a number
of compressed archives and an install script INSTALL.BAT which is used to unpack
the Mizar system to a specified directory. In most cases it is enough to call the
script at the command prompt set in that directory with one directory parameter,
e.g.:

INSTALL c:\mizar

The path c:\mizar can be replaced with the name of a different directory and a
different hard drive letter where the system should be installed. If the path is not
given, the default c:\mizar will be used. Please note that the installation of a new
version always replaces an old one completely if the same directories are specified
during both installations to avoid any version conflicts.

Please also note that after the installation you must set a new environment
variable, MIZFILES to point to the given directory. Otherwise, the system will not
be able to find the database correctly.

To be able to run Mizar executables without specifying the full path, you may
also want to append the system PATH variable with the name of that directory. In
newer Windows versions these tasks can be done by editing an appropriate entry in
the Environment Variables tab in the Control Panel -> System -> Advanced
menu.

On older Windows systems which utilize the AUTOEXEC.BAT configuration file,
one could add the following lines to that file to have the same effect (replacing
c:\mizar with a different directory if necessary):

set PATH=c:\mizar;%PATH%
set MIZFILES=c:\mizar

After that, with the MIZFILES set correctly, the system is ready to use. The
distribution contains a GNU Emacs Lisp initialization file which you may use for
convenient work with the system. To use it, simply append the file .emacs from
the Mizar doc subdirectory to your GNU Emacs initialization file, usually stored as
the .emacs file in a user’s home directory (pointed to by the environment variable

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 193

HOME or the HKCU\SOFTWARE\GNU\Emacs\HOME registry entry) or at the root of the
main file system (c:\.emacs).

4.2 Preparing a Mizar article

The mechanics of preparing a Mizar article is as follows:

—The source text is prepared using any ASCII editor and typically includes from
1500 to 5000 lines.

—The text is run through the Accommodator. The directives from the environ-
ment declaration guide the production of the environment specific for the article.
The environment is produced from the available database.

—Now the Verifier is ready to start checking. The output contains remarks on
unaccepted fragments of the source text.

These three steps are repeated in a loop until no errors are flagged and the author
is satisfied with the resulting text. Usually, Accommodator and Verifier are
called within mizf (or mizf.bat) user script. Alternatively, Josef Urban’s Emacs-
Lisp Mizar mode (now included in all Mizar distributions) provides a fully functional
interface to the Mizar system.

When finished, an article is submitted to the Library Committee of Association
of Mizar Users for inclusion into the Mizar Mathematical Library. The contributed
article is subject to a review and if needed the authors must revise their file. The
contents of an accepted article is extracted by the Exporter and Transfer util-
ities and incorporated into the public database distributed to all Mizar users. Al-
ternatively, the user can prepare a local database files by invoking the command
miz2prel article

and then
miz2abs article

to obtain also an abstract file with the extension .abs, i.e. the version of the .miz
file without proofs. Data extracted by Exporter is stored in prel subdirectory of
the current directory.

4.3 Vocabularies

Vocabularies define additional lexicons for Mizar articles. Like a Mizar article, a
vocabulary file is a plain ASCII file. Although it is in fact independent of any article,
its name should be the same as the name of an article the vocabulary is attached to.
The necessary extension is .voc and it should be placed in the subdirectory dict of
the directory with the .miz file (if it not placed in the text subdirectory as usually
suggested). Each line of a vocabulary file introduces a symbol; it begins with one
character qualifier which determines the kind of the symbol, followed immediately
by the representation of the defined symbol which is a string of arbitrary characters
excluding control characters, space, and double colon.

Qualifiers of the symbol have the following meaning:

—R – predicate,
—O – functor,
—M – mode,
—G – structure,

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

194 · Adam Grabowski et al.

—U – selector,
—V – attribute,
—K – left functor bracket,
—L – right functor bracket.

For a functor symbol an additional information may be given in a vocabulary file,
namely, the priority of the functor. The priority is an integer between 0 and 255,
written on the same line after a functor’s identifier and a space. If not specified,
the priority is by default equal to 64. For example, to facilitate the conventional
precedence of multiplication over addition, in the current MML the + symbol is
introduced with the lower priority

O+ 32

while * uses the default value.

4.4 Accommodator and environment declaration

The environment declaration of a Mizar article consists of the following directives:

vocabularies. Imports all symbols from the listed vocabularies to be used by
Scanner and Parser.

constructors. Imports all constructors defined in the listed articles and then all
other constructors needed to understand them. As a result, if a local environment
contains a constructor then it also contains the constructors occurring in its type
and in types of its arguments.

notations. Imports formats and patterns that are used by the already imported
constructors provided all the constructors needed to understand the notation have
already been imported.

registrations. Imports the definitions of registrations that state relationships
among adjectives, modes and functors.

theorems. Enables referring to theorems and definitional theorems from the
listed articles.

schemes. Similar to the above, gives access to schemes.
definitions. Requests definientia that can be used in proving by definitional

expansion without mentioning the definition’s name. It allows also for automatic
expansion of functors defined by equals.

requirements. Gives access to the built-in features associated with certain spe-
cial articles.

The Accommodator (Accom) gathers information from the Mizar database
according to the above directives, preparing a bunch of auxiliary files needed for
the Verifier. Alternatively, the Makeenv utility which resembles the Unix make
can be used – it calls Accom only if the environment declaration was modified and
intermediate files should be rebuilt.

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 195

4.5 Auxiliary utilities

Information about used symbols (vocabularies) is collected in a single text file
in the Mizar distribution, mml.vct. To facilitate the use of this file some simple
querying tools are attached. All these can be run from Emacs Menu: Mizar – Voc.
Constr. Utilities.

Findvoc. The most common calling sequence of this tool which finds the vo-
cabulary containing queried symbol is
findvoc -w <symbol>

where the switch -w means matching whole words.
For every symbol, its priority (only in case of functor symbol) and its qualifier is

given. No priority means a default one.
Because of the policy of the Library Committee to keep the symbol in the vo-

cabulary with the article identifier of its first use (not to have disjoint name spaces
for vocabularies and articles), this utility can give a rough view which environment
directives should be extended.

Listvoc. By calling this program (listing vocabularies) with the MML identifier
example one obtains the list of all symbols introduced by the vocabulary example.
As a rule, it is the first (taking into account the ordering given by mml.lar) article
using this symbol, this may however be changed as a result of a revision.

Checkvoc. This simple utility (checking vocabulary) should be invoked before
the submission of the article for inclusion in the MML. It checks if the user’s vocabu-
lary does not contain any prohibited characters (see Section 4.3), warns if one-letter
symbols are present or if there is a symbol introduced by someone else (i.e. already
available in mml.vct), possibly even in different context.

Constr. Getting environment description right to properly identify library ob-
jects is a major difficulty, especially for beginners. Once the text is correct with
respect to the Analyzer, the produced XML format gives unambiguous informa-
tion about origins of any object. Sometimes error *190 (Inaccessible theorem) is
marked.
constr ArticleName:n

gives the list of all constructor directives needed to recognize n-th theorem from
the article ArticleName. If one wants to list only missing filenames,
constr -f MyFile ArticleName:n

should be run.
The number can also be preceded by the keywords def, sch, exreg, funcreg, or

condreg (definition, scheme, and all three types of cluster registrations) to obtain
the list of all constructors for virtually any notion. Note that since the three latter
do not have their own numbering scheme, you have to count it by yourself, or
alternatively invoke the above command without the number (in this case the list
of the constructors needed to understand all objects of given type will be obtained).

It is often the case that running this command can help also to understand why
the Analyzer returns *103 errors although it seems that appropriate environment
directives are already there.

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

196 · Adam Grabowski et al.

4.6 Enhancers

Every Mizar distribution is equipped with a number of programs which help the
author to improve the quality of proofs; although they are not simple pretty printers.
All this programs suggest possible improvements on the Mizar text.

The calling sequence of the utilities listed below matters; they can be run from
Emacs as ‘Execute all irrelevant utils’. Otherwise, they can be run from the com-
mand line with the revf macro (errors flags and their explanations are added to
the text) as
revf <enhancer> article

Relprem. Searching for irrelevant premises is the most unproblematic and the
most popular control which can be performed when writing a Mizar article. Rel-
prem checks which references are not needed to accept the justification of a sen-
tence; it marks both linking and straightforward references. As it matches also
plain Verifier errors (besides the schemes), it is useful to use it for verification of
the article, although it significantly extends the time of checking in comparison to
the standard Verifier.

In the case of multiple Relprem errors reported for a single justification, it
means that at least one of these marked references can be removed. Errors *602
can override themselves. Please also be warned that errors *602 and *603 virtually
meaning the same might occur – if both then and the reference will be removed,
the inference will not be accepted anymore, as in the example below.

Marked errors: 602, 603.

A1: X <> {}; then
X <> {} by A1;

::> *603,602

Relinfer. The only controversial exception of the reviewing software is the
program which points out irrelevant inferences, i.e. unnecessary steps in a proof
(so the references may be added to the next step). It can exceptionally shorten
proofs but it may also result in poorer readability of the text. For example, some
sentences which are important for the proof technically are marked as irrelevant
steps, but their removal may force the user to repeat the same library reference (or
their combination) instead of a potentially useful lemma; or the removal may be
accidental in some sense, that is steps which are crucial for human understanding of
the idea of a proof, but are still unnecessary for machine (e.g., unwinding definitions
– definitional expansions). Here the tendencies to reduce the complexity of the proof
can be misleading.

assume that
A: a = b and
B: b = c and
C: c = d;
D: a = c by A, B;

a = d by C, D;
::> *604

The error *604 suggests replacing D in the list of references by its justification,
i.e. labels A and B. As one can easily see, in such a way any justification can became
Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 197

a long list of labels, without significant proof steps which will give the reader an
impression about main steps of this proof. Similarly, *605 deal with then instead
of a labeled sentence.

Errors: 604, 605.
Reliters. Finding irrelevant steps helps to shorten iterative equalities by re-

moving some of the intermediate terms. Usually, it does not affect readability,
especially if one removes steps taking into account that longer terms should be
removed first (the system does not care about this).

Errors: 746.
Trivdemo. Although Mizar proofs are hierarchical, sometimes after the afore-

mentioned transformations nested proofs can be simplified by the program search-
ing for trivial proofs (that may be reduced to a simple justification, i.e. a list of
references preceded by the keyword by).

This can be done also in the case of a diffuse statement; then the users have to
reproduce the thesis by themselves.

Errors: 607.
Chklab. Checking for unused labels should be usually performed after comple-

tion of (the part of) a proof and the aforementioned programs. Very often removed
unused premises are just library references (for definitions and theorems already
proved in MML), but sometimes a reference to a local fact is written accidentally.
If a labeled sentence is not used in any reference, after the Chklab pass such that
label is marked as unnecessary. Still though, the sentence can be needed in a proof
via simple linking by the next one (the reserved word thenin such a case).

Errors: 601.
Inacc. Inaccessible (unused) parts of the article can be pointed out as items

which are neither labeled nor linked (elements of a proof skeleton are not marked
as erroneous).

Errors: 610, 611 (marking the beginning and the end of unused block, respec-
tively).

Irrvoc. Checks which identifiers can be removed from the vocabularies direc-
tive.

Errors: 709.
Note that this can lead to Accommodator errors; this utility might cause some

files listed in the notations directive to be completely cut off (hence error *830)
and this forces the user to remove also such unnecessary declarations.

Irrths. Checks which identifiers can be removed from the theorems and schemes
directive.

Errors: 706 (theorems), 707 (schemes).

5. MIZAR MATHEMATICAL LIBRARY

5.1 Axiomatics

5.1.1 File HIDDEN. This article documents a part of the Mizar axiomatics – it
shows how the primitives of set theory are introduced in the Mizar Mathematical
Library. The notions defined here are not subject to standard verification, so the
Mizar verifier and other utilities may report errors when processing this article.

It introduces a primitive set:
Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

198 · Adam Grabowski et al.

definition
mode set;

end;

and the predicate of equality of objects which is supposed to be reflexive and sym-
metric:

definition let x, y be set;
pred x = y;
reflexivity;
symmetry;

end;

together with a negated version of the above:

notation let x, y be set;
antonym x <> y for x = y;

end;

The last introduced primitive is ∈ which obtains automatically property of asym-
metry.

definition let x, X be set;
pred x in X;
asymmetry;

end;

5.1.2 File TARSKI. This article defines axiomatic foundations of the Tarski-
Grothendieck set theory: extensionality axiom

theorem :: TARSKI:2
(for x holds x in X iff x in Y) implies X = Y;

axiom of pair in the setting of functor’s definition (although the singleton can be
derived from the latter, it is also present):

definition let y be set;
func { y } means

:: TARSKI:def 1
x in it iff x = y;

end;

definition let y, z be set;
func { y, z } means

:: TARSKI:def 2
x in it iff x = y or x = z;
commutativity;

end;

definition let X, Y be set;
pred X c= Y means

:: TARSKI:def 3
x in X implies x in Y;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 199

reflexivity;
end;

Then two other axioms follow: the axiom of union (again in the constructive
form of definition) and regularity:

definition let X be set;
func union X means

:: TARSKI:def 4
x in it iff ex Y st x in Y & Y in X;

end;

theorem :: TARSKI:7
x in X implies ex Y st Y in X & not ex x st x in X & x in Y;

The Fraenkel scheme playing a role of axiom schema of replacement in ZFC:

scheme :: TARSKI:sch 1
Fraenkel { A()-> set, P[set, set] }:
ex X st for x holds x in X iff ex y st y in A() & P[y,x]

provided
for x,y,z st P[x,y] & P[x,z] holds y = z;

The Kuratowski ordered pair definition can be justified in a standard way.

definition let x, y be set;
func [x,y] equals

:: TARSKI:def 5
{ { x,y }, { x } };

end;

and Tarski’s Axiom A which implies axioms of power set, infinity, choice and the
existence of inaccessible cardinals:

Axiom A. For every set N there exists a system M of sets which satisfies
the following conditions:
(i) N ∈M
(ii) if X ∈M and Y ⊆ X, then Y ∈M
(iii) if X ∈M and Z is the system of all subsets of X, then Z ∈M
(iv) if X ⊆ M and X and M do not have the same potency, then
X ∈M.

(as taken from: Alfred Tarski, On well-ordered subsets of any set, Fun-
damenta Mathematicae, vol. 32 (1939), pp. 176–183.)

theorem :: TARSKI:9
ex M st N in M &
(for X,Y holds X in M & Y c= X implies Y in M) &
(for X st X in M ex Z st Z in M & for Y st Y c= X holds Y in Z) &
(for X holds X c= M implies X,M are_equipotent or X in M);

where the equipotency was defined as a Mizar predicate:

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

200 · Adam Grabowski et al.

definition let X, Y be set;
pred X,Y are_equipotent means

:: TARSKI:def 6
ex Z st

(for x st x in X ex y st y in Y & [x,y] in Z) &
(for y st y in Y ex x st x in X & [x,y] in Z) &
for x,y,z,u st [x,y] in Z & [z,u] in Z holds x = z iff y = u;

end;

5.2 Contents

The MML is roughly divided into five parts (reflected in the mml.txt file in the
distribution):

—axiomatics, as described in the previous section,
—addenda, in which some articles of technical character are stored (e.g. con-

struction of real numbers via Dedekind cuts), usually authored by the Library
Committee,

—EMM (Encyclopedia of Mathematics in Mizar) – files with carefully chosen col-
lection of notions and theorems about a concrete topic (as of now eleven files,
mainly on boolean properties of sets, properties of reals, extended real numbers
and complex numbers),

—requirements files – short files where requirements are proved in a standard
way, with automation they provide suspended,

—regular articles.

Although the latter part of MML is not really divided into visible blocks, cer-
tain paths which are better developed than others can be identified. Here we can
point out set theory, general topology, lattice theory (including continuous lattices),
functional analysis and measure theory.

As of now, also 53 facts from the Wiedijk’s “Top 100 Mathematical Theorems”
are formalized1, such as Fundamental Theorem of Algebra, Euler’s Polyhedron
Formula, Ramsey’s Theorem, Sylow’s theorems, and Brouwer Fixed Point Theorem.
Among other important theorems, one can find in MML Jordan Curve Theorem,
Birkhoff Variety Theorem, Bertrand’s Postulate, Jonsson’s theorems for lattices and
modular lattices, Nagata-Smirnov Theorem, König’s Lemma, Alexander’s Lemma,
Hahn-Banach Theorem, and Wedderburn Theorem.

The Library Committee of the Association of Mizar Users is in charge of revisions,
it also decides about acceptance of new articles (upon suggestions of referees) and
about new items in the MML, e.g. EMM files, Addenda section.

5.3 Submission of articles

The main effort of the Mizar community is currently developing and maintaining
MML. The library is based on the work of more than 230 authors who contributed
their articles. Although, in principle, anyone could start developing their own
library based on MML,in practice most authors use a local library only to develop

1See http://www.cs.ru.nl/~freek/100/.

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 201

a series of inter-connected articles and as soon as the formalized theory is complete
they submit their articles to the centralized MML. This way they can take advantage
of the work of the Library Committee that maintains the library, revises its parts to
improve the general quality and integrity, and updates the articles whenever there
is a change in the Mizar software or the grammar of the Mizar language. Preserving
compatibility with MML and keeping track of software changes while maintaining
a separate database would be a rather difficult task.

Before submitting an article to MML, the authors should check if it complies
with the following criteria:

(1) An article considered for inclusion in MML should contain a significant amount
of formalized mathematics in it. In practice that means that it cannot be too
short. The recommended length of articles is between 1200 and 5000 lines, with
the average length of current MML articles about 2300 lines. As a rule, articles
shorter than 1000 lines may be rejected. The articles are required to preserve
the restriction of no more than 80 characters per line.

(2) The filenames of MML articles are used in the environment part of other articles
for importing selected resources. Therefore, although the system can support
a wider class of filenames, the articles submitted to MML are required to use
a standardized “8+3” filename format with the obligatory “.miz” extension.
The filename must contain only letters, digits and the underscore symbol “ ”.
The first character must be a letter (excluding “x” reserved for a special kind
of encyclopedic articles. The length of the filename should be between 5 and
8 characters, but 8 characters are preferred. The filename has to be unique,
i.e. it must be different from all article names already available in MML. The
filename should be an abbreviation corresponding to the title (and contents) of
the article.

(3) An article submitted to MML should not rely on a local database (contained
in the prel subdirectory) built from articles not present in MML. If a local
library is used, the preliminaries to the article should be submitted, too.

(4) If the article requires a private vocabulary file (see Section 4.3), it should also be
included in the submission. The vocabulary filename should be the same as the
article name, except for the obligatory “.voc” extension. The Checkvoc utility
should be used to detect any repeated MML symbols (see Section 4.5). New
symbols should not contain extended ASCII characters. One-letter symbols
and whitespaces in symbols are not allowed, either. The authors should also
make sure that the vocabulary file does not contain any unused symbols.

(5) Obviously, a submitted article should not raise any verification errors. The
authors should make sure that they first remove any @proof’s they used while
writing the article and then call the Mizar Verifier. The most recent official
Mizar version available should be used.
The article should also be clean with respect to standard utilities available in
the Mizar distribution: Relprem, Relinfer, Chklab, Inacc, Trivdemo
and Reliters (see Section 4.6). Unnecessary directives should be removed
from the environment part of the article using the Irrvoc and Irrths tools.

(6) The submitted article should be accompanied with a bibliographic note and a
summary contained in a *.bib file (in the Mizar doc subdirectory one can find

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

202 · Adam Grabowski et al.

an example of such a file: example.bib). The name of this file has to be same
as the name of the corresponding Mizar article. The authors are encouraged to
cite external sources they use to carry out the formalization (i.e. non-Mizar)
as showed in the example.bib file.
Please note that the contents of the file must be in English, since it is used in the
process of translating the Mizar article into its natural language representation
in the Formalized Mathematics journal, see Section 5.4.

(7) The submission is finally complete when authors fill in a submission form which
one can find in the Mizar doc subdirectory (mmldecl.txt in case of one author
and mmldecls.txt if there are more) and send it by standard mail or by fax
to the following address:

Association of Mizar Users
University of Bialystok

Institute of Mathematics
ul. Akademicka 2
15-267 Bialystok

Poland
Fax: +48-85-745-75-45

PDF versions of these forms are also available for download at the Mizar web-
site.

(8) The contributed files should be attached as a ZIP archive to an e-mail sent to
mml@mizar.uwb.edu.pl.

5.4 Formalized Mathematics

The benefit that Mizar authors have from submitting their articles to MML is
twofold.

As stated in the previous section, if an article gets accepted to MML, the Li-
brary Committee starts maintaining it, so that it is always going to be compatible
with new versions of the Mizar software and the rest of MML articles. The extra
advantage is that the exportable part of the article is then automatically processed
by translating software. The result of the translation is published in the journal
Formalized Mathematics, issued quarterly in both printed and electronic format2.

Of course all Mizar articles considered for inclusion in MML are checked for
correctness by the Mizar system, so they must be logically sound. To guarantee a
high quality of their contents, all papers are reviewed by at least three experts in
the relevant field.

The system for automatic translation to English and typesetting with LATEX is
designed and implemented by Grzegorz Bancerek (the design is based on previous
works of Andrzej Trybulec and Czes law Byliński). The authors can check how
their article will be automatically LATEX-ed if it becomes accepted for publication
in Formalized Mathematics using the on-line proof-reading system available at fm.
uwb.edu.pl/proof-read/. The Library Committee strongly encourages authors
to use the previewing process.

2See the Formalized Mathematics website at fm.mizar.org.

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 203

6. MORE INFORMATION ON MIZAR

This paper was intended to serve as a practical reference manual for basic Mizar
terminology. The readers should now be be ready to understand all Mizar texts
available in MML and start individual experiments with writing and verifying their
own proofs using Mizar. However, Mizar is a complex system and the syntax of its
language is very rich, so no doubt there are still many aspects that may yield ques-
tions and problems not addressed in this paper. The users are, therefore, advised
to search for answers in the Mizar Forum mailing list (mizar.org/forum) which is
devoted to all aspects of Mizar. There is also a dedicated e-mail helpline, the Mizar
User Service (mus@mizar.uwb.edu.pl), where one may ask specific questions and
make find an expert’s help. A great source of useful information is provided by
the Mizar Wiki (wiki.mizar.org) collaboration tool, where the Mizar community
may share information, expertise and ideas.

Finally let us mention here several systems closely related to Mizar that were not
covered in the current paper:

—MML Query (a powerful semantic search engine for MML)
wiki.mizar.org

—MoMM(a matching, interreduction and database tool for mathematical databases
optimized for Mizar)
wiki.mizar.org/twiki/bin/view/Mizar/MoMM

—Mizar Proof Advisor
wiki.mizar.org/twiki/bin/view/Mizar/MizarProofAdvisor

—MpTP (Mizar Problems for Theorem Proving)
wiki.mizar.org/twiki/bin/view/Mizar/MpTP

—Mizar mode for Emacs
wiki.mizar.org/twiki/bin/view/Mizar/MizarMode

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

204 · Adam Grabowski et al.

APPENDIX

A. SKELETONS

A.1 Definitions

A.1.1 Predicates

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
pred π(x1, x2, . . . , xn) means :ident:

Φ(x1, x2, . . . , xn);
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
pred π(x1, x2, . . . , xn) means :ident:

Φ1(x1, x2, . . . , xn) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn);

consistency
proof
thus Γ1(x1, x2, . . . , xn) & Γ2(x1, x2, . . . , xn) implies
(Φ1(x1, x2, . . . , xn) iff Φ2(x1, x2, . . . , xn));

thus Γ1(x1, x2, . . . , xn) & Γ3(x1, x2, . . . , xn) implies
(Φ1(x1, x2, . . . , xn) iff Φ3(x1, x2, . . . , xn));

thus Γ2(x1, x2, . . . , xn) & Γ3(x1, x2, . . . , xn) implies
(Φ2(x1, x2, . . . , xn) iff Φ3(x1, x2, . . . , xn));

end;
end;

A.1.2 Modes

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
mode µ of x1, x2, . . . , xn -> Θ means :ident:

Φ(x1, x2, . . . , xn, it);
existence
proof
thus ex a being Θ st Φ(x1, x2, . . . , xn, a);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
mode µ of x1, x2, . . . , xn -> Θ means :ident:

Φ1(x1, x2, . . . , xn, it) if Γ1(x1, x2, . . . , xn),
Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 205

Φ2(x1, x2, . . . , xn, it) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn, it) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn, it);

existence
proof
thus Γ1(x1, x2, . . . , xn) implies ex a being Θ st Φ1(x1, x2, . . . , xn, a);
thus Γ2(x1, x2, . . . , xn) implies ex a being Θ st Φ2(x1, x2, . . . , xn, a);
thus Γ3(x1, x2, . . . , xn) implies ex a being Θ st Φ3(x1, x2, . . . , xn, a);
thus not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn)
implies ex a being Θ st Φn(x1, x2, . . . , xn, a);

end;
consistency
proof
let a be Θ;
thus Γ1(x1, x2, . . . , xn) & Γ2(x1, x2, . . . , xn) implies
(Φ1(x1, x2, . . . , xn, a) iff Φ2(x1, x2, . . . , xn, a));

thus Γ1(x1, x2, . . . , xn) & Γ3(x1, x2, . . . , xn) implies
(Φ1(x1, x2, . . . , xn, a) iff Φ3(x1, x2, . . . , xn, a));

thus Γ2(x1, x2, . . . , xn) & Γ3(x1, x2, . . . , xn) implies
(Φ2(x1, x2, . . . , xn, a) iff Φ3(x1, x2, . . . , xn, a));

end;
end;

A.1.3 Functors (means, equals)

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
func ⊗ (x1, x2, . . . , xn) -> Θ means :ident:

Φ(x1, x2, . . . , xn, it);
existence
proof
thus ex a being Θ st Φ(x1, x2, . . . , xn, a);

end;
uniqueness
proof
thus for a,b being Θ st Φ(x1, x2, . . . , xn, a) & Φ(x1, x2, . . . , xn, b)
holds a = b;

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
func ⊗ (x1, x2, . . . , xn) -> Θ means :ident:

Φ1(x1, x2, . . . , xn, it) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn, it) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn, it) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn, it);

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

206 · Adam Grabowski et al.

existence
proof
thus Γ1(x1, x2, . . . , xn) implies ex a being Θ st Φ1(x1, x2, . . . , xn, a);
thus Γ2(x1, x2, . . . , xn) implies ex a being Θ st Φ2(x1, x2, . . . , xn, a);
thus Γ3(x1, x2, . . . , xn) implies ex a being Θ st Φ3(x1, x2, . . . , xn, a);
thus not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn)
implies ex a being Θ st Φn(x1, x2, . . . , xn, a);

end;
uniqueness
proof
let a,b be Θ;
thus Γ1(x1, x2, . . . , xn) & Φ1(x1, x2, . . . , xn, a) & Φ1(x1, x2, . . . , xn, b)
implies a = b;

thus Γ2(x1, x2, . . . , xn) & Φ2(x1, x2, . . . , xn, a) & Φ2(x1, x2, . . . , xn, b)
implies a = b;

thus Γ3(x1, x2, . . . , xn) & Φ3(x1, x2, . . . , xn, a) & Φ3(x1, x2, . . . , xn, b)
implies a = b;

thus not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn)
& Φn(x1, x2, . . . , xn, a) & Φn(x1, x2, . . . , xn, b) implies a = b;

end;
consistency
proof
let a be Θ;
thus Γ1(x1, x2, . . . , xn) & Γ2(x1, x2, . . . , xn) implies
(Φ1(x1, x2, . . . , xn, a) iff Φ2(x1, x2, . . . , xn, a));

thus Γ1(x1, x2, . . . , xn) & Γ3(x1, x2, . . . , xn) implies
(Φ1(x1, x2, . . . , xn, a) iff Φ3(x1, x2, . . . , xn, a));

thus Γ2(x1, x2, . . . , xn) & Γ3(x1, x2, . . . , xn) implies
(Φ2(x1, x2, . . . , xn, a) iff Φ3(x1, x2, . . . , xn, a));

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
func ⊗ (x1, x2, . . . , xn) -> Θ equals :ident:
τ(x1, x2, . . . , xn);

coherence
proof
thus τ(x1, x2, . . . , xn) is Θ;

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
func ⊗ (x1, x2, . . . , xn) -> Θ equals :ident:
τ1(x1, x2, . . . , xn) if Γ1(x1, x2, . . . , xn),

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 207

τ2(x1, x2, . . . , xn) if Γ2(x1, x2, . . . , xn),
τ3(x1, x2, . . . , xn) if Γ3(x1, x2, . . . , xn)
otherwise τn(x1, x2, . . . , xn);

coherence
proof
thus Γ1(x1, x2, . . . , xn) implies τ1(x1, x2, . . . , xn) is Θ;
thus Γ2(x1, x2, . . . , xn) implies τ2(x1, x2, . . . , xn) is Θ;
thus Γ3(x1, x2, . . . , xn) implies τ3(x1, x2, . . . , xn) is Θ;
thus not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn)
implies τn(x1, x2, . . . , xn) is Θ;

end;
consistency
proof
let a be Θ;
thus Γ1(x1, x2, . . . , xn) & Γ2(x1, x2, . . . , xn) implies
(a = τ1(x1, x2, . . . , xn) iff a = τ2(x1, x2, . . . , xn));

thus Γ1(x1, x2, . . . , xn) & Γ3(x1, x2, . . . , xn) implies
(a = τ1(x1, x2, . . . , xn) iff a = τ3(x1, x2, . . . , xn));

thus Γ2(x1, x2, . . . , xn) & Γ3(x1, x2, . . . , xn) implies
(a = τ2(x1, x2, . . . , xn) iff a = τ3(x1, x2, . . . , xn));

end;
end;

A.1.4 Attributes

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
attr xn is α means :ident:

Φ(x1, x2, . . . , xn);
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
attr xn is α means :ident:

Φ1(x1, x2, . . . , xn) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn);

consistency
proof
thus Γ1(x1, x2, . . . , xn) & Γ2(x1, x2, . . . , xn) implies
(Φ1(x1, x2, . . . , xn) iff Φ2(x1, x2, . . . , xn));

thus Γ1(x1, x2, . . . , xn) & Γ3(x1, x2, . . . , xn) implies
(Φ1(x1, x2, . . . , xn) iff Φ3(x1, x2, . . . , xn));

thus Γ2(x1, x2, . . . , xn) & Γ3(x1, x2, . . . , xn) implies
(Φ2(x1, x2, . . . , xn) iff Φ3(x1, x2, . . . , xn));

end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

208 · Adam Grabowski et al.

end;

A.2 Redefinitions – result type is being changed

A.2.1 Modes

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
redefine mode µ of x1, x2, . . . , xn -> Θ;
coherence
proof
thus for a being µ of x1, x2, . . . , xn holds a is Θ;

end;
end;

A.2.2 Functors

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
redefine func ⊗(x1, x2, . . . , xn) -> Θ;
coherence
proof
thus ⊗(x1, x2, . . . , xn) is Θ;

end;
end;

A.3 Redefinitions – definiens is being changed

A.3.1 Predicates

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
redefine pred π(x1, x2, . . . , xn) means :ident:

Φ(x1, x2, . . . , xn);
compatibility
proof
thus π(x1, x2, . . . , xn) iff Φ(x1, x2, . . . , xn);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
redefine pred π(x1, x2, . . . , xn) means :ident:

Φ1(x1, x2, . . . , xn) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn);

consistency;
compatibility
proof

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 209

thus Γ1(x1, x2, . . . , xn) implies (π(x1, x2, . . . , xn) iff Φ1(x1, x2, . . . , xn));
thus Γ2(x1, x2, . . . , xn) implies (π(x1, x2, . . . , xn) iff Φ2(x1, x2, . . . , xn));
thus Γ3(x1, x2, . . . , xn) implies (π(x1, x2, . . . , xn) iff Φ3(x1, x2, . . . , xn));
thus not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn)
implies (π(x1, x2, . . . , xn) iff Φn(x1, x2, . . . , xn));

end;
end;

A.3.2 Modes

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
redefine mode µ of x1, x2, . . . , xn means :ident :

Φ(x1, x2, . . . , xn, it);
compatibility
proof
thus for a being set holds
a is µ of x1, x2, . . . , xn iff Φ(x1, x2, . . . , xn, a);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
redefine mode µ of x1, x2, . . . , xn means :ident :

Φ1(x1, x2, . . . , xn, it) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn, it) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn, it) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn, it);

compatibility
proof
let a be set;
thus Γ1(x1, x2, . . . , xn) implies
(a is µ of x1, x2, . . . , xn iff Φ1(x1, x2, . . . , xn, a));

thus Γ2(x1, x2, . . . , xn) implies
(a is µ of x1, x2, . . . , xn iff Φ2(x1, x2, . . . , xn, a));

thus Γ3(x1, x2, . . . , xn) implies
(a is µ of x1, x2, . . . , xn iff Φ3(x1, x2, . . . , xn, a));

thus not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn)
implies (a is µ of x1, x2, . . . , xn iff Φn(x1, x2, . . . , xn, a));

end;
consistency;

end;

A.3.3 Functors (means, equals)

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

210 · Adam Grabowski et al.

redefine func ⊗(x1, x2, . . . , xn) means :ident :
Φ(x1, x2, . . . , xn, it);

compatibility
proof
thus for a being Θ holds a = ⊗(x1, x2, . . . , xn) iff Φ(x1, x2, . . . , xn, a);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
redefine func ⊗(x1, x2, . . . , xn) means :ident :

Φ1(x1, x2, . . . , xn, it) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn, it) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn, it) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn, it);

consistency;
compatibility
proof
let a be Θ;
thus Γ1(x1, x2, . . . , xn) implies
(a = ⊗(x1, x2, . . . , xn) iff Φ1(x1, x2, . . . , xn, a));

thus Γ2(x1, x2, . . . , xn) implies
(a = ⊗(x1, x2, . . . , xn) iff Φ2(x1, x2, . . . , xn, a));

thus Γ3(x1, x2, . . . , xn) implies
(a = ⊗(x1, x2, . . . , xn) iff Φ3(x1, x2, . . . , xn, a));

thus not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn)
implies (a = ⊗(x1, x2, . . . , xn) iff Φ3(x1, x2, . . . , xn, a));

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
redefine func ⊗(x1, x2, . . . , xn) equals :ident :
τ(x1, x2, . . . , xn);

compatibility
proof
thus for a being Θ holds a = ⊗(x1, x2, . . . , xn) iff a = τ(x1, x2, . . . , xn);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
redefine func ⊗(x1, x2, . . . , xn) equals :ident :
τ1(x1, x2, . . . , xn) if Γ1(x1, x2, . . . , xn),
τ2(x1, x2, . . . , xn) if Γ2(x1, x2, . . . , xn),
τ3(x1, x2, . . . , xn) if Γ3(x1, x2, . . . , xn)

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 211

otherwise τn(x1, x2, . . . , xn);
consistency;
compatibility
proof
let a be Θ;
thus Γ1(x1, x2, . . . , xn) implies
(a = ⊗(x1, x2, . . . , xn) iff a = τ1(x1, x2, . . . , xn));

thus Γ2(x1, x2, . . . , xn) implies
(a = ⊗(x1, x2, . . . , xn) iff a = τ2(x1, x2, . . . , xn));

thus Γ3(x1, x2, . . . , xn) implies
(a = ⊗(x1, x2, . . . , xn) iff a = τ3(x1, x2, . . . , xn));

thus not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn)
implies (a = ⊗(x1, x2, . . . , xn) iff a = τn(x1, x2, . . . , xn));

end;
end;

A.3.4 Attributes

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
redefine attr xn is α means :ident:

Φ(x1, x2, . . . , xn);
compatibility
proof
thus xn is α iff Φ(x1, x2, . . . , xn);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
redefine attr xn is α means :ident:

Φ1(x1, x2, . . . , xn) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn);

consistency;
compatibility
proof
thus Γ1(x1, x2, . . . , xn) implies (xn is α iff Φ1(x1, x2, . . . , xn));
thus Γ2(x1, x2, . . . , xn) implies (xn is α iff Φ2(x1, x2, . . . , xn));
thus Γ3(x1, x2, . . . , xn) implies (xn is α iff Φ3(x1, x2, . . . , xn));
thus not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) &
not Γ3(x1, x2, . . . , xn) implies (xn is α iff Φn(x1, x2, . . . , xn));

end;
end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

212 · Adam Grabowski et al.

A.4 Registrations

A.4.1 Existential

registration
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
cluster α1 . . . αm Θ;
existence
proof
thus ex a being Θ st a is α1 . . . αm;

end;
end;

A.4.2 Conditional

registration
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
cluster α1 . . . αm -> αm+1 . . . αm+1+k Θ;
coherence
proof
thus for a being Θ st a is α1 . . . αm holds a is αm+1 . . . αm+1+k;

end;
end;

registration
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
cluster -> α1 . . . αm Θ;
coherence
proof
thus for a being Θ holds a is α1 . . . αm;

end;
end;

A.4.3 Functorial

registration
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
cluster τ(x1, x2, . . . , xn) -> α1 . . . αm;
coherence
proof
thus τ(x1, x2, . . . , xn) is α1 . . . αm;

end;
end;

registration
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
cluster τ(x1, x2, . . . , xn) -> α1 . . . αm Θ;
coherence
proof
thus for a being Θ st a = τ(x1, x2, . . . , xn) holds a is α1 . . . αm;

end;
end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 213

A.5 Properties in definitions

A.5.1 Predicates.

A.5.1.1 Reflexivity

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
pred π(y1, y2) means :ident:

Φ(x1, x2, . . . , xn, y1, y2);
reflexivity
proof
thus for a being Θn+1 holds Φ(x1, x2, . . . , xn, a, a);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
pred π(y1, y2) means :ident:

Φ1(x1, x2, . . . , xn, y1, y2) if Γ1(x1, x2, . . . , xn, y1, y2),
Φ2(x1, x2, . . . , xn, y1, y2) if Γ2(x1, x2, . . . , xn, y1, y2),
Φ3(x1, x2, . . . , xn, y1, y2) if Γ3(x1, x2, . . . , xn, y1, y2)
otherwise Φn(x1, x2, . . . , xn, y1, y2);

consistency;
reflexivity
proof
thus for a being Θn+1 holds
(Γ1(x1, x2, . . . , xn, a, a) implies Φ1(x1, x2, . . . , xn, a, a)) &
(Γ2(x1, x2, . . . , xn, a, a) implies Φ2(x1, x2, . . . , xn, a, a)) &
(Γ3(x1, x2, . . . , xn, a, a) implies Φ3(x1, x2, . . . , xn, a, a)) &
(not Γ1(x1, x2, . . . , xn, a, a) & not Γ2(x1, x2, . . . , xn, a, a) &
not Γ3(x1, x2, . . . , xn, a, a) implies Φn(x1, x2, . . . , xn, a, a));

end;
end;

A.5.1.2 Irreflexivity

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
pred π(y1, y2) means :ident:

Φ(x1, x2, . . . , xn, y1, y2);
irreflexivity
proof
thus for a being Θn+1 holds not Φ(x1, x2, . . . , xn, a, a);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
pred π(y1, y2) means :ident:

Φ1(x1, x2, . . . , xn, y1, y2) if Γ1(x1, x2, . . . , xn, y1, y2),
Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

214 · Adam Grabowski et al.

Φ2(x1, x2, . . . , xn, y1, y2) if Γ2(x1, x2, . . . , xn, y1, y2),
Φ3(x1, x2, . . . , xn, y1, y2) if Γ3(x1, x2, . . . , xn, y1, y2)
otherwise Φn(x1, x2, . . . , xn, y1, y2);

consistency;
irreflexivity
proof
thus for a being Θn+1 holds not
(
(Γ1(x1, x2, . . . , xn, a, a) implies Φ1(x1, x2, . . . , xn, a, a)) &
(Γ2(x1, x2, . . . , xn, a, a) implies Φ2(x1, x2, . . . , xn, a, a)) &
(Γ3(x1, x2, . . . , xn, a, a) implies Φ3(x1, x2, . . . , xn, a, a)) &
(not Γ1(x1, x2, . . . , xn, a, a) & not Γ2(x1, x2, . . . , xn, a, a) &
not Γ3(x1, x2, . . . , xn, a, a) implies Φn(x1, x2, . . . , xn, a, a))

);
end;

end;

A.5.1.3 Symmetry

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
pred π(y1, y2) means :ident:

Φ(x1, x2, . . . , xn, y1, y2);
symmetry
proof
thus for a, b being Θn+1 st Φ(x1, x2, . . . , xn, a, b) holds

Φ(x1, x2, . . . , xn, b, a);
end;

end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
pred π(y1, y2) means :ident:

Φ1(x1, x2, . . . , xn, y1, y2) if Γ1(x1, x2, . . . , xn, y1, y2),
Φ2(x1, x2, . . . , xn, y1, y2) if Γ2(x1, x2, . . . , xn, y1, y2),
Φ3(x1, x2, . . . , xn, y1, y2) if Γ3(x1, x2, . . . , xn, y1, y2)
otherwise Φn(x1, x2, . . . , xn, y1, y2);

consistency;
symmetry
proof
thus for a, b being Θn+1 st
(
(Γ1(x1, x2, . . . , xn, a, b) implies Φ1(x1, x2, . . . , xn, a, b)) &
(Γ2(x1, x2, . . . , xn, a, b) implies Φ2(x1, x2, . . . , xn, a, b)) &
(Γ3(x1, x2, . . . , xn, a, b) implies Φ3(x1, x2, . . . , xn, a, b)) &
(not Γ1(x1, x2, . . . , xn, a, b) & not Γ2(x1, x2, . . . , xn, a, b) &
not Γ3(x1, x2, . . . , xn, a, b) implies Φn(x1, x2, . . . , xn, a, b))

) holds
(

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 215

(Γ1(x1, x2, . . . , xn, b, a) implies Φ1(x1, x2, . . . , xn, b, a)) &
(Γ2(x1, x2, . . . , xn, b, a) implies Φ2(x1, x2, . . . , xn, b, a)) &
(Γ3(x1, x2, . . . , xn, b, a) implies Φ3(x1, x2, . . . , xn, b, a)) &
(not Γ1(x1, x2, . . . , xn, b, a) & not Γ2(x1, x2, . . . , xn, b, a) &
not Γ3(x1, x2, . . . , xn, b, a) implies Φn(x1, x2, . . . , xn, b, a))

);
end;

end;

A.5.1.4 Asymmetry

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
pred π(y1, y2) means :ident:

Φ(x1, x2, . . . , xn, y1, y2);
asymmetry
proof
thus for a, b being Θn+1 st Φ(x1, x2, . . . , xn, a, b) holds
not Φ(x1, x2, . . . , xn, b, a);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
pred π(y1, y2) means :ident:

Φ1(x1, x2, . . . , xn, y1, y2) if Γ1(x1, x2, . . . , xn, y1, y2),
Φ2(x1, x2, . . . , xn, y1, y2) if Γ2(x1, x2, . . . , xn, y1, y2),
Φ3(x1, x2, . . . , xn, y1, y2) if Γ3(x1, x2, . . . , xn, y1, y2)
otherwise Φn(x1, x2, . . . , xn, y1, y2);

consistency;
asymmetry
proof
thus for a, b being Θn+1 st
(
(Γ1(x1, x2, . . . , xn, a, b) implies Φ1(x1, x2, . . . , xn, a, b)) &
(Γ2(x1, x2, . . . , xn, a, b) implies Φ2(x1, x2, . . . , xn, a, b)) &
(Γ3(x1, x2, . . . , xn, a, b) implies Φ3(x1, x2, . . . , xn, a, b)) &
(not Γ1(x1, x2, . . . , xn, a, b) & not Γ2(x1, x2, . . . , xn, a, b) &
not Γ3(x1, x2, . . . , xn, a, b) implies Φn(x1, x2, . . . , xn, a, b))

) holds not
(
(Γ1(x1, x2, . . . , xn, b, a) implies Φ1(x1, x2, . . . , xn, b, a)) &
(Γ2(x1, x2, . . . , xn, b, a) implies Φ2(x1, x2, . . . , xn, b, a)) &
(Γ3(x1, x2, . . . , xn, b, a) implies Φ3(x1, x2, . . . , xn, b, a)) &
(not Γ1(x1, x2, . . . , xn, b, a) & not Γ2(x1, x2, . . . , xn, b, a) &
not Γ3(x1, x2, . . . , xn, b, a) implies Φn(x1, x2, . . . , xn, b, a))

);
end;

end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

216 · Adam Grabowski et al.

A.5.1.5 Connectedness

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
pred π(y1, y2) means :ident:

Φ(x1, x2, . . . , xn, y1, y2);
connectedness
proof
thus for a, b being Θn+1 holds Φ(x1, x2, . . . , xn, a, b) or

Φ(x1, x2, . . . , xn, b, a);
end;

end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
pred π(y1, y2) means :ident:

Φ1(x1, x2, . . . , xn, y1, y2) if Γ1(x1, x2, . . . , xn, y1, y2),
Φ2(x1, x2, . . . , xn, y1, y2) if Γ2(x1, x2, . . . , xn, y1, y2),
Φ3(x1, x2, . . . , xn, y1, y2) if Γ3(x1, x2, . . . , xn, y1, y2)
otherwise Φn(x1, x2, . . . , xn, y1, y2);

consistency;
connectedness
proof
thus for a, b being Θn+1 holds
(
(Γ1(x1, x2, . . . , xn, a, b) implies Φ1(x1, x2, . . . , xn, a, b)) &
(Γ2(x1, x2, . . . , xn, a, b) implies Φ2(x1, x2, . . . , xn, a, b)) &
(Γ3(x1, x2, . . . , xn, a, b) implies Φ3(x1, x2, . . . , xn, a, b)) &
(not Γ1(x1, x2, . . . , xn, a, b) & not Γ2(x1, x2, . . . , xn, a, b) &
not Γ3(x1, x2, . . . , xn, a, b) implies Φn(x1, x2, . . . , xn, a, b))

) or
(
(Γ1(x1, x2, . . . , xn, b, a) implies Φ1(x1, x2, . . . , xn, b, a)) &
(Γ2(x1, x2, . . . , xn, b, a) implies Φ2(x1, x2, . . . , xn, b, a)) &
(Γ3(x1, x2, . . . , xn, b, a) implies Φ3(x1, x2, . . . , xn, b, a)) &
(not Γ1(x1, x2, . . . , xn, b, a) & not Γ2(x1, x2, . . . , xn, b, a) &
not Γ3(x1, x2, . . . , xn, b, a) implies Φn(x1, x2, . . . , xn, b, a))

);
end;

end;

A.5.2 Functors.

A.5.2.1 Involutiveness (means, equals)

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
func ⊗ (xn) -> Θn means :ident:

Φ(x1, x2, . . . , xn, it);
existence;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 217

uniqueness;
involutiveness
proof
thus for a, b being Θn st Φ(x1, x2, . . . , xn−1, b, a)
holds Φ(x1, x2, . . . , xn−1, a, b);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
func ⊗ (xn) -> Θn means :ident:

Φ1(x1, x2, . . . , xn, it) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn, it) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn, it) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn, it);

existence;
uniqueness;
consistency;
involutiveness
proof
thus for a, b being Θn st
(
(Γ1(x1, x2, . . . , xn−1, b) implies Φ1(x1, x2, . . . , xn−1, b, a)) &
(Γ2(x1, x2, . . . , xn−1, b) implies Φ2(x1, x2, . . . , xn−1, b, a)) &
(Γ3(x1, x2, . . . , xn−1, b) implies Φ3(x1, x2, . . . , xn−1, b, a)) &
(not Γ1(x1, x2, . . . , xn−1, b) & not Γ2(x1, x2, . . . , xn−1, b) &
not Γ3(x1, x2, . . . , xn−1, b) implies Φn(x1, x2, . . . , xn−1, b, a))

) holds
(
(Γ1(x1, x2, . . . , xn−1, a) implies Φ1(x1, x2, . . . , xn−1, a, b)) &
(Γ2(x1, x2, . . . , xn−1, a) implies Φ2(x1, x2, . . . , xn−1, a, b)) &
(Γ3(x1, x2, . . . , xn−1, a) implies Φ3(x1, x2, . . . , xn−1, a, b)) &
(not Γ1(x1, x2, . . . , xn−1, a) & not Γ2(x1, x2, . . . , xn−1, a) &
not Γ3(x1, x2, . . . , xn−1, a) implies Φn(x1, x2, . . . , xn−1, a, b))

);
end;

end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
func ⊗ (xn) -> Θn equals :ident:
τ(x1, x2, . . . , xn);

coherence;
involutiveness
proof
thus for a, b being Θn st a = τ(x1, x2, . . . , xn−1, b) holds
b = τ(x1, x2, . . . , xn−1, a);

end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

218 · Adam Grabowski et al.

end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
func ⊗ (xn) -> Θn equals :ident:
τ1(x1, x2, . . . , xn) if Γ1(x1, x2, . . . , xn),
τ2(x1, x2, . . . , xn) if Γ2(x1, x2, . . . , xn),
τ3(x1, x2, . . . , xn) if Γ3(x1, x2, . . . , xn)
otherwise τn(x1, x2, . . . , xn);

coherence;
consistency;
involutiveness
proof
for a, b being Θn st
(Γ1(x1, x2, . . . , xn−1, b) implies a = τ1(x1, x2, . . . , xn−1, b)) &
(Γ2(x1, x2, . . . , xn−1, b) implies a = τ2(x1, x2, . . . , xn−1, b)) &
(Γ3(x1, x2, . . . , xn−1, b) implies a = τ3(x1, x2, . . . , xn−1, b)) &
(not Γ1(x1, x2, . . . , xn−1, b) & not Γ2(x1, x2, . . . , xn−1, b) &

not Γ3(x1, x2, . . . , xn−1, b) implies a = τn(x1, x2, . . . , xn−1, b))
holds
(Γ1(x1, x2, . . . , xn−1, a) implies b = τ1(x1, x2, . . . , xn−1, a)) &
(Γ2(x1, x2, . . . , xn−1, a) implies b = τ2(x1, x2, . . . , xn−1, a)) &
(Γ3(x1, x2, . . . , xn−1, a) implies b = τ3(x1, x2, . . . , xn−1, a)) &
(not Γ1(x1, x2, . . . , xn−1, a) & not Γ2(x1, x2, . . . , xn−1, a) &

not Γ3(x1, x2, . . . , xn−1, a) implies b = τn(x1, x2, . . . , xn−1, a));
end;

end;

A.5.2.2 Projectivity (means, equals)

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
func ⊗ (xn) -> Θn+1 means :ident:

Φ(x1, x2, . . . , xn, it);
existence;
uniqueness;
projectivity
proof
thus for a, b being Θn+1 st Φ(x1, x2, . . . , xn−1, b, a) holds

Φ(x1, x2, . . . , xn−1, a, a);
end;

end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
func ⊗ (xn) -> Θn+1 means :ident:

Φ1(x1, x2, . . . , xn, it) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn, it) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn, it) if Γ3(x1, x2, . . . , xn)

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 219

otherwise Φn(x1, x2, . . . , xn, it);
existence;
uniqueness;
consistency;
projectivity
proof
thus for a, b being Θn+1 st
(
(Γ1(x1, x2, . . . , xn−1, b) implies Φ1(x1, x2, . . . , xn−1, b, a)) &
(Γ2(x1, x2, . . . , xn−1, b) implies Φ2(x1, x2, . . . , xn−1, b, a)) &
(Γ3(x1, x2, . . . , xn−1, b) implies Φ3(x1, x2, . . . , xn−1, b, a)) &
(not Γ1(x1, x2, . . . , xn−1, b) & not Γ2(x1, x2, . . . , xn−1, b) &
not Γ3(x1, x2, . . . , xn−1, b) implies Φn(x1, x2, . . . , xn−1, b, a))

) holds
(
(Γ1(x1, x2, . . . , xn−1, a) implies Φ1(x1, x2, . . . , xn−1, a, a)) &
(Γ2(x1, x2, . . . , xn−1, a) implies Φ2(x1, x2, . . . , xn−1, a, a)) &
(Γ3(x1, x2, . . . , xn−1, a) implies Φ3(x1, x2, . . . , xn−1, a, a)) &
(not Γ1(x1, x2, . . . , xn−1, a) & not Γ2(x1, x2, . . . , xn−1, a) &
not Γ3(x1, x2, . . . , xn−1, a) implies Φn(x1, x2, . . . , xn−1, a, a))

);
end;

end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
func ⊗ (xn) -> Θn+1 equals :ident:
τ(x1, x2, . . . , xn);

coherence;
projectivity
proof
thus for a, b being Θn+1 st a = τ(x1, x2, . . . , xn−1, b) holds
a = τ(x1, x2, . . . , xn−1, a);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
func ⊗ (xn) -> Θn+1 equals :ident:
τ1(x1, x2, . . . , xn) if Γ1(x1, x2, . . . , xn),
τ2(x1, x2, . . . , xn) if Γ2(x1, x2, . . . , xn),
τ3(x1, x2, . . . , xn) if Γ3(x1, x2, . . . , xn)
otherwise τn(x1, x2, . . . , xn);

coherence;
consistency;
projectivity
proof
thus for a, b being Θn+1 st

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

220 · Adam Grabowski et al.

(
(Γ1(x1, x2, . . . , xn−1, b) implies a = τ1(x1, x2, . . . , xn−1, b)) &
(Γ2(x1, x2, . . . , xn−1, b) implies a = τ2(x1, x2, . . . , xn−1, b)) &
(Γ3(x1, x2, . . . , xn−1, b) implies a = τ3(x1, x2, . . . , xn−1, b)) &
(not Γ1(x1, x2, . . . , xn−1, b) & not Γ2(x1, x2, . . . , xn−1, b) &
not Γ3(x1, x2, . . . , xn−1, b) implies a = τn(x1, x2, . . . , xn−1, b))

) holds
(
(Γ1(x1, x2, . . . , xn−1, a) implies a = τ1(x1, x2, . . . , xn−1, a)) &
(Γ2(x1, x2, . . . , xn−1, a) implies a = τ2(x1, x2, . . . , xn−1, a)) &
(Γ3(x1, x2, . . . , xn−1, a) implies a = τ3(x1, x2, . . . , xn−1, a)) &
(not Γ1(x1, x2, . . . , xn−1, a) & not Γ2(x1, x2, . . . , xn−1, a) &
not Γ3(x1, x2, . . . , xn−1, a) implies a = τn(x1, x2, . . . , xn−1, a))

);
end;

end;

A.5.2.3 Idempotence (means, equals)

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
func ⊗ (y1, y2) -> Θn+2 means :ident:

Φ(x1, x2, . . . , xn, y1, y2, it);
existence;
uniqueness;
idempotence
proof
thus for a being Θn+1 holds Φ(x1, x2, . . . , xn, a, a, a);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
func ⊗ (y1, y2) -> Θn+2 means :ident:

Φ1(x1, x2, . . . , xn, y1, y2, it) if Γ1(x1, x2, . . . , xn, y1, y2),
Φ2(x1, x2, . . . , xn, y1, y2, it) if Γ2(x1, x2, . . . , xn, y1, y2),
Φ3(x1, x2, . . . , xn, y1, y2, it) if Γ3(x1, x2, . . . , xn, y1, y2)
otherwise Φn(x1, x2, . . . , xn, y1, y2, it);

existence;
uniqueness;
consistency;
idempotence
proof
thus for a being Θn+1 holds
(Γ1(x1, x2, . . . , xn, a, a) implies Φ1(x1, x2, . . . , xn, a, a, a)) &
(Γ2(x1, x2, . . . , xn, a, a) implies Φ2(x1, x2, . . . , xn, a, a, a)) &
(Γ3(x1, x2, . . . , xn, a, a) implies Φ3(x1, x2, . . . , xn, a, a, a)) &
(not Γ1(x1, x2, . . . , xn, a, a) & not Γ2(x1, x2, . . . , xn, a, a) &
not Γ3(x1, x2, . . . , xn, a, a) implies Φn(x1, x2, . . . , xn, a, a, a));

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 221

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
func ⊗ (y1, y2) -> Θn+2 equals :ident:
τ(x1, x2, . . . , xn, y1, y2);

coherence;
idempotence
proof
thus for a being Θn+1 holds a = τ(x1, x2, . . . , xn, a, a);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
func ⊗ (y1, y2) -> Θn+2 equals :ident:
τ1(x1, x2, . . . , xn, y1, y2) if Γ1(x1, x2, . . . , xn, y1, y2),
τ2(x1, x2, . . . , xn, y1, y2) if Γ2(x1, x2, . . . , xn, y1, y2),
τ3(x1, x2, . . . , xn, y1, y2) if Γ3(x1, x2, . . . , xn, y1, y2)
otherwise τn(x1, x2, . . . , xn, y1, y2);

coherence;
consistency;
idempotence
proof
thus for a being Θn+1 holds
(Γ1(x1, x2, . . . , xn, a, a) implies a = τ1(x1, x2, . . . , xn, a, a)) &
(Γ2(x1, x2, . . . , xn, a, a) implies a = τ2(x1, x2, . . . , xn, a, a)) &
(Γ3(x1, x2, . . . , xn, a, a) implies a = τ3(x1, x2, . . . , xn, a, a)) &
(not Γ1(x1, x2, . . . , xn, a, a) & not Γ2(x1, x2, . . . , xn, a, a) &
not Γ3(x1, x2, . . . , xn, a, a) implies a = τn(x1, x2, . . . , xn, a, a));

end;
end;

A.5.2.4 Commutativity (means, equals)

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
func ⊗ (y1, y2) -> Θn+2 means :ident:

Φ(x1, x2, . . . , xn, y1, y2, it);
existence;
uniqueness;
commutativity
proof
thus for a being Θn+2, b, c being Θn+1 st Φ(x1, x2, . . . , xn, b, c, a)
holds Φ(x1, x2, . . . , xn, c, b, a);

end;
end;

definition

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

222 · Adam Grabowski et al.

let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
func ⊗ (y1, y2) -> Θn+2 means :ident:

Φ1(x1, x2, . . . , xn, y1, y2, it) if Γ1(x1, x2, . . . , xn, y1, y2),
Φ2(x1, x2, . . . , xn, y1, y2, it) if Γ2(x1, x2, . . . , xn, y1, y2),
Φ3(x1, x2, . . . , xn, y1, y2, it) if Γ3(x1, x2, . . . , xn, y1, y2)
otherwise Φn(x1, x2, . . . , xn, y1, y2, it);

existence;
uniqueness;
commutativity
proof
thus for a being Θn+2, b, c being Θn+1 st
(
(Γ1(x1, x2, . . . , xn, b, c) implies Φ1(x1, x2, . . . , xn, b, c, a)) &
(Γ2(x1, x2, . . . , xn, b, c) implies Φ2(x1, x2, . . . , xn, b, c, a)) &
(Γ3(x1, x2, . . . , xn, b, c) implies Φ3(x1, x2, . . . , xn, b, c, a)) &
(not Γ1(x1, x2, . . . , xn, b, c) & not Γ2(x1, x2, . . . , xn, b, c) &
not Γ3(x1, x2, . . . , xn, b, c) implies Φn(x1, x2, . . . , xn, b, c, a))

) holds
(
(Γ1(x1, x2, . . . , xn, c, b) implies Φ1(x1, x2, . . . , xn, c, b, a)) &
(Γ2(x1, x2, . . . , xn, c, b) implies Φ2(x1, x2, . . . , xn, c, b, a)) &
(Γ3(x1, x2, . . . , xn, c, b) implies Φ3(x1, x2, . . . , xn, c, b, a)) &
(not Γ1(x1, x2, . . . , xn, c, b) & not Γ2(x1, x2, . . . , xn, c, b) &
not Γ3(x1, x2, . . . , xn, c, b) implies Φn(x1, x2, . . . , xn, c, b, a))

);
end;

end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
func ⊗ (y1, y2) -> Θn+2 equals :ident:
τ(x1, x2, . . . , xn, y1, y2);

coherence;
commutativity
proof
thus for a being Θn+2, b, c being Θn+1 st a = τ(x1, x2, . . . , xn, b, c)
holds a = τ(x1, x2, . . . , xn, c, b);

end;
end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
func ⊗ (y1, y2) -> Θn+2 equals :ident:
τ1(x1, x2, . . . , xn, y1, y2) if Γ1(x1, x2, . . . , xn, y1, y2),
τ2(x1, x2, . . . , xn, y1, y2) if Γ2(x1, x2, . . . , xn, y1, y2),
τ3(x1, x2, . . . , xn, y1, y2) if Γ3(x1, x2, . . . , xn, y1, y2)
otherwise τn(x1, x2, . . . , xn, y1, y2);

coherence;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 223

consistency;
commutativity
proof
thus for a being Θn+2, b, c being Θn+1 st
(
(Γ1(x1, x2, . . . , xn, b, c) implies a = τ1(x1, x2, . . . , xn, b, c)) &
(Γ2(x1, x2, . . . , xn, b, c) implies a = τ2(x1, x2, . . . , xn, b, c)) &
(Γ3(x1, x2, . . . , xn, b, c) implies a = τ3(x1, x2, . . . , xn, b, c)) &
(not Γ1(x1, x2, . . . , xn, b, c) & not Γ2(x1, x2, . . . , xn, b, c) &
not Γ3(x1, x2, . . . , xn, b, c) implies a = τn(x1, x2, . . . , xn, b, c))

) holds
(
(Γ1(x1, x2, . . . , xn, c, b) implies a = τ1(x1, x2, . . . , xn, c, b)) &
(Γ2(x1, x2, . . . , xn, c, b) implies a = τ2(x1, x2, . . . , xn, c, b)) &
(Γ3(x1, x2, . . . , xn, c, b) implies a = τ3(x1, x2, . . . , xn, c, b)) &
(not Γ1(x1, x2, . . . , xn, c, b) & not Γ2(x1, x2, . . . , xn, c, b) &
not Γ3(x1, x2, . . . , xn, c, b) implies a = τn(x1, x2, . . . , xn, c, b))

);
end;

end;

A.6 Properties in redefinitions

A.6.1 Predicates.

A.6.1.1 Reflexivity

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
redefine pred π(y1, y2);
reflexivity
proof
thus for a being Θn+1 holds π(a, a);

end;
end;

A.6.1.2 Irreflexivity

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
redefine pred π(y1, y2);
irreflexivity
proof
thus for a being Θn+1 holds not π(a, a);

end;
end;

A.6.1.3 Symmetry

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

224 · Adam Grabowski et al.

redefine pred π(y1, y2);
symmetry
proof
thus for a, b being Θn+1 st π(a, b) holds π(b, a);

end;
end;

A.6.1.4 Asymmetry

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
redefine pred π(y1, y2);
asymmetry
proof
thus for a, b being Θn+1 st π(a, b) holds not π(b, a);

end;
end;

A.6.1.5 Connectedness

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
redefine pred π(y1, y2);
connectedness
proof
thus for a, b being Θn+1 holds π(a, b) or π(b, a);

end;
end;

A.6.2 Functors.

A.6.2.1 Commutativity

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn, y1, y2 be Θn+1;
redefine func ⊗(y1, y2);
commutativity
proof
thus for a, b being Θn+1 holds ⊗(a, b) = ⊗(b, a);

end;
end;

A.7 Definitional expansions

A.7.1 Predicates.

A.7.1.1 Non permissive

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
pred π(x1, x2, . . . , xn) means :ident:

Φ(x1, x2, . . . , xn);
end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 225

π(x1, x2, . . . , xn)
proof
thus Φ(x1, x2, . . . , xn);

end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
pred π(x1, x2, . . . , xn) means :ident:

Φ1(x1, x2, . . . , xn) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn);

consistency;
end;

π(x1, x2, . . . , xn)
proof
per cases;
case Γ1(x1, x2, . . . , xn);
thus Φ1(x1, x2, . . . , xn);

end;
case Γ2(x1, x2, . . . , xn);
thus Φ2(x1, x2, . . . , xn);

end;
case Γ3(x1, x2, . . . , xn);
thus Φ3(x1, x2, . . . , xn);

end;
case not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn);
thus Φn(x1, x2, . . . , xn);

end;
end;

A.7.1.2 Permissive

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
pred π(x1, x2, . . . , xn) means :ident:

Φ(x1, x2, . . . , xn);
end;

π(x1, x2, . . . , xn)
proof
thus Ψ(x1, x2, . . . , xn);
thus Φ(x1, x2, . . . , xn);

end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

226 · Adam Grabowski et al.

pred π(x1, x2, . . . , xn) means :ident:
Φ1(x1, x2, . . . , xn) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn);

consistency;
end;

π(x1, x2, . . . , xn)
proof
thus Ψ(x1, x2, . . . , xn);
per cases;
case Γ1(x1, x2, . . . , xn);
thus Φ1(x1, x2, . . . , xn);

end;
case Γ2(x1, x2, . . . , xn);
thus Φ2(x1, x2, . . . , xn);

end;
case Γ3(x1, x2, . . . , xn);
thus Φ3(x1, x2, . . . , xn);

end;
case not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn);
thus Φn(x1, x2, . . . , xn);

end;
end;

A.7.2 Modes.

A.7.2.1 Non permissive

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
mode µ of x1, x2, . . . , xn -> Θ means :ident:

Φ(x1, x2, . . . , xn, it);
existence;

end;

a is µ of x1, x2, . . . , xn
proof
thus Φ(x1, x2, . . . , xn, a);

end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
mode µ of x1, x2, . . . , xn -> Θ means :ident:

Φ1(x1, x2, . . . , xn, it) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn, it) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn, it) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn, it);

existence;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 227

consistency;
end;

a is µ of x1, x2, . . . , xn
proof
per cases;
case Γ1(x1, x2, . . . , xn);
thus Φ1(x1, x2, . . . , xn, a);

end;
case Γ2(x1, x2, . . . , xn);
thus Φ2(x1, x2, . . . , xn, a);

end;
case Γ3(x1, x2, . . . , xn);
thus Φ3(x1, x2, . . . , xn, a);

end;
case not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn);
thus Φn(x1, x2, . . . , xn, a);

end;
end;

A.7.2.2 Permissive

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
mode µ of x1, x2, . . . , xn -> Θ means :ident:

Φ(x1, x2, . . . , xn, it);
existence;

end;

a is µ of x1, x2, . . . , xn
proof
thus Ψ(x1, x2, . . . , xn);
thus Φ(x1, x2, . . . , xn, a);

end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
mode µ of x1, x2, . . . , xn -> Θ means :ident:

Φ1(x1, x2, . . . , xn, it) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn, it) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn, it) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn, it);

existence;
consistency;

end;

a is µ of x1, x2, . . . , xn
proof

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

228 · Adam Grabowski et al.

thus Ψ(x1, x2, . . . , xn);
per cases;
case Γ1(x1, x2, . . . , xn);
thus Φ1(x1, x2, . . . , xn, a);

end;
case Γ2(x1, x2, . . . , xn);
thus Φ2(x1, x2, . . . , xn, a);

end;
case Γ3(x1, x2, . . . , xn);
thus Φ3(x1, x2, . . . , xn, a);

end;
case not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn);
thus Φn(x1, x2, . . . , xn, a);

end;
end;

A.7.3 Attributes.

A.7.3.1 Non permissive

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
attr xn is α means :ident:

Φ(x1, x2, . . . , xn);
end;

xn is α
proof
thus Φ(x1, x2, . . . , xn);

end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
attr xn is α means :ident:

Φ1(x1, x2, . . . , xn) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn);

consistency;
end;

xn is α
proof
per cases;
case Γ1(x1, x2, . . . , xn);
thus Φ1(x1, x2, . . . , xn);

end;
case Γ2(x1, x2, . . . , xn);
thus Φ2(x1, x2, . . . , xn);

end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 229

case Γ3(x1, x2, . . . , xn);
thus Φ3(x1, x2, . . . , xn);

end;
case not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn);
thus Φn(x1, x2, . . . , xn);

end;
end;

A.7.3.2 Permissive

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
attr xn is α means :ident:

Φ(x1, x2, . . . , xn);
end;

xn is α
proof
thus Ψ(x1, x2, . . . , xn);
thus Φ(x1, x2, . . . , xn);

end;

definition
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
assume Ψ(x1, x2, . . . , xn);
attr xn is α means :ident:

Φ1(x1, x2, . . . , xn) if Γ1(x1, x2, . . . , xn),
Φ2(x1, x2, . . . , xn) if Γ2(x1, x2, . . . , xn),
Φ3(x1, x2, . . . , xn) if Γ3(x1, x2, . . . , xn)
otherwise Φn(x1, x2, . . . , xn);

consistency;
end;

xn is α
proof
thus Ψ(x1, x2, . . . , xn);
per cases;
case Γ1(x1, x2, . . . , xn);
thus Φ1(x1, x2, . . . , xn);

end;
case Γ2(x1, x2, . . . , xn);
thus Φ2(x1, x2, . . . , xn);

end;
case Γ3(x1, x2, . . . , xn);
thus Φ3(x1, x2, . . . , xn);

end;
case not Γ1(x1, x2, . . . , xn) & not Γ2(x1, x2, . . . , xn) & not Γ3(x1, x2, . . . , xn);
thus Φn(x1, x2, . . . , xn);

end;

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

230 · Adam Grabowski et al.

end;

A.8 Identify

A.8.1 without when statement

registration
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
identify τ1(x1, x2, . . . , xn) with τ2(x1, x2, . . . , xn);
compatibility
proof
thus τ1(x1, x2, . . . , xn) = τ2(x1, x2, . . . , xn);

end;
end;

A.8.2 with when statement

registration
let x1 be Θ1, x2 be Θ2, . . . , xn be Θn;
let y1 be Ξ1, y2 be Ξ2, . . . , yn be Ξn;
identify τ1(x1, x2, . . . , xn) with τ2(y1, y2, . . . , yn)
when x1 = y1, x2 = y2, . . ., xn = yn;

compatibility
proof
thus x1 = y1 & x2 = y2 & . . . & xn = yn
implies τ1(x1, x2, . . . , xn) = τ2(y1, y2, . . . , yn);

end;
end;

B. THE SYNTAX OF THE MIZAR LANGUAGE

Mizar Language Syntax

Last modified: November 24, 2010

System terms:
File-Name,
Identifier,
Numeral,
Symbol.

******** Article

Article = Environment-Declaration Text-Proper .

******** Environment

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 231

Environment-Declaration = ‘‘environ’’ { Directive } .

Directive = Vocabulary-Directive | Library-Directive |
Requirement-Directive .

Vocabulary-Directive = ‘‘vocabularies’’ Vocabulary-Name
{ ‘‘,’’ Vocabulary-Name } ‘‘;’’ .

Vocabulary-Name = File-Name .

Library-Directive =
(‘‘notations’’ |
‘‘constructors’’ |
‘‘registrations’’ |
‘‘definitions’’ |
‘‘theorems’’ |
‘‘schemes’’) Article-Name { ‘‘,’’ Article-Name } ‘‘;’’ .

Article-Name = File-Name .

Requirement-Directive =
‘‘requirements’’ Requirement { ‘‘,’’ Requirement } ‘‘;’’ .

Requirement = File-Name .

******** Text Proper

Text-Proper = Section { Section } .

Section = ‘‘begin’’ { Text-Item } .

Text-Item =
Reservation | Definitional-Item | Registration-Item |
Notation-Item | Theorem | Scheme-Item | Auxiliary-Item |
Canceled-Theorem .

Reservation = ‘‘reserve’’ Reservation-Segment
{ ‘‘,’’ Reservation-Segment } ‘‘;’’ .

Reservation-Segment = Reserved-Identifiers ‘‘for’’ Type-Expression .

Reserved-Identifiers = Identifier { ‘‘,’’ Identifier } .

Definitional-Item = Definitional-Block ‘‘;’’ .

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

232 · Adam Grabowski et al.

Registration-Item = Registration-Block ‘‘;’’ .

Notation-Item = Notation-Block ‘‘;’’ .

Definitional-Block = ‘‘definition’’ { Definition-Item | Definition }
[Redefinition-Block] ‘‘end’’ .

Redefinition-Block = ‘‘redefine’’ { Definition-Item | Definition } .

Registration-Block = ‘‘registration’’
{ Loci-Declaration | Cluster-Registration |
Identify-Registration | Canceled-Registration }

‘‘end’’ .

Notation-Block =
‘‘notation’’ { Loci-Declaration | Notation-Declaration }
‘‘end’’ .

Definition-Item =
Loci-Declaration | Permissive-Assumption | Auxiliary-Item .

Notation-Declaration = Attribute-Synonym | Attribute-Antonym |
Functor-Synonym | Mode-Synonym | Predicate-Synonym |
Predicate-Antonym .

Loci-Declaration =
‘‘let’’ Qualified-Variables [‘‘such’’ Conditions] ‘‘;’’ .

Permissive-Assumption = Assumption .

Definition = Structure-Definition | Mode-Definition |
Functor-Definition | Predicate-Definition |
Attribute-Definition | Canceled-Definition .

Structure-Definition = ‘‘struct’’ [‘‘(‘‘ Ancestors ‘‘)’’]
Structure-Symbol [‘‘over’’ Loci]
‘‘(#’’ Fields ‘‘#)’’ ‘‘;’’ .

Ancestors =
Structure-Type-Expression { ‘‘,’’ Structure-Type-Expression } .

Structure-Symbol = Symbol .

Loci = Locus { ‘‘,’’ Locus } .

Fields = Field-Segment { ‘‘,’’ Field-Segment } .

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 233

Locus = Variable-Identifier .

Variable-Identifier = Identifier .

Field-Segment =
Selector-Symbol { ‘‘,’’ Selector-Symbol } Specification .

Selector-Symbol = Symbol .

Specification = ‘‘->’’ Type-Expression .

Mode-Definition = ‘‘mode’’ Mode-Pattern
([Specification] [‘‘means’’ Definiens] ‘‘;’’

Correctness-Conditions |
‘‘is’’ Type-Expression ‘‘;’’) .

Mode-Pattern = Mode-Symbol [‘‘of’’ Loci] .

Mode-Symbol = Symbol | ‘‘set’’ .

Mode-Synonym = ‘‘synonym’’ Mode-Pattern ‘‘for’’ Mode-Pattern ‘‘;’’ .

Definiens = Simple-Definiens | Conditional-Definiens .

Simple-Definiens =
[‘‘:’’ Label-Identifier ‘‘:’’] (Sentence | Term-Expression) .

Label-Identifier = Identifier .

Conditional-Definiens = [‘‘:’’ Label-Identifier ‘‘:’’]
Partial-Definiens-List
[‘‘otherwise’’ (Sentence | Term-Expression)] .

Partial-Definiens-List =
Partial-Definiens { ‘‘,’’ Partial-Definiens } .

Partial-Definiens = (Sentence | Term-Expression) ‘‘if’’ Sentence .

Functor-Definition = ‘‘func’’ Functor-Pattern [Specification]
[(‘‘means’’ | ‘‘equals’’) Definiens] ‘‘;’’
Correctness-Conditions { Functor-Property } .

Functor-Pattern = [Functor-Loci] Functor-Symbol [Functor-Loci] |
Left-Functor-Bracket Loci Right-Functor-Bracket .

Functor-Property = (‘‘commutativity’’ | ‘‘idempotence’’ |

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

234 · Adam Grabowski et al.

‘‘involutiveness’’ | ‘‘projectivity’’)
Justification ‘‘;’’ .

Functor-Synonym =
‘‘synonym’’ Functor-Pattern ‘‘for’’ Functor-Pattern ‘‘;’’ .

Functor-Loci = Locus | ‘‘(‘‘ Loci ‘‘)’’ .

Functor-Symbol = Symbol .

Left-Functor-Bracket = Symbol | ‘‘{‘‘ | ‘‘[‘‘ .

Right-Functor-Bracket = Symbol | ‘‘}’’ | ‘‘]’’ .

Predicate-Definition =
‘‘pred’’ Predicate-Pattern [‘‘means’’ Definiens] ‘‘;’’
Correctness-Conditions { Predicate-Property } .

Predicate-Pattern = [Loci] Predicate-Symbol [Loci] .

Predicate-Property = (‘‘symmetry’’ | ‘‘asymmetry’’ |
‘‘connectedness’’ | ‘‘reflexivity’’ | ‘‘irreflexivity’’)
Justification ‘‘;’’ .

Predicate-Synonym =
‘‘synonym’’ Predicate-Pattern ‘‘for’’ Predicate-Pattern ‘‘;’’ .

Predicate-Antonym =
‘‘antonym’’ Predicate-Pattern ‘‘for’’ Predicate-Pattern ‘‘;’’ .

Predicate-Symbol = Symbol | ‘‘=’’ .

Attribute-Definition =
‘‘attr’’ Attribute-Pattern ‘‘means’’ Definiens ‘‘;’’
Correctness-Conditions .

Attribute-Pattern =
Locus ‘‘is’’ [Attribute-Loci] Attribute-Symbol .

Attribute-Synonym =
‘‘synonym’’ Attribute-Pattern ‘‘for’’ Attribute-Pattern ‘‘;’’ .

Attribute-Antonym =
‘‘antonym’’ Attribute-Pattern ‘‘for’’ Attribute-Pattern ‘‘;’’ .

Attribute-Symbol = Symbol .

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 235

Attribute-Loci = Loci | ‘‘(‘‘ Loci ‘‘)’’ .

Canceled-Definition = ‘‘canceled’’ [Numeral] ‘‘;’’ .

Canceled-Registration = ‘‘canceled’’ [Numeral] ‘‘;’’ .

Cluster-Registration = Existential-Registration |
Conditional-Registration |
Functorial-Registration .

Existential-Registration =
‘‘cluster’’ Adjective-Cluster Type-Expression ‘‘;’’
Correctness-Conditions .

Adjective-Cluster = { Adjective } .

Adjective = [‘‘non’’] [Adjective-Arguments] Attribute-Symbol .

Conditional-Registration = ‘‘cluster’’ Adjective-Cluster ‘‘->’’
Adjective-Cluster Type-Expression ‘‘;’’
Correctness-Conditions .

Functorial-Registration = ‘‘cluster’’ Term-Expression ‘‘->’’
Adjective-Cluster [Type-Expression] ‘‘;’’
Correctness-Conditions .

Identify-Registration =
‘‘identify’’ Functor-Pattern ‘‘with’’ Functor-Pattern
[‘‘when’’ Locus ‘‘=’’ Locus { ‘‘,’’ Locus ‘‘=’’ Locus }] ‘‘;’’
Correctness-Conditions .

Correctness-Conditions = { Correctness-Condition }
[‘‘correctness’’ Justification ‘‘;’’] .

Correctness-Condition = (‘‘existence’’ | ‘‘uniqueness’’ |
‘‘coherence’’ | ‘‘compatibility’’ | ‘‘consistency’’)
Justification ‘‘;’’ .

Theorem = ‘‘theorem’’ Compact-Statement .

Scheme-Item = Scheme-Block ‘‘;’’ .

Scheme-Block = ‘‘scheme’’ Scheme-Identifier
‘‘{‘‘ Scheme-Parameters ‘‘}’’ ‘‘:’’ Scheme-Conclusion
[‘‘provided’’ Scheme-Premise { ‘‘and’’ Scheme-Premise }]
Reasoning ‘‘end’’ .

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

236 · Adam Grabowski et al.

Scheme-Identifier = Identifier .

Scheme-Parameters = Scheme-Segment { ‘‘,’’ Scheme-Segment } .

Scheme-Conclusion = Sentence .

Scheme-Premise = Proposition .

Scheme-Segment = Predicate-Segment | Functor-Segment .

Predicate-Segment =
Predicate-Identifier { ‘‘,’’ Predicate-Identifier }
‘‘[‘‘ [Type-Expression-List] ‘‘]’’ .

Predicate-Identifier = Identifier .

Functor-Segment = Functor-Identifier { ‘‘,’’ Functor-Identifier }
‘‘(‘‘ [Type-Expression-List] ‘‘)’’ Specification .

Functor-Identifier = Identifier .

Auxiliary-Item = Statement | Private-Definition .

Canceled-Theorem = ‘‘canceled’’ [Numeral] ‘‘;’’ .

Private-Definition = Constant-Definition |
Private-Functor-Definition |
Private-Predicate-Definition .

Constant-Definition = ‘‘set’’ Equating-List ‘‘;’’ .

Equating-List = Equating { ‘‘,’’ Equating } .

Equating = Variable-Identifier ‘‘=’’ Term-Expression .

Private-Functor-Definition =
‘‘deffunc’’ Private-Functor-Pattern ‘‘=’’ Term-Expression .

Private-Predicate-Definition =
‘‘defpred’’ Private-Predicate-Pattern ‘‘means’’ Sentence .

Private-Functor-Pattern =
Functor-Identifier ‘‘(‘‘ [Type-Expression-List] ‘‘)’’ .

Private-Predicate-Pattern =
Predicate-Identifier ‘‘[‘‘ [Type-Expression-List] ‘‘]’’ .

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 237

Reasoning = { Reasoning-Item }
[‘‘per’’ ‘‘cases’’ Simple-Justification ‘‘;’’
(Case-List | Suppose-List)] .

Case-List = Case { Case } .

Case = ‘‘case’’ (Proposition | Conditions) ‘‘;’’
Reasoning ‘‘end’’ ‘‘;’’ .

Suppose-List = Suppose { Suppose } .

Suppose = ‘‘suppose’’ (Proposition | Conditions) ‘‘;’’
Reasoning ‘‘end’’ ‘‘;’’ .

Reasoning-Item = Auxiliary-Item | Skeleton-Item .

Skeleton-Item = Generalization | Assumption |
Conclusion | Exemplification .

Generalization = ‘‘let’’ Qualified-Variables
[‘‘such’’ Conditions] ‘‘;’’ .

Assumption = Single-Assumption | Collective-Assumption |
Existential-Assumption .

Single-Assumption = ‘‘assume’’ Proposition ‘‘;’’ .

Collective-Assumption = ‘‘assume’’ Conditions ‘‘;’’ .

Existential-Assumption = ‘‘given’’ Qualified-Variables
‘‘such’’ Conditions ‘‘;’’ .

Conclusion = (‘‘thus’’ | ‘‘hence’’) Compact-Statement |
Diffuse-Conclusion .

Diffuse-Conclusion = ‘‘thus’’ Diffuse-Statement |
‘‘hereby’’ Reasoning ‘‘end’’ ‘‘;’’ .

Exemplification = ‘‘take’’ Example { ‘‘,’’ Example } ‘‘;’’ .

Example = Term-Expression |
Variable-Identifier ‘‘=’’ Term-Expression .

Statement = [‘‘then’’] Linkable-Statement | Diffuse-Statement .

Linkable-Statement = Compact-Statement | Choice-Statement |
Type-Changing-Statement | Iterative-Equality .

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

238 · Adam Grabowski et al.

Compact-Statement = Proposition Justification ‘‘;’’ .

Choice-Statement = ‘‘consider’’ Qualified-Variables
‘‘such’’ Conditions Simple-Justification ‘‘;’’ .

Type-Changing-Statement = ‘‘reconsider’’ Type-Change-List
‘‘as’’ Type-Expression Simple-Justification ‘‘;’’ .

Type-Change-List = (Equating | Variable-Identifier)
{ ‘‘,’’ (Equating | Variable-Identifier) } .

Iterative-Equality = [Label-Identifier ‘‘:’’]
Term-Expression ‘‘=’’ Term-Expression Simple-Justification
‘‘.=’’ Term-Expression Simple-Justification

{ ‘‘.=’’ Term-Expression Simple-Justification } ‘‘;’’ .

Diffuse-Statement = [Label-Identifier ‘‘:’’]
‘‘now’’ Reasoning ‘‘end’’ ‘‘;’’ .

Justification = Simple-Justification | Proof .

Simple-Justification = Straightforward-Justification |
Scheme-Justification .

Proof = (‘‘proof’’ | ‘‘@proof’’) Reasoning ‘‘end’’ .

Straightforward-Justification = [‘‘by’’ References] .

Scheme-Justification =
‘‘from’’ Scheme-Reference [‘‘(‘‘ References ‘‘)’’] .

References = Reference { ‘‘,’’ Reference } .

Reference = Local-Reference | Library-Reference .

Scheme-Reference = Local-Scheme-Reference |
Library-Scheme-Reference .

Local-Reference = Label-Identifier .

Local-Scheme-Reference = Scheme-Identifier .

Library-Reference = Article-Name ‘‘:’’
(Theorem-Number | ‘‘def’’ Definition-Number)
{ ‘‘,’’ (Theorem-Number | ‘‘def’’ Definition-Number) } .

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 239

Library-Scheme-Reference =
Article-Name ‘‘:’’ ‘‘sch’’ Scheme-Number .

Theorem-Number = Numeral .

Definition-Number = Numeral .

Scheme-Number = Numeral .

Conditions = ‘‘that’’ Proposition { ‘‘and’’ Proposition } .

Proposition = [Label-Identifier ‘‘:’’] Sentence .

Sentence = Formula-Expression .

******** Expressions

Formula-Expression = ‘‘(‘‘ Formula-Expression ‘‘)’’ |
Atomic-Formula-Expression |
Quantified-Formula-Expression |
Formula-Expression ‘‘&’’ Formula-Expression |
Formula-Expression ‘‘or’’ Formula-Expression |
Formula-Expression ‘‘implies’’ Formula-Expression |
Formula-Expression ‘‘iff’’ Formula-Expression |
‘‘not’’ Formula-Expression |
‘‘contradiction’’ |
‘‘thesis’’ .

Atomic-Formula-Expression =
[Term-Expression-List] Predicate-Symbol

[Term-Expression-List] |
Predicate-Identifier ‘‘[‘‘ [Term-Expression-List] ‘‘]’’ |
Term-Expression ‘‘is’’ Adjective { Adjective } |
Term-Expression ‘‘is’’ Type-Expression .

Quantified-Formula-Expression =
‘‘for’’ Qualified-Variables [‘‘st’’ Formula-Expression]

(‘‘holds’’ Formula-Expression |
Quantified-Formula-Expression) |

‘‘ex’’ Qualified-Variables ‘‘st’’ Formula-Expression .

Qualified-Variables = Implicitly-Qualified-Variables |
Explicitly-Qualified-Variables |
Explicitly-Qualified-Variables ‘‘,’’

Implicitly-Qualified-Variables .

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

240 · Adam Grabowski et al.

Implicitly-Qualified-Variables = Variables .

Explicitly-Qualified-Variables =
Qualified-Segment { ‘‘,’’ Qualified-Segment } .

Qualified-Segment = Variables Qualification .

Variables = Variable-Identifier { ‘‘,’’ Variable-Identifier } .

Qualification = (‘‘being’’ | ‘‘be’’) Type-Expression .

Type-Expression = ‘‘(‘‘ Type-Expression ‘‘)’’ |
Adjective-Cluster Type-Expression |
Radix-Type .

Structure-Type-Expression = ‘‘(‘‘ Structure-Type-Expression ‘‘)’’ |
Adjective-Cluster Structure-Symbol

[‘‘over’’ Term-Expression-List] .

Radix-Type = Mode-Symbol [‘‘of’’ Term-Expression-List] |
Structure-Symbol [‘‘over’’ Term-Expression-List] .

Type-Expression-List = Type-Expression { ‘‘,’’ Type-Expression } .

Term-Expression = ‘‘(‘‘ Term-Expression ‘‘)’’ |
[Arguments] Functor-Symbol [Arguments] |
Left-Functor-Bracket Term-Expression-List Right-Functor-Bracket |
Functor-Identifier ‘‘(‘‘ [Term-Expression-List] ‘‘)’’ |
Structure-Symbol ‘‘(#’’ Term-Expression-List ‘‘#)’’ |
Variable-Identifier |
‘‘{‘‘ Term-Expression [Postqualification] ‘‘:’’

Sentence ‘‘}’’ |
Numeral |
Term-Expression ‘‘qua’’ Type-Expression |
‘‘the’’ Selector-Symbol ‘‘of’’ Term-Expression |
‘‘the’’ Selector-Symbol |
‘‘the’’ Type-Expression |
Private-Definition-Parameter |
‘‘it’’ .

Arguments = Term-Expression | ‘‘(‘‘ Term-Expression-List ‘‘)’’ .

Adjective-Arguments = Term-Expression-List |
‘‘(‘‘ Term-Expression-List ‘‘)’’ .

Term-Expression-List = Term-Expression { ‘‘,’’ Term-Expression } .

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 241

Postqualification = ‘‘where’’ Postqualifying-Segment
{ ‘‘,’’ Postqualifying-Segment } .

Postqualifying-Segment = Postqualified-Variable
{ ‘‘,’’ Postqualified-Variable } ‘‘is’’ Type-Expression .

Postqualified-Variable = Identifier .

Private-Definition-Parameter = ‘‘$1’’ | ‘‘$2’’ | ‘‘$3’’ | ‘‘$4’’ |
‘‘$5’’ | ‘‘$6’’ | ‘‘$7’’ | ‘‘$8’’ | ‘‘$9’’ | ‘‘$10’’ .

ACKNOWLEDGMENT

The authors wish to express their sincere appreciation to the outstanding work of
Andrzej Trybulec, the inventor of Mizar and the leader of the Mizar project.

References

[1] G. Bancerek and P. Rudnicki. Information retrieval in MML. In MKM’03:
Proceedings of the Second International Conference on Mathematical Knowl-
edge Management, pp. 119–132, 2003.

[2] P. Corbineau. A declarative language for the Coq proof assistant. In Types for
Proofs and Programs, LNCS 4941, pp. 69–84, 2008.

[3] F. B. Fitch. Symbolic Logic. An Introduction. The Ronald Press Company,
1952.

[4] A. Grabowski and A. Naumowicz. Computer Reconstruction of the Body of
Mathematics Studies in Logic, Grammar and Rhetoric, 2009.

[5] J. Harrison. A Mizar Mode for HOL. In TPHOLs’96: Proceedings of the
9th International Conference on Theorem Proving in Higher Order Logics, pp.
203–220, 1996.

[6] S. Jaśkowski. On the rules of supposition in formal logic. Studia Logica, 1,
1934.

[7] A. Korni lowicz. How to define terms in Mizar effectively. In [4].
[8] R. Matuszewski and P. Rudnicki. Mizar: the first 30 years. Mechanized Math-

ematics and Its Applications, 4(1), pp. 3–24, 2005.
[9] R. Matuszewski and A. Zalewska. From Insight to Proof. Festschrift in Honour

of Andrzej Trybulec. Studies in Logic, Grammar and Rhetoric, 2007.
[10] Mizar home page: http://mizar.org.
[11] A. Naumowicz. Enhanced processing of adjectives in Mizar. In [4].
[12] A. Naumowicz. Teaching How to Write a Proof. In Formed 2008: Formal

Methods in Computer Science Education, pp. 91–100, 2008.
[13] A. Naumowicz and C. Byliński. Improving Mizar texts with properties and

requirements. In A. Asperti, editor, MKM-2004, LNCS 3119, pp. 290–301,
2004.

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

242 · Adam Grabowski et al.

[14] A. Naumowicz and A. Korni lowicz. A Brief Overview of Mizar. In S. Berghofer
et al. (Eds.), TPHOLs 2009, LNCS 5674, Springer-Verlag Berlin Heidelberg,
2009.

[15] K. Ono. On a practical way of describing formal deductions. Nagoya Mathe-
matical Journal, 21, 1962.

[16] QED Manifesto: http://www.rbjones.com/rbjpub/logic/qedres00.htm.
[17] Ch. Schwarzweller Mizar attributes. A technique to encode mathematical

knowledge. In [9].
[18] D. Syme. Three tactic theorem proving. In TPHOLs’99: Proceedings of the

12th International Conference on Theorem Proving in Higher Order Logics,
pp. 203–220, 1999.

[19] A. Trybulec. Some Features of the Mizar Language. In Proceedings of ESPRIT
Workshop, Torino 1993.

[20] A. Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1),
pp. 9–11, 1990.

[21] J. Urban. XML-izing Mizar: Making Semantic Processing and Presentation
of MML Easy. In Mathematical Knowledge Management: MKM 2005, LNCS
3863, pp. 346–360, 2006.

[22] M. Wenzel and F. Wiedijk. A comparison of Mizar and Isar. Journal of
Automated Reasoning, 29(3-4), pp. 389–411, 2002.

[23] F. Wiedijk. Formal Proof Sketches. In Types for Proofs and Programs: TYPES
2003, LNCS 3085, pp. 378–393, 2004.

[24] F. Wiedijk. Mizar Light for HOL Light. In Theorem Proving in Higher Order
Logics: TPHOLs 2001, LNCS 2152, pp. 378–393, 2001.

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 243

Contents

1 Introduction 153

2 Language 153
2.1 Formulas . 155
2.2 Proofs . 156

2.2.1 Proof skeletons . 156
2.2.2 Justification . 158
2.2.3 Auxiliary proof elements . 160

2.3 Defining notions . 163
2.3.1 Predicates . 166
2.3.2 Attributes . 167
2.3.3 Modes . 168
2.3.4 Functors . 169
2.3.5 Structures . 170
2.3.6 Synonyms and antonyms . 172

2.4 Redefinitions . 174
2.5 Properties . 177

2.5.1 Projectivity . 177
2.5.2 Involutiveness . 178
2.5.3 Idempotence . 178
2.5.4 Commutativity . 178
2.5.5 Reflexivity . 179
2.5.6 Irreflexivity . 179
2.5.7 Symmetry . 179
2.5.8 Asymmetry . 179
2.5.9 Connectedness . 180

2.6 Registrations . 180
2.7 Terms identification . 182
2.8 Summary of definitions, redefinitions and registrations 183

3 System 185
3.1 Scanner – tokenizer . 185
3.2 Parser . 185
3.3 Analyzer . 185
3.4 Reasoner . 186
3.5 Checker . 186

3.5.1 Schematizer . 187

4 Software 190
4.1 Installation . 190

4.1.1 Unix-like OS’s . 191
4.1.2 Microsoft Windows . 192

4.2 Preparing a Mizar article . 193
4.3 Vocabularies . 193
4.4 Accommodator and environment declaration 194

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

244 · Adam Grabowski et al.

4.5 Auxiliary utilities . 195
4.6 Enhancers . 196

5 Mizar Mathematical Library 197
5.1 Axiomatics . 197

5.1.1 File HIDDEN . 197
5.1.2 File TARSKI . 198

5.2 Contents . 200
5.3 Submission of articles . 200
5.4 Formalized Mathematics . 202

6 More information on Mizar 203

A Skeletons 204
A.1 Definitions . 204

A.1.1 Predicates . 204
A.1.2 Modes . 204
A.1.3 Functors (means, equals) . 205
A.1.4 Attributes . 207

A.2 Redefinitions – result type is being changed 208
A.2.1 Modes . 208
A.2.2 Functors . 208

A.3 Redefinitions – definiens is being changed 208
A.3.1 Predicates . 208
A.3.2 Modes . 209
A.3.3 Functors (means, equals) . 209
A.3.4 Attributes . 211

A.4 Registrations . 212
A.4.1 Existential . 212
A.4.2 Conditional . 212
A.4.3 Functorial . 212

A.5 Properties in definitions . 213
A.5.1 Predicates . 213

A.5.1.1 Reflexivity . 213
A.5.1.2 Irreflexivity . 213
A.5.1.3 Symmetry . 214
A.5.1.4 Asymmetry . 215
A.5.1.5 Connectedness . 216

A.5.2 Functors . 216
A.5.2.1 Involutiveness (means, equals) 216
A.5.2.2 Projectivity (means, equals) 218
A.5.2.3 Idempotence (means, equals) 220
A.5.2.4 Commutativity (means, equals) 221

A.6 Properties in redefinitions . 223
A.6.1 Predicates . 223

A.6.1.1 Reflexivity . 223
A.6.1.2 Irreflexivity . 223

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

Mizar in a Nutshell · 245

A.6.1.3 Symmetry . 223
A.6.1.4 Asymmetry . 224
A.6.1.5 Connectedness . 224

A.6.2 Functors . 224
A.6.2.1 Commutativity . 224

A.7 Definitional expansions . 224
A.7.1 Predicates . 224

A.7.1.1 Non permissive . 224
A.7.1.2 Permissive . 225

A.7.2 Modes . 226
A.7.2.1 Non permissive . 226
A.7.2.2 Permissive . 227

A.7.3 Attributes . 228
A.7.3.1 Non permissive . 228
A.7.3.2 Permissive . 229

A.8 Identify . 230
A.8.1 without when statement . 230
A.8.2 with when statement . 230

B The syntax of the Mizar language 230

Journal of Formalized Reasoning Vol. 3, No. 2, 2010.

